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Abstract—Increasingly large amounts of video data raise the
question if large-scale face retrieval is feasible. To find fast and
accurate matching strategies, an according face track descriptor
is constructed by using local features, extended by an encoding
of the respective measurement conditions. The feature encoding
allows collecting all features of one face track together in a
single feature set, where cumulative descriptors, known from
image or object retrieval applications, especially bag of words
and fisher vectors, can be applied. These descriptors are known to
be viable for large-scale retrieval applications. To explore large-
scale video face retrieval, we first evaluate on the largest available
public datasets, i.e. YouTube Faces Database (YTF) and Face in
Action Database (FiA). Finally, the behavior of face retrieval for
increasing amounts of data is investigated by combining these
datasets with 55K face tracks, collected from about 100 hours of
TV data, making it the largest collection of face tracks we are
aware of.

Index Terms—face recognition, video retrieval, large-scale,
fisher vector, bag of words

I. INTRODUCTION

The growing amount of TV channels, video sharing web-
sites or surveillance cameras provides masses of video data. To
encounter these quantities of data, methods enabling automatic
processing, structuring or information extraction are welcome.
In most cases, the methods are supposed to understand the
video in a similar way a human would, making it necessary to
perform according tasks. Because humans especially focus on
other humans in video, research addressing person detection,
person recognition or action recognition is widely spread.
This paper focuses on the challenge of person retrieval and
especially the task to find further appearances of a given
person in the video data by using the face. This allows the
organization of the video data, the search for persons or
forensic analysis if one thinks of surveillance data.

In this context, performing face retrieval refers to comparing
video face representations which, in comparison to image
based face retrieval, offer several face shots from consecutive
frames to create a face representation. However, video data
tend to have worse image quality and a less constrained envi-
ronment. This leads to challenging variations in illumination,
head pose or noise level which need to be addressed for a
successful matching.

To process large amounts of data, a compact face descriptor
is necessary, which is created by avoiding a frame based
representation of the face track. Instead, we understand a
face track as a set of measurements for the displayed face.
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Fig. 1. Video face retrieval for large face databases.

Especially, it is unimportant in which specific frame, i.e. at
what point in time, a measurement was performed, as long as
the measurement conditions are known. Thus, by determining
and encoding the respective measurement conditions, it is
possible to combine all information from the track in a proper
way. By understanding local features as measurements, we
will show that augmenting the features with their respective
location in the image and the head pose fully encodes the
measurement conditions. The set of encoded features from
one track is then compactly described by cumulative methods
known from image or object retrieval tasks such as bag of
visual words [1] or fisher vectors [2]. Especially, two strategies
will be compared, the first being the baseline approach using
bag of visual words with an inverted index [3]. Secondly, the
recently presented VF2 descriptor for face tracks [4] seems
to be particularly compact and discriminative, thus, a similar
strategy is applied.

Comparing several local features addresses illumination and
noise issues. In addition to merely using the pixel intensity as
feature, local binary patterns (LBP) [5] are employed because
of their invariance to monotonic illumination changes. As a
more noise resistant feature, in comparison to LBP, local
directional patterns (LDP) [6] are evaluated and the final
option are SIFT-features [7] following the suggestion of [4].

Current video based face recognition often focuses on small
datasets, although the YTF dataset [8] is a step towards large-
scale processing. Still, the official protocol includes only 5,000
track to track comparisons, allowing slow matching strategies.
To give a clue about the speed of state-of-the-art face matching
techniques, a comparison of the ones with the highest accuracy



on YTF1 is presented in table I. Instead of face verification,
we conduct face retrieval which requires many more track
to track comparisons (almost 12M for YTF), especially if
larger datasets will be addressed, where a lot of state-of-the-art
methods seem infeasible.

The benefits and limitations of the proposed approach are
explored on the largest publicly available datasets YTF [8] and
FiA [9] in the first step, each having a size of about 3K face
tracks. Performance evaluation as well as cross database eval-
uation is performed, which is especially interesting, because
YTF is an in-the-wild dataset, whereas FiA was recorded in
a constrained environment. For evaluation on a larger scale,
we collected about 55,000 further in-the-wild face tracks
from approximately 100 hours of TV program, which can be
combined with the public data.

As first contribution, we show in section III that extending
local features by the head pose and the image position uniquely
encodes the entire recording situation, creating a theoretical
foundation for this strategy. This allows the meaningful ap-
plication of cumulative descriptors such as fisher vectors for
the encoded features, presented in section IV. The proposed
encoding significantly improves the retrieval result as is shown
in section V. The final contribution is the collection of the
hugest set of face tracks we are aware of, to examine the
viability of the proposed approach in comparison to further
approaches for large-scale face retrieval.

II. RELATED WORK

Face retrieval. Because conventional image retrieval ap-
proaches, such as bag of words, are difficult to adapt to the
face domain [3, 10], face retrieval remains a challenging task.
This is mainly caused by the classical keypoint detection based
descriptors such as SIFT, which have a tendency to fail for the
smooth face surface. Thus, the usage of further information
such as user feedback [11] or attribute based retrieval [12]
seems to be in the focus of current face retrieval work. The
problem of designing face retrieval systems which achieve
a high performance and a small retrieval time seems to get
little attention. Relevant work in that area includes small track
descriptors by frame clustering [13] or fisher vectors [4],
speeding up the distance measure [14] or applying cascade-
based strategies [15, 16]. In particular, it is worth noting that
some current top performing face verification systems seem
inadequate for face retrieval, because computationally expen-
sive classifier training steps are part of each face descriptor
comparison [8, 17, 18, 19].
Face track description. Typically, face tracks are described
in a frame based way, which means each frame is processed as
a whole. Handling tracks based on the frame representations
can be done by averaging on image [20], feature [21, 22]
or decision level [8, 19, 23] over the whole track. Pairwise
comparison and searching for the best match is another well
performing approach [8], although it takes considerable time.

1http://www.cs.tau.ac.il/ wolf/ytfaces/results.html

TABLE I
PROCESSING SPEED COMPARISON OF BEST PERFORMING METHODS ON
YTF. BECAUSE ALMOST NO PAPER GIVES NUMBERS, MOST RESULTS

WERE SIMULATED OR FOR THE SLOW APPROACHES ROUGHLY ESTIMATED.
SIMULATION MEANS USING THE EXACT DESCRIPTOR STRUCTURE AND
COMPARISON METHOD FROM THE PAPER, ONLY WITH RANDOM DATA.

method Accuracy ± SE
track com-
parisons
per second

source

DeepFace [24] 91.4 ± 1.1 4.8 · 102 simulated
VF2 [4] 84.7 ± 1.4 5.0 · 105 simulated
DDML [21] 82.3 ± 1.5 5.0 · 103 paper
VSOF+OSS [31] 79.7 ± 1.8 ∼ 101 estimated
STRFD+PMML [32] 79.5 ± 2.5 < 101 estimated
APEM-FUSION [18] 79.1 ± 1.5 < 101 estimated
MBGS [8] 76.4 ± 1.8 1.5 · 101 public code

Randomly selecting only a few frames per track for compar-
ison [24] reduces the computational effort. Instead of relying
on single frames, one can model the space of the frames
with a linear model [25, 26] or with a manifold [27, 28, 29].
Motivated by object retrieval work, a few approaches were
presented recently, that avoid the frame based representation
and instead use those based on local features [4, 18, 30].
Face tracks are represented by a set of local features which
are collected across different frames. This allows to use
cumulative descriptors such as bag of visual words [1] or
fisher vectors [2], which enable the construction of large
databases and performing fast queries. One key advantage of
these cumulative descriptors is their constant size, independent
of the track length. Consequently, our presented approach falls
in this last category.
Feature augmentation. When collecting local features to de-
scribe an object, it was proven useful to augment the feature
by its image coordinates [4, 18, 30], which means the concate-
nation of a feature vector and its image coordinates. We extend
this location augmentation by a head pose augmentation and
show that the combination of both uniquely encodes the
measurement conditions of the respective local feature, thus
creating a theoretical foundation for this previously heuristic
strategy.

III. ENCODING OF LOCAL FEATURES

As argued before, a small track descriptor can be con-
structed out of a set of local features collected from the
face track. However, one needs to keep in mind, that local
features can originate from different positions in the face or
represent different viewing angles caused by head motion
and camera position. To keep this information and enable
meaningful comparison of different local features, we encode
the measurement conditions appropriately. Figure 2a gives an
overview of the specifying parameters including head shape,
position and camera parameters (pinhole camera), which need
to be determined accordingly. First, a measurement targets
a specific location ξ = (X,Y, Z)T on the head/face and
secondly, three rotation angles α, β, γ and a translation vector
t describe the relative position of head and camera. Finally,
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Fig. 2. Schematic drawings to visualize the recording situation: (a) all
measurement parameters, including global target position (blue), head position
(orange), local target position (green) and camera parameters (red), (b) virtual
sensor orientation and its pixel size adaptation, (c) virtual sensor is invariant
to object distance.

the intrinsic camera parameters of a pinhole camera are given
by the distance b of the sensor from the projection center,
the pixel scale (sx, sy)

T and the sensor origin (ox, oy)
T . The

camera calibration equations include the relations between all
the parameters. Given the global coordinates ξ = (X,Y, Z)T

of a measurement, its camera coordinates are given by x
y
z

 = R

 X
Y
Z

+ t, (1)

where R = RαRβRγ denotes the rotation matrix. Using the
camera coordinates (x, y, z)T , the image coordinates (u, v)T

are (
u
v

)
= − b

z

(
s−1x x
s−1y y

)
+

(
ox
oy

)
. (2)

The knowledge of the head pose, given by α, β and γ, and
the image coordinates (u, v)T suffices to uniquely identify the
target location ξ on the head in our special case:
Face detection and registration enforce that the origin of
the global coordinate system lies on the z-axis of a virtual
camera coordinate system, which means t = (0, 0, z0)

T . This
defines a virtual camera, which is directly pointed at the head.
Face scaling to p × p pixels results in a unified pixel scaling
factor s = sx = sy , constant sensor origin ox, oy = const,
and because of face registration, to fixed image coordinates of
the face boundary, denoted by (um, vm)T = const. This can
be understood as taking the image by a virtual sensor with the
resolution of p × p pixels which fits the scaling s exactly to
match the size of the light rays of the face boundary, as shown
in figure 2b.
A constant head size can be assumed in good approximation
for all persons, at least for adults. According to [33] head width
is 154±6mm and head height 199±7mm for Caucasian, and
158±7mm and 188±7mm for Chinese people, which shows
that typical deviations are only in the order of a few percent

and the assumption of a constant head size is feasible. Thus,
the head width and height, and their respective halves xm, ym,
are constant for each observation: xm, ym = const. Inserting
half the width xm into the u-coordinate part of equation 2
yields

um =
b

szm
xm + ox (3)

and consequently

b

szm
=
um − ox
xm

= const. (4)

Of course, the same argumentation holds for using the y- and
v-coordinates respectively. A constant value for b

szm
means

that the virtual sensor also changes and fits to the size of the
light rays of the face boundary, if the distance zm between the
face and the camera varies, which is illustrated by figure 2c.

To prove our claim that (u, v, α, β, γ)T uniquely identi-
fies ξ, we need to show that for identical given head pose
and image coordinates (u, v, α, β, γ)T = (u′, v′, α′, β′, γ′)T ,
the respective face positions ξ and ξ′ are identical. First, the
following derivation shows that the camera coordinates in x-
and y-direction are the same:(

x
y

)
= −sz

b
·
(
u− ox
v − oy

)
(5)

≈ −szm
b
·
(
u− ox
v − oy

)
(6)

= −s
′z′m
b′
·
(
u′ − o′x
v′ − o′y

)
(7)

≈ −s
′z′

b′
·
(
u′ − o′x
v′ − o′y

)
=

(
x′

y′

)
. (8)

Step 6 in the equation holds under the approximation that the
distance between camera and head is significantly larger than
the depth of the face |z − zm| � z and thus z ≈ zm. Step 7
uses the constant factor from equation 4. Given x and y, as
well as the head orientation α, β and γ, the point ξ is uniquely
identified on the head, if the assumption of a constant head
size will be used again, which is illustrated in figure 2c for a
known ui.

Because the image position and the head pose uniquely en-
code the measurement conditions, we define an encoding vec-
tor e holding all position information: e = τ · (u, v, α, β, γ)T ,
where τ is a scaling parameter which will be explained shortly.

Given a measurement vectorm that describes the face under
the encoded conditions e, the encoded feature

w =

(
m
e

)
(9)

allows uniform treatment of all measurements. Assuming
normalized measurements with ||m||2 = 1 the impact of
the encoded position on the feature distance can be influ-
enced by τ . By assuming euclidean distance, the encoding
distance works additive to the squared measurement dis-
tance: d2(w1,w2) = d2(m1,m2)+d

2(e1, e2). And because
d(m1,m2) ≤ 2, caused by the normalization, the impact



of the encoding distance can be adjusted by τ . In this way,
comparing measurements lying close to each other causes
only a small penalty, none if the position is the same, while
measurements denoting totally different parts of the face are
significantly penalized. By ensuring this behavior, all encoded
features of one track can be collected in a single feature set
W = {w1 , ... , wn} and the different feature locations are
preserved.

Practical details. As measurements m we employ the local
features LBP [5] (59 dimensions), LDP [6] (56 dimensions),
SIFT [7] (128 dimensions) and simply the image intensity (64
dimensions). Each feature is determined from a local patch of
the size 8 × 8 pixels, where the patch center is used for posi-
tion encoding. For the histogram based LBP and LDP features,
fusion of three different scales, corresponding to a filter size of
3, 4 and 5 pixels, is used [34]. In addition, as is recommended
for histogram based descriptors [35], the Hellinger distance is
used, which can be efficiently implemented in a preprocessing
step with element-wise signed square rooting. Finally, PCA is
applied to the feature vectors m and the dimension is reduced
by half.

IV. DATABASE REPRESENTATION OF TRACKS

The feature set representation W of a track from the
previous section has the advantage, that it can be used with
typical retrieval algorithms. In addition to the baseline method,
an inverted index with bag of visual words, which is widely
used in object and image retrieval [1], we apply a face specific
strategy using fisher vectors, similar to [4, 30].

Bag of visual words and inverted index. Briefly, clustering
a domain specific training set and using the cluster centers as
visual words generates a domain specific set of words (dictio-
nary/codebook). A face track is described by the set (or bag)
of included visual words, where nearest neighbor assignment
of local features determines the according dictionary words.
For the database, an inverted index is prepared, which contains
for each dictionary word the database tracks this word occurs
in. Querying the database with a new track is performed by
determining the visual words for this track and looking these
words up in the dictionary. The database tracks showing the
highest number of matching visual words are ranked best. This
method has the theoretical advantage, that the query time is
independent of the database size, because a linear search is
avoided.
Fisher vectors. The face domain is trained by fitting a gaus-
sian mixture model (GMM) with K components (µk, Ck, αk)
having means µk, weights αk and diagonal covariance matri-
ces Ck. This is no restriction, because the previously applied
PCA for the feature vectors includes a decorrelation. Fisher
vectors capture the average differences of the first and second
statistical moment for given face track features with respect to
the GMM components, thus including additional information
compared to a bag of words descriptor. Given the set of

encoded local features W of one track, the fisher vector Φ(W )
is

Φ(W ) = (a1 , ... , aK , b1 , ... , bK)
T (10)

with

ak,i =
1

n
√
αk
·

n∑
j=1

p(k|wj)
wj,i − µk,i

σk,i
(11)

and

bk,i =
1

n
√
2αk

·
n∑

j=1

p(k|wj)

((
wj,i − µk,i

σk,i

)2

− 1

)
. (12)

After L2-normalization and element wise signed square
rooting [2] the normalized fisher vector will be denoted by
φ. Following the suggestion of [30], a matrix A ∈ Rp×q ,
p � q projects the normalized fisher vectors φ to a low
dimensional space, where the euclidean distance d(φi,φj) =
||Aφi−Aφj ||2 is discriminative with respect to face recogni-
tion. The projection matrix A is trained according to [30].
A further option [36] is to learn joint projection matrices
A and B in a way that the difference between the dis-
tance and kernel product can be used as a similarity score:
s(φi,φj) = ||Aφi−Aφj ||22−φ

T
i B

TBφj . While it promises
better recognition results, it doubles the necessary comparison
time.
Matching time linearly depends on the size p of the low
dimensional space in both cases, and also on the database
size, because linear search is necessary. However, the size p
of the target space can be chosen low enough to make this
strategy applicable.

V. EXPERIMENTS

Evaluation is performed with a 10-fold strategy, which
means each dataset is randomly divided into 10 splits, whereof
9 splits are used as database and the tracks from the remaining
split are used one-by-one as query tracks. In 10 repetitions,
each of the 10 splits will be used as query track set. Altogether,
this strategy results in equally many queries as the dataset
has face tracks. To evaluate significant differences between
methods, this amount of queries offers a larger statistical
base compared to regular 10-fold cross-validation where only
10 samples are available. Motivated by [37], a randomization
test is performed as statistical test on method pairs on an α-
level of 0.05, which corresponds to approximately 2 standard
deviations. Thus, results are presented as mean average pre-
cision map, which is the standard performance measure for
retrieval evaluation, and it is stated where these values are
significantly different according to the randomization test. The
experiments are performed on a workstation having a six-core
CPU with 3.4 GHz and 64 GB of memory.

A. Encoding

First, the potential benefit of the feature encoding is evalu-
ated. For this purpose, the Multi-PIE [38] face image dataset
is used because a large range of head poses is covered system-
atically in the data in contrast to public video face datasets.



TABLE II
EVALUATION OF FEATURE ENCODING AND ITS PARAMETERS.

RANDOMIZATION TEST COLUMN DENOTES CASE NUMBERS WHICH
YIELDED SIGNIFICANTLY WORSE RESULTS.

Case Algorithm K p Setting map Rand. test

1 fisher vec. 128 128 none 0.176
2 fisher vec. 128 128 pose 0.194
3 fisher vec. 128 128 spatial 0.420 1,2
4 fisher vec. 128 128 encoded 0.472 1,2,3

5 inv. index 64000 0.018
6 inv. index 64000 encoded 0.042 5

7 fisher vec. 128 128 pose, τ = 1 0.183
8 fisher vec. 128 128 pose, τ = 2 0.194
9 fisher vec. 128 128 pose, τ = 4 0.174

10 fisher vec. 128 128 enc., τ = 1 0.465
11 fisher vec. 128 128 enc., τ = 2 0.472
12 fisher vec. 128 128 enc., τ = 4 0.458

Using the images from all 249 subjects from session 1 with all
head poses under neutral illumination, the effectiveness of the
feature encoding can be judged. Each image is handled like a
face track consisting of one single frame leading to the same
processing chain as for real face tracks consisting of multiple
frames. The evaluation in this section, shown in table II, is
limited to the encoding. Further variations and comparison to
different approaches are examined in the next section with
actual video face datasets.
Augmentation by pose, position and their combination (en-
coding) shows superior results compared to the baseline for
both track representations: the fisher vectors in case 4 and the
inverted index in case 6. In addition, it should be noted that
the fisher vectors perform much better than the inverted index.
The scaling parameter τ is applied after normalization of
position (range 0 to 1) and angle (range -1 to 1) values.
Reasonable variations suggest that a value of τ = 2 is optimal
(cases 8,11), even though only insignificant differences are
observed.

B. Public video datasets

Comparative evaluation is conducted on the public YouTube
Faces Database (YTF) [8] and Face in Action Database
(FiA) [9]. YTF consists of 3,425 face tracks from 1,595
different celebrities collected from YouTube, the average track
length is 181 frames. FiA simulates an immigration act at
the desk and is thus a dataset with a constrained environment
and fixed camera positions. Nevertheless, it consists of 3,110
indoor tracks from 235 persons and the face tracks all share
the same length of 200 frames. First, table III indicates the
evaluation results of several parameter variations performed
on YTF.
Local features are varied in cases 1 to 4 and it is shown
that LBP performs best. The higher noise resistance of LDP
seems to be useless on this data and the SIFT-features are
also significantly outperformed. Thus, further experiments use
LBP.

TABLE III
EVALUATION OF DIFFERENT FEATURES, PARAMETERS AND ALGORITHMS.

RANDOMIZATION TEST COLUMN DENOTES CASE NUMBERS WHICH
YIELDED SIGNIFICANTLY WORSE RESULTS.

Case Algorithm K p Setting map Rand. test

1 fisher vec. 512 64 Intensity 0.095 3,4
2 fisher vec. 512 64 LBP 0.102 3,4
3 fisher vec. 512 64 LDP 0.027
4 fisher vec. 512 64 SIFT 0.064 3

5 fisher vec. 512 64 0.102
6 fisher vec. 512 128 0.109
7 fisher vec. 512 256 0.088

8 fisher vec. 128 128 0.067
9 fisher vec. 256 128 0.099

10 fisher vec. 512 128 0.109 8

11 fisher vec. 512 128 0.109
12 fisher vec. 512 128 encoded 0.154 11,13
13 fisher vec. 512 128 joint 0.124
14 fisher vec. 512 128 j+e 0.170 11,12,13

15 inv. index 64000 0.013
16 inv. index 64000 encoded 0.037 15
17 inv. index 128000 encoded 0.047 15
18 inv. index 256000 encoded 0.061 15,16,17

TABLE IV
EVALUATION RESULTS ON YTF AND FIA PUBLIC DATASETS, AS WELL AS

A COMBINATION OF BOTH. SUPERSCRIPTS INDICATE RESULTS OF
RANDOMIZATION TEST: A METHOD IS SIGNIFICANTLY BETTER THAN THE
ONE INDICATED BY THE SUPERSCRIPT, INCLUDING EVERY WORSE ONE.

map mean query time in s
No. Method YTF FiA comb. YTF FiA comb.

1 NN 0.1452 0.3514 0.2554 12.31 10.37 30.51
2 MSM 0.0843 0.2373 0.1703 0.583 0.150 0.428
3 best shot 0.058 0.147 0.103 0.074 0.069 0.134

4 inv. index 0.061 0.2902 0.1832 0.100 0.103 0.114
5 fisher vec. 0.1701 0.9301 0.5521 0.062 0.052 0.079

The target dimension p of the low dimensional subspace
for the fisher vector approach shows effects of overfitting if
chosen too large (case 7).
The number of clusters K in the GMM used for domain
adaptation is crucial for a good performance. Further increases
beyond case 10 are impossible due to the memory capacity of
our testing system.
Feature encoding and joint projection both increase the
performance significantly and yield in combination the best
overall result (case 14).
The inverted index approach cannot compete with the fisher
vector method, probably caused by the lack of adaptability
to the face domain. Here, K denotes the dictionary size,
and again, feature encoding enhances the results significantly
(compare cases 15,16).

The next evaluation step, shown in table IV, compares the
results with three baseline face recognition methods which are
fast enough to handle at least small scale retrieval tasks. First,
the mutual subspace method (MSM) [26] which models the
frame space by a linear subspace and allows fast track compar-



Fig. 4. Center locations of the 100 clusters with highest energy in the trained projection matrix W marked by dots. Top row shows training for FiA, bottom
row for YTF (rounded to and shown on Multi-PIE head poses).
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TABLE V
CROSS EVALUATION

BETWEEN BOTH PUBLIC
DATASETS.

Test Training
FiA YTF

FiA 0.930 0.198
YTF 0.054 0.170

Fig. 3. Example data from FiA dataset, illus-
trating the three fixed camera positions.

ison because the principle angle is used as distance measure.
Secondly, a best shot approach which selects the most frontal
frame from each track for distance computation, which reduces
the data size significantly and enables fast matching at the cost
of accuracy. Finally, a nearest neighbor (NN) method which
uses pair-wise frame descriptor comparison with the minimum
pair-wise frame distance as track distance. This approach is
the best performing one regarding conventional methods, as
was shown by [8] (they called it (‘min dist’), however, it is
considerably slower than the previous two. All three methods
use the frame-wise concatenated local patch LBP features as
frame descriptor.

The mean query time denotes the time for one query. Note
that N queries are performed during evaluation, if N denotes
the database size. On YTF and FiA all methods except NN
and MSM show query times below 100 milliseconds, but
in the case of the best-shot and inverted index approach,
this speed is bought by a significant reduction of matching
accuracy. The face adapted fisher vector method, instead,
achieves significantly better results than even the slow NN
method, making it the best performing method, which can be
explained by the training of the projection matrix that can be
interpreted as a face domain adapted feature transformation,
selection and weighting. The combination of both datasets
shows approximately doubled query times, as is expected
because of the doubled database size, with the exception of the

inverted index method, where query time depends primarily
on the dictionary size and database size has only a negligible
influence.

The proposed fisher vector method increases the perfor-
mance on YTF as well as FiA by a significant amount,
however, the considerable improvement for FiA might be
unexpected at first. A cross dataset evaluation further explores
this effect: training on YTF and testing on FiA or vice versa
shows, that these datasets have clearly different characteristics
and the cross evaluation results in table V show a severe
loss in performance. This is caused by the adaptation to the
intrinsic challenges of the dataset during the training of the
projection matrices. Especially, head pose variations, which
are difficult to handle for the baseline methods, can be modeled
and learned well by projection to subspaces, which was for
example shown by partial-least-squares methods [39, 40].
Thus, training on data containing the same pose (camera)
changes as the test data causes the considerable difference
in the observed retrieval results for the FiA data, where only
three fixed camera positions were used (figure 3).

Figure 4 shows the reason in the trained model: while YTF
training (bottom row) focuses on frontal and almost frontal
poses, the FiA trained model has the focus on profile and
half-profile poses (top row). Especially the fact, that no frontal
cluster is under the best ones for FiA might be unexpected, but
can be explained as follows: there are 3 fixed camera positions
to the left, front and right of the person’s head (figure 3), and
all persons move the head slightly during the video. Thus,
each face track from the frontal camera includes some frames
showing the head under minor pose variations, usually peaking
at the pose where the trained clusters appear. Cross pose
matching is easier for smaller pose changes, which is why
the half-profile pose shots are selected, instead of frontal pose
ones, for matching to the profile poses. This effect causes the
observed problems in cross database evaluation, because YTF



Fig. 8. Example of querying with TV data. Resulting ranking for one query track(large image): top row shows first 10 ranks, second row all correct matches
between rank 11 and rank 50, and bottom row shows last 10 ranks.

contains almost no half-profile and profile shots.

C. Large-scale TV dataset

For large-scale evaluation, a set of face tracks is collected
from about 100 hours of TV program. The collecting strategy
is basically identical to the one which was used by [8] for YTF:
A face tracker, based on the Viola-Jones face detector [41]
and the Matlab multi object tracker are used, and only tracks
longer than 30 frames are kept to exclude false detections.
Faces are aligned by normalizing landmark positions [42] and
afterwards converted to grayscale for feature computation. The
dataset includes 55,020 face tracks with an average length of
81.6 frames, making it the largest collection of face tracks we
are aware of.

The TV dataset tracks are used as distractors in the pre-
viously presented 10-fold evaluation strategy by adding them
to the database tracks from the public YTF data. To have no
undesired influence on the results, the TV face tracks must
show different persons than the public dataset, which means
care has to be taken to exclude the celebrities from YTF.
We manage this problem by using the program from different
local TV stations, focusing on local productions, especially
excluding shows which potentially contain celebrities from
YTF, such as news or hollywood movies.

First, adding more and more distractor tracks shows the
influence of an increasing database size in figure 5. In doing
so, a slight loss in performance can be observed. Baseline
methods appear to encounter less performance degradation
in relation to the fisher vector method which, nevertheless,
remains the top performing method. Figure 6 shows that the
query time increases linearly with the database size for all
methods, now including the inverted index one, caused by the
highly occupied index. All in all, the full evaluation requires
about 200M track to track comparisons, thus the slowest
baseline method NN can only be evaluated for the smallest
set of distractors. All other methods are fast enough to handle
databases at the given scale and fisher vectors are more than
an order of magnitude faster than the baseline methods.

Finally, some tracks from the unannotated TV dataset are
selected and used as query for a qualitative evaluation which
shows reasonable results, as can be seen in figure 8 for one
sample query. Top ranked results are tracks from the same
scene, as expected, because illumination and head pose are

very similar to the query. Further tracks from the same person
are ranked below with a set of incorrect matches in between,
however, these are few enough that a manual inspection of the
ranking still makes sense. Finally, on the last ranks, clearly
different faces and a set of false face detections can be found.
Especially, the logo of one particular tv show seems to confuse
the face tracker, but our retrieval algorithm proves robust to
this problem by ranking these tracks at the bottom.

VI. CONCLUSION

It is shown that augmentation of local features with their
image position and the head pose uniquely describes the
recording situation of the face. This leads to a theoretical
justification to apply cumulative descriptors which are widely
used for retrieval tasks. Consequently, two compact face track
descriptors based on bag of words and fisher vectors are
built out of a set of local features, which are collected
all over the face track. While experiments for the bag of
words descriptor with an inverted index show fast, but low
quality retrieval results, the fisher vector approach achieves
significantly better results than the baseline methods, while
being more than one order of magnitude faster caused by better
domain adaptation. The results show that video face retrieval
is still incapable of achieving the high performance known
from some image retrieval tasks where matching samples can
reliably be found in databases of millions of images. However,
the presented results are at a level where manual inspection
allows significant benefits in video analysis.

VII. ACKNOWLEDGMENT

This study was partially supported by the German Federal
Ministry of Education and Research (BMBF) as part of the
MisPel program under grant no. 13N12063.

REFERENCES

[1] J. Sivic and A. Zisserman, “Video Google: A text retrieval
approach to object matching in videos,” in International Con-
ference on Computer Vision, 2003, pp. 1470–1477.

[2] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the
fisher kernel for large-scale image classification,” in European
Conference on Computer Vision. Springer, 2010, pp. 143–156.

[3] C. Herrmann and J. Beyerer, “Fast Face Recognition by Using
an Inverted Index,” in Proc. SPIE 9405, Image Processing:
Machine Vision Applications VIII, 2015.



[4] O. M. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman,
“A Compact and Discriminative Face Track Descriptor,” in
Computer Vision and Pattern Recognition, 2014.

[5] T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description
with Local Binary Patterns: Application to Face Recognition,”
Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp.
2037–2041, 2006.

[6] T. Jabid, M. H. Kabir, and O. Chae, “Local directional pattern
(LDP) for face recognition,” in Consumer Electronics, 2010, pp.
329–330.

[7] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International journal of computer vision, vol. 60,
no. 2, pp. 91–110, 2004.

[8] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in un-
constrained videos with matched background similarity,” in
Computer Vision and Pattern Recognition, 2011.

[9] R. Goh, L. Liu, X. Liu, and T. Chen, “The CMU Face In Action
(FIA) Database,” Analysis and Modelling of Faces and Gestures,
pp. 255–263, 2005.

[10] Z. Wu, Q. Ke, J. Sun, and H.-Y. Shum, “Scalable face image
retrieval with identity-based quantization and multireference
reranking,” Pattern Analysis and Machine Intelligence, vol. 33,
no. 10, pp. 1991–2001, 2011.

[11] B. M. Smith, S. Zhu, and L. Zhang, “Face image retrieval by
shape manipulation,” in Computer Vision and Pattern Recogni-
tion, 2011.

[12] B. Chen, Y. Chen, Y. Kuo, and W. Hsu, “Scalable face image
retrieval using attribute-enhanced sparse codewords,” Transac-
tions on Multimedia, vol. 15, no. 5, pp. 1163–1173, 2013.

[13] M. Zhao, J. Yagnik, H. Adam, and D. Bau, “Large Scale Learn-
ing and Recognition Of Faces in Web Videos,” in Automatic
Face and Gesture Recognition, 2008, pp. 1–7.

[14] C. Huang, S. Zhu, and K. Yu, “Large Scale Strongly Supervised
Ensemble Metric Learning, with Applications to Face Verifica-
tion and Retrieval,” NEC Technical Report, 2011.

[15] C. Herrmann and J. Beyerer, “Maximizing Face Recognition
Performance for Video Data Under Time Constraints by Using
a Cascade,” in Advanced Video and Signal Based Surveillance
(AVSS), 2014 11th IEEE International Conference on. IEEE,
2014, pp. 181–186.

[16] ——, “Pyramid Mean Representation of Image Sequences for
Fast Face Retrieval in Unconstrained Video Data,” in Lecture
Notes in Computer Science 8888, Advances in Visual Comput-
ing, 10th International Symposium, ISVC 2014, Proceedings,
Part II, 2014, pp. 304–314.

[17] T. Berg and P. N. Belhumeur, “Tom-vs-Pete Classifiers and
Identity-Preserving Alignment for Face Verification.” in British
Machine Vision Conference, 2012.

[18] H. Li, G. Hua, Z. Lin, J. Brandt, and J. Yang, “Probabilistic
elastic matching for pose variant face verification,” in Computer
Vision and Pattern Recognition, 2013.

[19] L. Wolf and N. Levy, “The svm-minus similarity score for video
face recognition,” in Computer Vision and Pattern Recognition,
2013.

[20] R. Jenkins and A. Burton, “100% Accuracy In Automatic Face
Recognition,” Science, vol. 319, no. 5862, pp. 435–435, 2008.

[21] J. Hu, J. Lu, and Y.-P. Tan, “Discriminative deep metric learning
for face verification in the wild,” in Computer Vision and Pattern
Recognition, 2014, pp. 1875–1882.

[22] E. G. Ortiz, A. Wright, and M. Shah, “Face recognition in
movie trailers via mean sequence sparse representation-based
classification,” in Computer Vision and Pattern Recognition,
2013.
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