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Abstract—The advent of the Kinect depth imager has opened
the door to motion capture applications that would have been
much more costly with previous technologies. In part, the
Kinect achieves this by focusing on a very specific application
domain, thus narrowing the requirement for the motion capture
system. Specifically, Kinect motion capture works best within
a small physical space while the camera is stationary. We seek
to extend Kinect motion capture for use in athletic training
– speed skating in particular – by placing the Kinect on a
mobile, robotic platform to capture motion in situ. Athletes
move over large distances, so the mobile platform addresses
the limited viewing area of the Kinect. As the platform moves,
we must also account for the now dynamic background against
which the athlete performs. The result is a novel, visually-
guided robotic platform that follows athletes, allowing us to
capture motion and images that would not be possible with a
treadmill. We describe the system in detail and give examples
of the system capturing the motion of a speed skater at typical
training speeds.

Keywords-Mobile robots; Robot vision systems; Robot sens-
ing systems

I. INTRODUCTION

Motion capture is an established technology with ap-

plications in computer games, computer animation, human

motion research and clinical motion analysis. The leading

technologies for motion capture are:

1) video-based marker-tracking systems (e.g., those built

by Vicon [1]),

2) inertial measurement unit (IMU) systems (e.g., the

motion capture suits made by Xsens [2]), and

3) exoskeletons (e.g. the Meta Motion Gypsy 7 sys-

tem [3]).

Video-based systems offer excellent speed and accuracy but

the acquired motion must be performed within the fields of

view of multiple cameras simultaneously. Capturing motion

over large areas – the size of a 400m track for example – is

prohibitively complex and expensive. IMU systems capture

motion by integrating acceleration and angular velocity

data from IMUs fastened to body parts. They can operate

over much larger areas but can suffer from drift in the

dead-reckoning performed by the IMUs and there are no

video images innately captured with the motion. Exoskeleton

systems work by attaching instrumentation to the exterior

of a subject’s body to measure joint angles. These systems

tend to be more affordable and operate over large areas,

but the exoskeleton can be bulky and for some applications

(e.g., athletic movements performed at high speeds) even

dangerous.

Beyond the established applications of motion capture,

there is a growing interest in capturing human motion to

produce feedback for training athletes. For examples, see

the work of Stienestra et al. [4], Schaffert et al. [5], Vogt et

al. [6], Effenberg [7], and Godbout and Boyd [8]. In work

where full-body motion acquisition is required, video-based

capture works well if the motion can be performed in a

small area or on a treadmill. However, for sports like speed

skating, small areas and treadmills are not an option. A speed

skating track is 400m long and while skating treadmills

exist, they cannot duplicate turns which account for half

of a track. Exoskeletons are not an option because of their

bulk and safety concerns. Consequently, existing examples

of motion capture for sonification (audio display of data,

e.g., to provide feedback of performance data to athletes)

do not capture full-body motion, and instead focus on data

from a small set of sensors [4], [8]. IMU systems would

work, but they do not provide video images of the skater

during capture, something that is useful to coaches. Thus,

there remain niches for development in the field of motion

capture.

The recent introduction of the MicroSoft Kinect has

provided a new option for motion capture that is cheap

and available, with an abundance of information available

to experimenters [9], [10]. As an example of a struc-

tured light system (e.g., Yeung [11]), the Kinect measures

depth/disparity in a scene in a manner analogous to stereo

vision systems. Software exists for skeletal pose estimation

from Kinect depth data [12], [13]. Its prime advantage

over stereo vision systems is the active eye that produces

the structured light guarantees that the passive eye will

see a known pattern that is ideally suited for correlating

disparities. However, its intended use is for interaction with

video games, and as such, is not always ideal for other

applications. For example, for athletics off the treadmill, its

viewing area is small.

This paper describes a novel robotic system that follows

a speed skater on the ice with a Kinect to capture full-body

motion. It offers the ability to capture motion in situ, on the



track under real training conditions that cannot be duplicated

on a treadmill. The moving, robotic platform addresses

the limited performance area issues associated with visual

motion capture systems and avoids safety issues surrounding

exoskeletons in this application. An IMU system should also

be able to capture this motion, but will not have the added

advantage of providing simultaneous video of the athlete.

We describe the system in details including how we address

issues of speed, traction, sensing, tracking, and control for

following distance and angle.

II. BACKGROUND

Although following a human appears to be a simple

robotic task, there continues to be active interest in the

problem from two applications areas:

• human-robot interaction (HRI) in which following a

human becomes part of an interaction, and

• military applications in which a robotic assistant fol-

lows a person, or vehicles move in a convoy.

In the HRI realm, Gockley et al. [14] describe a person-

following robot that uses a laser-based tracker. They com-

pare a direction-following strategy (the robot drives toward

the person) versus a path-following strategy (the robot

follows the person’s path) from the perspective of human

interaction. They conclude that while the direction-following

appears more natural, a hybrid approach may be best where

a robot uses direction following, switching to path following

in a cluttered environment. Gigliotta et al. [15] describe

a follower system that locates and follows people in a

domestic environment. In their design, the leader is active,

i.e., it emits an infra-red beacon that the follower can see

and follow. They describe their solutions to following in a

cluttered, domestic environment. Sonoura et al. [16] fuse

laser range data with vision data to implement a person-

following robot. As with most HRI applications, their control

handles both following the person and obstacle avoidance.

Satake and Miura [17] describe a stereo vision system for

detecting and tracking people for the purpose of following.

They use a person-shaped template applied to a dense

disparity/depth map. Multiple people can be tracked by

associating template matches to trajectories formed by an

extended Kalman filter. They describe a control strategy for

a robot to follow a person based on the estimated trajectory

of the tracked person.

Robot followers are useful in military applications. Gies-

brecht [18] describes the development of a vision-based

robotic follower system for military convoy applications.

Borenstein et al. [19] look at following systems for robotic

mules (load-carrying assistants) and convoys. They describe

a system for correcting the leader’s heading in the case

where the follower has the most reliable navigation in-

strumentation. Ng et al. [20] describe a following system

for armoured vehicles in jungle environments. It combines

sensing, tracking and path planning to navigate in difficult

terrain.

There has been some work on sensing and control issues

for robotic following. Cowan et al. [21] describe a robot

follower system using visual servoing from omnidirectional

cameras and evaluate their system and two control strategies

in simulation. Mariottini et al. [22] investigate the local-

ization problem for robot-mounted cameras in a leader-

follower configuration. They use an extended Kalman filter

for position estimation and evaluate in simulation. Chen and

Birchfield [23] use binocular vision to identify a person

for following. They match features from a Luca-Kanade

feature detector to find disparity/depth. A three-step process

based on inter-frame consistency, and background and figure

and motion estimates extracts the features from the moving

human figure. The depth/disparity and horizontal position of

the figure drive two proportional feedback loops for control.

Not surprising, the surge of interest in the Kinect has

inspired a person-following robot example [24]. The system

uses ROS [10] and is demonstrated at very low speeds and

uses rudimentary control.

III. PHYSICAL DETAILS

A. Requirements

A robot for in situ speed-skating motion capture has

some requirements that are out of the ordinary for person-

following robots. Among these are the following.

1) The robot must be faster than most. A typical train-

ing lap of 35s over 400m corresponds to 42km/h.

Wotherspoon’s world record time of 34.03s for 500m

corresponds to an average speed of 54km/h. Most

small robotic development platforms are not capable

of these speeds.

2) The robot must have excellent traction on ice. The turn

radius on a speed skating track is approximately 32m.

In a 35s lap, the robot experiences a centrifugal ac-

celeration of approximately 0.4g. The robot must have

traction to handle this acceleration without excessive

damage to the ice surface.

3) While following directly behind the skater may be

useful at times, it will also be useful to view the skater

from the sides or rear quarters. Our control system

must allow for this.

4) At these speeds, safety is paramount. Any system that

may endanger an athlete cannot be used. It is essential

to not only have manual overrides, but the sensing and

control must be aware of failure states so that the robot

can shutdown automatically.

B. Platforms

Advances in radio-control (RC) vehicles for hobbyists

address the first of our requirements, speed. We chose a

Traxxas Slash [25] 1/10-scale four-wheel-drive racing truck.

The manufacturer advertises speeds in excess of 55km/h
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Figure 1. Robot platform for high-speed, mobile motion capture of speed
skating: (a) The modified RC four-wheel-drive truck platform, (b) close-up
view of spiked tires for traction, and (c) a slower, but easier SuperDroid
platform for development phases.

in stock configuration with a mass of 2.3kg. Figure 1(a)

shows the vehicle after configuration for motion capture and

following.

Testing revealed that stock tires were not sufficient to

hold turns beyond approximately 10 to 15km/h, so we took

advice from hobbyists who race RC vehicles on ice and

added custom spikes to a set of tires by inserting thumbtacks

into the tires from the inside (see Figure 1(b)). The results

were satisfactory and we confirmed both the manufacturer’s

claim of speeds near 60km/h in stock configuration, and that

traction with the thumbtacks was sufficient to hold corners

on the ice at these speeds.

As an additional precaution for handling on ice, we added

a gyroscope control system to the vehicle’s steering. With

the gyroscopic control, steering commands to the vehicle set

desired turn rates versus setting the wheel angle. Should the

vehicle loose its traction and begin to drift (rotate too fast),

the gyroscopic control adjusts the steering to compensate

automatically.

Obviously, the vehicle was not designed to carry a Kinect

and other equipment so further modification was required.

To get the speed performance we require, it was essential

that these modifications be as light as possible. We placed

a plywood base reinforced with carbon-fibre rods on top of

the chassis, fastened to the stock body mounts. A plywood

platform holds the Kinect about 12mm above the base

(Figure 1(a) shows the Kinect on an alternate platform, about

30mm above the base). A light-weight laptop computer to

control the vehicle sits on the base just rear of centre.

Note that during development, it was essential to build in-
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Figure 2. Schematic diagram for robotic Kinect motion acquistion system.
A multiplexer switches between manual control via an RC receiver and the
onboard laptop computer. The laptop computer tracks the skater with the
Kinect to derive control signals for following.

crementally. To that end, we implemented and tested most of

this system on a slower, but more powerful SuperDroid [26]

vehicle shown in Figure 1(c). This allowed us to develop

with less concern for safety and weight before progressing

the the faster and lighter platform.

C. Electronics

Figure 2 shows a block diagram of the electronic and

computer systems added to our robotic vehicle for following

athletes. The robot requires two signals for control: steering

and speed. A conventional RC servo motor operates the

parallel steering mechanism on the robot. An electronic

speed controller (which also uses conventional RC servo

signals) drives a brushless motor to propel the robot and

control speed. As mentioned previously, the robot uses a

gyro to stabilize the steering when drift occurs.

The robot allows for both manual operation by a human

via a radio control link and computer control. An RC

servo signal multiplexer switches control between the two

as dictated by the select channel from the RC receiver.

This allows a human operator to take control of the robot

at any time by operating a switch on an RC transmitter.

This effectively acts as a kill switch when the transmitter

controls are left in their neutral positions – essential for safe

operation. Manual control is also handy for positioning and

retrieving the robot during testing.

A laptop computer onboard the robot provides computer

control. The computer uses a USB/serial controlled RC servo

motor controller to provide signals that are compatible with

the multiplexer and servo motor and speed controller. The

computer also communicates with the Kinect to retrieve

disparity maps for tracking the athlete and control. We used a

particularly low-mass (approximately 1kg) laptop computer

with a quad-core i5 processor to have sufficient, but light-

weight computing power on board.



D. Kinect Mount

Mounting the Kinect camera is mostly trivial. A simple

velcro attachment holds the Kinect to a mounting platform

and allows us to orient the camera for different following

angles. We fabricated two mounts for the Kinect camera:

one 100mm tall and the other 300mm tall. While the taller

platform gives us a better viewing angle, the lower platform

reduces sway in the robot’s suspension and is better for

higher speeds. Power for the Kinect comes from a three-

cell lithium-polymer battery (nominally 11.1V). While this

is slightly below the 12V provided by the Kinect’s wall-

power adapter, it does not appear to affect its operation.

1000mAh capacity batteries give several hours of operation

between charges.

IV. PERSON-FOLLOWING SYSTEM DETAILS

Our system uses visual servoing to enable the robot to

follow an athlete. The primary advantage of this approach

is that it relies on the athlete for what might otherwise be

a challenging navigation task. Furthermore, in the context

of an athletics track, following at close range eliminates the

need for any obstacle avoidance – the athlete does this for

us too.

Visual servoing has two basic components: segmentation

and tracking of the person, and control of robot. These are

described in the following subsections.

A. Segmentation and Tracking

Segmentation and tracking for our person-following robot

has the following steps.

1) Segment the Kinect disparity image to form connected

components that correspond to objects.

2) Use a multiple-target tracking system to track all

objects.

3) Manually identify (e.g., by mouse click) which object

trajectory to follow.

4) Use the trajectory state as input to the control system

to drive the robot.

Segmentation is a variation on well-known raster-based

algorithms for labelling connected components. We cannot

assume that we have a stationary background as we expect

the Kinect to be moving continuously. This means that any

segmentation based on background subtraction is not likely

to work. Instead, we form components connected by adjacent

pixels with a depth difference below a specified threshold,

∆z. The relationship between depth and disparity values in a

Kinect depth image is (within the necessary precision) [10]:

z =
348

1090− zk
, or (1)

zk = 1090−
348

z
, (2)

where z is depth in meters and zk is Kinect disparity.

Obviously, a constant ∆z translates to varying changes in

Kinect disparity, ∆zk. To derive ∆zk we first differentiate

Equation 1 to get

dz

dzk
=

348

(1090− zk)2
, (3)

then assuming
∆z

∆zk
≈

dz

dzk
, (4)

gives

∆zk =
∆z

348
(1090− zk)

2. (5)

Thus, when forming connected components our system

considers adjacent pixels with disparity values differing by

less than ∆zk to be part of the same object. Examples in

this paper use ∆z = 0.15m.

Segmentation by depth is not sufficient for our application

because the objects we want to detect and follow are almost

always connected to the floor and will appear to be part of

the same connected component. To deal with this, we use

the following ad hoc process to eliminate floor pixels.

1) For each row in the image, perform a linear regression

to find the best linear model for disparity values versus

column.

2) If the linear model fits the row well, we assume that

the row consists mostly of floor pixels and discard as

potential object pixels all pixels that are close to the

model.

A best-hypothesis multiple-target tracker tracks objects

from the centroid of the segmented objects. The tracker is a

simplification of the multiple-hypothesis tracker of Cox and

Hingorani [27], in which the best association hypothesis is

accepted in every frame, rather than defer decisions to re-

solve ambiguities. Accepting the best hypothesis works well

here because the control system requires current estimates

of object state, and there is little ambiguity while tracking

a single athlete.

Each trajectory is formed from by a Kalman filter with

state vector [ x y z ]T , where x and y are image co-

ordinates and z is pixel depth. The Kalman filter uses a

constant-state model which is reasonable if we assume that

the control system will be servoing on the object’s position.

Any unassociated objects spawn new tracks. Tracks without

recently associated data are discarded after a fixed number

of frames (typically 30 frames, or 1s).

An interactive display (Figure 3) shows the segmented

image with all current trajectories. We engage the control

system by clicking with a mouse over the desired object. The

system will then follow that object as long as the trajectory

is active, i.e., following stops when the tracker discards

the trajectory due to lack of updates. This gives us some

measure of safety – the tracking system has a recognizable

failure state when it loses a trajectory that can precipitate

an automatic shut down. We also provided a wireless link



Figure 3. Screen capture of our tracking/control system in operation.
Different colours indicate the different segmented objects. Crosshairs and
circles indicate active trajectories from the tracker. The numbers are
trajectory identifiers enumerated by the tracker. The red crosshair indicates
the trajectory selected manually for following.

to the computer to allow us to monitor and tune the control

system while in use.

B. Control

Following a person on an athletic track in close quarters

does not require obstacle avoidance. As such, it is sufficient

to follow the athlete, rather than the athlete’s path. The

common approach is to use a proportional control system

that keeps the person centred in the field of view and at a

desired distance. We elaborate slightly by allowing the robot

to follow not only from behind, but from the rear quarter,

and use two (steering and speed) proportional-integral (PI)

controllers [28] for greater accuracy in the desired position

and following distance.

Figure 4 shows schematically the geometry used to com-

pute a position error signal to drive the controller. The input

to our controllers is the desired following distance, rset, and

orientation θset. Via the object tracking system described

in the previous subsection, the Kinect measures the range,

r and azimuth, θ to the person. Referring to the robot’s

inertial frame of reference, the robot moves in the positive x
direction, with positive y on the left-hand side. The position

error in the robot reference frame is then

ex = r cos(θ)− rset cos(θset), and (6)

ey = r sin(θ) − rset sin(θset). (7)

Let v be the speed PI controller output and ω be the steering

PI controller output. The output of the two controllers is

then:

v = kv1ex + kv2

∫ t

0

exdt, and (8)

ω = kω1
ey + kω2

∫ t

0

eydt, (9)

where kv1 , kv2 , kω1
, and kω2

are manually tuned control

gains.

x

y

θset
θ

rrset

(ex, ey)

person

robot

Figure 4. Geometry for computing error signals for Kinect-based person-
following control.

In our implementation of the PI controllers, we constrain

the integral term to stay within finite bounds for stability. We

also force the integral of the steering term to be zero when

robot is not moving. Note that PI control does not guarantee

stability so tuning of the controller gains is essential. It

is also necessary that the robot follow from behind, i.e.,

|θset| ≤ π/2, for stable following.

V. RESULTS

We developed the system starting with the Superdroid

platform to debug our system at slower speeds, and pro-

gressed to the high-speed platform testing first in a gym-

nasium, then finally on ice. Figure 5 shows our robotic

motion capture system in gymnasium trials. The Superdroid

platform (Figure 5(a)) was limited to the speed of a brisk

walk but was ideal for early testing because of its ability to

carry a heavier payload than the RC vehicle, and because

slower top speeds make for safer testing. Figure 5(b) shows

gymnasium testing with the RC vehicle. Running speeds are

easily obtained by this platform and caution is necessary

because the braking performance of the vehicle is much

poorer than a human runner – a human runner can sprint

toward a wall and stop short while the robot cannot stop

before hitting the wall. Images in Figure 5(c) through (e)

show Kinect disparity image captured while following from

different angles, verifying the control geometry.

Figure 6 shows on-ice testing conducted at the University

of Calgary Olympic Speed Skating Oval. We started with

low-speed tests with a non-athlete skater on hockey skates

(Figure 6(a)) to verify traction, control, and speed capabil-

ities up to approximately 15km/h. Finally, we tested with a
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Figure 5. Motion capture system in use in a gymnasium: (a) at walking
speeds and (b) running speeds. The bottom row shows Kinect disparity
images for walking from (c) rear left quarter, (d) rear centre, and (e) rear
right quarter, θset = −π/4, 0, and π/4 respectively.

(a) (b)

Figure 6. Motion capture system in use on-ice: (a) at low speeds (approx-
imately 15km/h), and (b) near training speeds (approximately 30km/h).

trained athlete, a former Canadian national team skater as

the subject (Figure 6(b)), reaching speeds over 30km/h.

Figure 7 shows Kinect disparity images from on-ice trials

with the trained speed skater. The top two rows show part

of a lap of the oval covering one straight section and one

corner at approximately 30 to 35km/h. The bottom row

shows acceleration from a start position through a straight

section, accelerating up to approximately 40km/h. To our

knowledge, this is the first example of visual motion capture

of speed skating in situ. Moreover, it would not be possible

to acquire comparable data on a treadmill for the corner and

start sequences.

VI. DISCUSSION

To date, we have achieved the individual objectives for our

robotic motion capture system, although not simultaneously.

That is, we can follow from arbitrary viewing angles, and we

can operate at the desired speeds, but it is still difficult to

do both at the same time. The normal motion of a speed

skater in a straight section is side-to-side. For the trial

shown in Figure 7, the skater helped by skating a straight

line, something he does not ordinarily do. Furthermore, we

observed that the robot could lose lock in transitions between

corner and straight due to accelerations in motions we had

not anticipated. Thus, the remaining obstacles to achieving

our requirements fully lie in the properties of the Kinect,

and improving control.

The Kinect field of view is small when moving at over

30km/h, especially when view from the side or rear quarters

– the subject can easily leave the field of view. For example,

the rightmost images of the corner and start sequence in

Figure 7 show the skater at the far limit of depth measured

by the Kinect. This happens due to oscillations in the speed

control loop. We cannot change the properties of the Kinect,

so the solution lies in the tuning of the control gains to

eliminate oscillations and keep the robot close to the athlete.

In steady-state conditions, with the skater at constant

velocities and minimal lateral motions, the PID controller

has worked well. However, we have seen that during large

accelerations, this controller is not adequate. For example,

as the skater exits a corner, he makes a stride towards the

inside of the corner followed by a hard stride to the right to

straighten out while maintaining speed. These large left-to-

right accelerations are beyond what the PID controller can

handle while keeping the skater in the field of view. Future

development will require that we move to better controller

and possible allowing the Kinect to rotate on the platform

to keep the skater in view.

VII. CONCLUSION

We have developed and demonstrated a system for in situ

motion capture of speed skating. The system has produced

unique data that will be valuable to coaches and athletes.

Ultimately, the data will be analyzed in real-time to give

skaters auditory feedback to improve their skating. While

there are still some limitations, the system is ready as a tool

for training.
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