
A descriptor and voting scheme for fast 3D self-localization in man-made
environments

Marvin Gordon, Marcus Hebel and Michael Arens
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB

Ettlingen, Germany
{marvin.gordon,marcus.hebel,michael.arens}@iosb.fraunhofer.de

Abstract—In contrast to the increasing availability of afford-
able and lightweight 3D sensors, navigation sensors are still
big, expensive (IMU), and prone to GPS errors. In view of
a lightweight, affordable and robust 3D mapping solution, it
is preferable to aim at a low-cost IMU and GPS-less system.
Therefore, some capabilities provided by navigation hardware
should be replaced by methodical solutions.

We present an approach for data-based self-localization in
a large-scale 3D model of a man-made environment (e.g., an
urban area, an indoor environment), which solves substantial
parts of this problem. Our approach uses a rotation invariant
descriptor and a 3D voting scheme to determine the own
position and orientation within available 3D data of the
environment. While our methods can support loop closing
during mapping, the main result is the ability for fast and
GPS-less initial self-localization.

Keywords-geometric validation; Hough voting; 3D descrip-
tors; MLS; LIDAR;

I. INTRODUCTION

Active 3D vision sensors get more accurate, smaller, and
less expensive. One recent example is the Velodyne VLP-16.
The availability of such small and lightweight devices is one
reason for the increasing usage of such sensors. They can
be mounted to UAVs (like quadcopters), autonomous driving
vehicles or other robots. Due to the increasing demand for
driver-assistance and safety systems, even non-autonomous
vehicles are equipped with such sensors. Additional other
applications are the creation of maps (e.g. for simulations)
or change detection (cf. [1]).

In the field of robotic motion systems, the entire group
of topics containing map creation and localization is well
known under the term SLAM: simultaneous localization and
mapping (e.g. [2]). This is an important task in robotics,
at least in cases where no external navigation reference is
available (e.g. in GPS-denied environments). Even under
availability of GPS/IMU navigation solutions not all prob-
lems are solved: low-cost navigation systems tend to be
less accurate. On the other hand, even for highly accurate
GPS/IMU systems the accuracy in position is only achiev-
able with additional DGPS correction data. If used in urban
areas, multiple reflections of GPS signals typically lead to
so-called multipath effects, which result in a significant loss
of accuracy. Another problem is the size and weight of

highly accurate navigation systems, especially if they need to
be mounted to small UAVs. Therefore the potentials offered
by SLAM are relevant for both indoor and outdoor mapping.

In this paper we focus on the ”L” part of SLAM and
present an approach for automatic 3D self-localization in
a given 3D model of the actual environment. The proposed
methods can also be used for loop detection, which enables a
more accurate map creation. Our approach is optimized for a
man-made environment, where planar shapes are considered
to be the typical geometric primitives to occur. Special
attention is paid for the handling of the huge amount of
data which needs to be managed by the method.

The localization problem has some similarities to model-
based object recognition. In the case of object recognition,
a comparison of a model catalog and the scene data is
performed. Typically it is uncertain if one or more models
are contained in the scene. For self-localization there are a
few differences: the model is typically much bigger than the
scene and the scene characteristics are matched to a single
model in order to find the correct location of the scene within
the model.

Our approach adopts the typical approach of model-based
object recognition: we extract local descriptors in the model
as well as in the scene. Then we match the scene descriptors
to the model descriptors. The transformations resulting from
these matches are evaluated in a voting process to estimate
the most probable transformation, which finally results in an
estimate of the own 3D pose in the model.

II. RELATED WORK

Solutions to place recognition have been presented for the
case of 2D LIDAR data (e.g. [3] or [4]). Another approach
published in [5] also works with 3D data, where they
detect and describe interest points in range images. After
matching them, for each match a transformation is calculated
and evaluated using validation points. Another solution for
forest and urban area place recognition is presented in [6],
which includes a voting scheme for places. In [7] a normal
distribution transform (NDT) based histogram descriptor is
used for loop detection. This descriptor is not based on
points, instead the data are stored in grid cells and each cell
is classified as linear, planar or spherical. The descriptor is a

hebmar
Typewritten Text
This is the author's version of an IEEE-copyrighted article. The original publication appeared in theProceedings of the 13th Conference on Computer and Robot Vision 2016, pp. 319-326. The original publicationis available at http://ieeexplore.ieee.org (Digital Object Identifier: 10.1109/CRV.2016.28)



histogram of the given classes in the neighborhood that also
incorporates the distance. To achieve rotation invariance, a
normalization step is performed.

Most of the approaches mentioned above use local shape
descriptors. As already stated in [8], local shape descriptors
are a common approach for object recognition. Approaches
for model based object recognition can be found in the
literature: in [9] a matching point pair (corresponding points)
votes for a model. Afterwards the models with the highest
votes are selected and the matched pairs are grouped. Two
pairs are grouped if the difference of the distances between
the points on the model and the scene (dC1,C2

= |dS1,S2
−

dM1,M2
|) is close to zero. The solution presented in [10]

calculates a centroid for each model. Then a displacement
vector is saved for every descriptor, which is given with
respect to a local coordinate frame of the feature point.
The features extracted from the scene are matched against
the descriptors of the models. Then the saved displacement
vector is used to vote in a 3D Hough space, but prior to
this the displacement vector is transformed from the local
feature coordinate system to a global one. The maxima in
Hough space yield the position of the models present in the
scene.

A. 3D shape descriptors

Different 3D descriptors have been presented in the lit-
erature. They are often combined with a feature/keypoint
detector, which selects distinguished points. 3D descriptors
can be categorized into global (some examples given in
[11]) and local descriptors. Some descriptors include texture
information (e.g. [12]), but we focus on the more general
texture-less type. A Spin Image (SI) is an example for such
a local descriptor [13]. It uses oriented points, i.e. points
with an associated local normal vector. For each point in
the neighborhood of a given oriented point, a 2D histogram
is incremented depending on the distance perpendicular and
parallel to the normal vector. Another 3D descriptor is
presented in [14], the fast point feature histogram (FPFH).
It requires a local normal vector for each point, which is
taken to create a standardized frame between two points.
Then three angles are calculated utilizing this frame. This
triple is calculated between a query point and each point in
its neighborhood. The triples are saved in a 3D histogram. In
an iteration over all points, each histogram is recalculated by
integrating the histogram of the neighboring points weighted
by the distance. A descriptor for range images is the so-
called NARF descriptor [15]. The local normal vector is
used as the z-axis of a new coordinate system. Then a range
image is calculated by using the z-axis as line-of-sight. A
star is projected onto the resulting image. The descriptor
consists of the accumulated change along each beam of the
star. Finally, the descriptor is shifted according to a unique
orientation to achieve rotation invariance. A descriptor for
triangles is presented in [16]. The descriptor for a triangle is

a 2D histogram, ”which describes its pairwise relationship
with each of the other surrounding facets within a predefined
distance”. The features considered are the angle between the
two triangles and the range of perpendicular distances.

III. PROPOSED METHOD

Our overall objective is the development of a LIDAR
mapping system which achieves high accuracy, although it
uses no more than a low-cost IMU. Such a low-cost IMU
provides accurate data only for a short period of time, say
a few seconds. Hence we combine a few seconds of IMU
and LIDAR data to create a so-called scene, which gets
linked to previously recorded data (which we call model).
Beside avoiding GPS-related problems, this approach en-
ables for indoor applications. In this work we concentrate
on a model-based coarse localization, which also solves
the loop detection problem. However, in future work, the
presented methods will be supplemented by verification, fine
registration, and loop closing.

Most previous approaches work directly with points, but
currently available LIDAR sensors produce millions of (i.e.,
too many) points in a few seconds. Furthermore, we mainly
consider urban or indoor environments, where the existence
of planar shapes can be expected. Therefore the first step of
our approach consists in a local plane extraction in a voxel
grid, which keeps the data easy to handle.

Our solution to model-based 3D self-localization in man-
made environments comprises several steps. At first, planes
are extracted in both parts, in the model and in the scene.
Then we calculate the descriptors and randomly select two
voxels in the scene. For these voxels we search for the cor-
responding descriptors in the model. By using a geometric
consistency check, a first validation of the matching pairs is
done. If the check succeeds, a Euclidean transformation is
estimated and a vote is cast for this transformation. After
these steps have been repeated many times, a maximum
is extracted from the voting space that gives the (globally)
most probable transformation. Because we work with data
sub-sampled to a voxel grid, the transformation will be
supplemented by a fine registration.

In the following sections the details of the different steps
are explained: plane extraction, the 3D descriptor, estimation
of the transformation, and voting scheme.

A. Plane extraction

This step reduces the amount of data. A voxel grid that is
axis-aligned to the local coordinate system is used to assign
the points to grid cells (voxels). A RANSAC-based plane
fit is carried out for each cell. Then we refine the plane
parameters with a local principal component analysis (PCA)
(e.g. [17]), which also yields the centroid of the cell (cf.
Fig. 1).



centroid

Figure 1. Inlier (blue) and outlier (orange) of RANSAC-based plane
estimation in a voxel grid cell. The plane parameters are refined and the
centroid is calculated by using the PCA.

B. The proposed 3D descriptor

In this subsection we present our local 3D descriptor,
which is invariant to Euclidean transformations. The descrip-
tor is a 2D histogram H with ba× bd bins, which counts the
pairwise differences in angle and distance. Given a voxel
grid cell c, we determine all neighboring cells ci within a
given radius r. We use the corresponding centroids p and
normal vectors n to calculate the angle difference between
the normal vectors and the centroid distance. Following that
step, the corresponding histogram cell is determined (cf. (1)
and (2)) and increased (3) by one. Finally the histogram
is normalized to a histogram sum of 1. Fig. 2 shows an
exemplary constellation and the resulting histogram.

a =

⌊
arccos(〈n,ni〉)

π
· ba

⌋
(1)

d =

⌊
‖p− pi‖

r
· bd

⌋
(2)

H(a, d) := H(a, d) + 1 (3)

C. Estimation of the transformation

An important step is the estimation of the Euclidean
transformation between the scene and the model coordinate
system, given a set of matched cell pairs between these
coordinate systems. Each cell contains a centroid and a

1 2 3 4 5 6 7 8 9 10

d
is
ta
n
ce

angle

Figure 2. 2D histogram descriptor: the voxel cells are represented by their
planes, centroids and normal vectors. The orange plane represents the center
cell and the blue planes its neighborhood. Additionally, the histogram of
the center cell is shown.

normal vector. Therefore the minimum number of matched
pairs to estimate this transformation is two, since one pair
retains one rotational degree of freedom, i.e. the rotation
angle around the normal vector would be missing.

We consider two coordinate systems (CS) – one for the
scene and one for the model –, for which we determine the
transformation between them. For now, we suppose to have
two corresponding point pairs, and it is assumed that these
match perfectly. For both given CS, a new CS is constructed
applying the following construction rule. Because the point
pairs are assumed to match perfectly, both constructed
(intermediate) CS are identical. Then we can compute a
transformation between the two original CS by using the
intermediate CS.

Given two points a and b as well as the normal vector
na, with the equations (4) - (7) we calculate the rotation
R between the intermediate CS and the CS of a and b,
provided that k and na are not parallel (e.g. 〈k,na〉 < 0.9).
The normalized connecting vector k between a and b solves
the problem of the missing rotation angle around the normal
vector na. The x-axis of the new CS is the normal vector
na. The y-axis cannot be represented by k, since the two
axes need to be perpendicular to one another. Therefore we
subtract the ”none perpendicular part” of k (5), like it is done
within the well-known Gram-Schmidt process (e.g. [18]).
After normalization the y-axis is represented by m (6). The
resulting rotation matrix is shown in (7). As origin we select
the point between a and b (8).

k=
1

‖b− a‖
b− a (4)

l = k − 〈k,na〉na (5)

m=
1

‖l‖
l (6)

R=
[
na m (na ×m)

]
(7)

t = 1/2 (a+ b) (8)

The whole process is shown in Fig. 3 for two matching
point pairs ((a1,a2) and (b1, b2)).

To transform a point pim from the intermediate CS to the
respective source CS, we apply the equation ps = Rpim+t.

b1

a1

na1
m1

na1
× m 1

a2

na2

m2

b2

na2
× m 2

t1 t2

Figure 3. Construction of an intermediate coordinate system for transfor-
mation estimation: matched point pairs (a1,a2) and (b1, b2). The points
a1 and b1 together with a2 and b2 are used to construct the coordinate
system. The doted lines show both intermediate CS at their true origin.



Finally we find the transformation between CS 1 and CS 2
using the intermediate CS. Therefore we apply the previous
equation in (9) and get the final rotation matrix (11) and
translation vector (12).

p2=R2

(
RT

1p1 −RT
1 t1

)
+ t2 (9)

p2=R2R
T
1p1 −R2R

T
1 t1 + t2 (10)

R= R2R
T
1 (11)

t = t2 −Rt1 (12)

D. Voting scheme

Annotation: Although we call it ”point” in this section,
this term stands for a voxel cell with its centroid and normal
vector, respectively.

The following steps are relevant for our voting scheme:
1) Random selection of two points in the scene.
2) For both point’s descriptor the k nearest neighbors in

the descriptor set of the model are determined.
3) Geometric consistency check of all possible pairs

(filtering).
4) Estimation of the transformation for the remaining

matching pairs.
5) Application of the transformation to a point and voting

for the resulting point.
A single position is assigned to each scene. We use

the sensor position belonging to the first measured 3D
point. This allows us to transform the position by using the
estimated transformation resulting from a point pair and its
matched pair. Hence we can carry out the voting in 3D space
and do not need a 6D space, which would be required for the
transformation. In a RANSAC-manner we randomly select
many point pairs (around 50 000) and perform the above
steps. In the following we describe some more details.

The k nearest neighbors of each scene point’s descriptor
are determined within the available set of descriptors of
the model. After this step all possible matching point pairs
are constructed and prefiltered by the geometric consistency
check. Details of this consistency check are given in the next
subsection.

Two point pairs are used for the estimation of the trans-
formation (cf. Section III-C). After that, the transformation
is applied to the position for voting. Every vote is saved in
a 3D voxel grid – aligned with the grid used for the model
processing. Each vote consists of the transformed position
and the associated transformation, which are both saved.
Finally, we search for the cell with the maximum number
of votes. The transformation of the vote with the shortest
distance to the average vote position in that cell is selected
as the result.

1) Geometric consistency check: The geometric consis-
tency is checked with the inequalities (13) to (15). At first we
compare the distance of the points (13). Only if the distance

a2 b2

b1a1

na1 nb1

na2 nb2

Figure 4. Two constellations to distinguish between.

between the point pairs is similar enough, the following
checks are performed, otherwise the pairs are discarded.
With the second test the angles between the normal vector
and the connecting vector are compared, because a sim-
ple comparison

∣∣〈na1
,nb1〉 − 〈na2

,nb2〉
∣∣ between the dot

product of the normal vectors would not be sufficient to
distinguish between the two cases shown in Fig. 4. Therefore
the more complex inequalities (14) and (15) are evaluated.

∣∣ ‖a1 − b1‖ − ‖a2 − b2‖
∣∣ <ε (13)∣∣∣∣ 〈a1 − b1,nb1〉

‖a1 − b1‖
− 〈a2 − b2,nb2〉
‖a2 − b2‖

∣∣∣∣<α (14)∣∣∣∣ 〈b1 − a1,na1
〉

‖b1 − a1‖
− 〈b2 − a2,na2

〉
‖b2 − a2‖

∣∣∣∣<α (15)

E. Paramters

The presented approach incorporates eleven parameters.
The following list explains these parameters:

scene size Number of scans combined to a scene.
voxel size Edge length of the voxels in each dimen-

sion.
r Search radius of the neighborhood of

each cell for descriptor calculation.
k Number of nearest neighbors to be found

in the model descriptor set.
tries Number of randomly selected voxel cell

pairs.
ε Distance threshold for geometric consis-

tency check.
α Angle threshold for geometric consis-

tency check.
bd Size of the histogram dimension for the

distance.
ba Size of the histogram dimension for the

angle.
dist. thresh. Threshold for the RANSAC-based plane

extraction.
min. pt. nr. Minimal number of points needed to start

plane extraction.

IV. EXPERIMENTS AND RESULTS

Our aim is a concept not only for loop detection but
also for model based self-localization. Therefore we use two



Figure 5. Sensor vehicle used for the experiments.

datasets covering the same area, but which were recorded at
different days. They also contain some sort of clutter like
moving persons or moved cars. One set is the model and
different parts of the other one are used as scene.

We compare the estimated transformation to the ground-
truth given different parts of different size from the scene
dataset. More details of the data used for the experiments
are given in the next subsection.

A. Experimental setup and data acquisition

For the model creation and ground-truth generation an
accurate mapping system is needed. Thus the data used for
the experiments were recorded with a GPS/IMU augmented
sensor vehicle (cf. Fig. 5). On this vehicle, two Velodyne
HDL-64E laser scanners are located over the front corners
of the vehicle roof, and are positioned on a wedge with a 25
degree angle to the horizontal. This configuration guarantees
a good coverage of the roadway in front of the car and
allows scanning of building facades alongside and behind
it. For direct georeferencing an Applanix POS LV inertial
navigation system is built into the van. It comprises the
following sensor components: an IMU (inertial measurement
unit), two GPS antennas and a DMI (distance measuring
indicator).

Each one of the laser scanners has a rotation rate of
10 Hz and a data rate of approximately 1.3 million points
per second. The navigation system has a data rate of
200 Hz. For each single laser range measurement, the
position and orientation of the vehicle were calculated by
linear interpolation from the navigational data. Then the
point is transformed to a local ENU (east-north-up) coor-
dinate system with the z-axis representing the height. The
CS is identical for both datasets. Though it is identical
by construction, there is an offset between the datasets

Figure 6. Path driven by the sensor vehicle during the data acquisition
(image data: Google Earth, Image c© 2016 GeoBasis-DE/BKG).

Figure 7. Plotted accumulated 3D data of the scene dataset.

resulting from GPS-related errors. The rotational part of
this offset can be ignored, but the translation has a notable
magnitude. For the two datasets it was determined by using
ICP as t = (0.81543,−1.46302, 0.734457)T m, which is
considered to be the ”ground-truth” transformation TGT .

The data acquisition took place at a small test site, which
is the outside area around our institute building. The main
part of the scene is a big building surrounded by neighboring
structures and some trees.

The path driven during the acquisition of the model dataset
is shown in Fig. 6. It took about 1.5 minutes and resulted in
approximately 140 million 3D points. This value is smaller
than the actual data rate of the laser scanners, since some
points measured in close vicinity of the sensors (e.g., the
vehicle roof) were filtered out during the point generation
process.

A similar track was driven to generate the scene dataset.
It took approximately 1 minute to record around 110 million
3D points. The points are separated to 1 376 files where each
file contains one rotation of the head of a Velodyne LIDAR.

Exemplary input data – i.e. measured points – are shown
in Fig. 7. A typical voting space combined with the model
planes is shown in Fig. 8. The model is shown again in
Fig. 9 in combination with the correctly positioned scene
(i.e., after applying the resulting transformation).



B. Details of the experiments

With parts of the experiments we evaluate the impact of
the number of scans subsumed as scene, where two scans
represent a tenth of a second. In our case this correlates
to the size of the scene, because we drove with an almost
constant vehicle speed. A widespread scene increases the
probability of an unique geometrical constellation, which
has a better chance to be found in the model. We examine
this dependency for the three values of 30, 50 and 100 scans
– corresponding to 1.5, 2.5 and 5 seconds of measuring time.
The other parameters of our approach were set according to
Table I.

Table I
PARAMETER SETTINGS FOR THE EXPERIMENTS.

Parameter Value
voxel size 2 m
r 6 m
k 30
tries 50 000
ε 0.5 m
α 0.05
bd 10
ba 10
dist. thresh. 0.2 m
min. pt. nr. 200

Our approach uses a local plane extraction in a voxel
grid. The resulting planes and thus the descriptors may
depend on the alignment (position, orientation) of the voxel
grid. To examine the amount of independence with respect
to the grid, we apply four different intentional (”faked”)
transformations TS to the scene dataset:

1) no translation and rotation at all,
2) only a translation of half the value of the voxel cell

size in each dimension,
3) translation as previous, slight rotation around x- and

y-axis and major rotation around the z-axis (0.01 rad
and 0.4 rad),

4) also major rotation around x- and y-axis (0.5 rad).
We did 129 runs for each scene size, each time selecting

a different start scan and iterating in steps of 10 through the
scene dataset – containing 1 376 scans.

C. Results

The estimated transformations are assessed according to
two measures: first the distance of the sensor position psp
used for voting (cf. Section III-D) and secondly the rotation
angle between the following transformations: we compare
the ”ground-truth” transformation TGT with TEst ◦ TS ,
which is the transformation resulting from concatenating
the intentionally applied transformation with the estimated
transformation. In case of a perfect result they are equal
and (16) should hold, therefore we use the distance (17) as
a quantity for the assessment.

Figure 8. Voting cells with more than 9 votes and the model, where the
color represents the number of votes in the cell – between 10 = red and
40 = blue.

Figure 9. Estimated position of a scene in the model. The scene point
cloud is depicted in red, whereas the gray facets represent the model.

TGT
!
= TEst ◦ TS (16)

‖TGT · psp − (TEst ◦ TS) · psp‖ (17)

Parts of the results are shown in Fig. 10 to 12. Each
figure shows the results for transformation type 3 (s. previous
subsection) for the 129 sub-scenes. Especially Fig. 10 and
11 unveil the existence of different regions with a different
chance for successful localization.

All results are accumulated in Fig. 13: it shows the
proportion of successful localization with respect to the
scene size and the transformation type. In a summary the
following statement holds: the more comprehensive the
scene, the larger is the proportion of successful localization.
Transformation type 4 generates the least number of correct
estimations followed by type 1, type 3 and type 2.

D. Runtime and enviroment

The implementation was done in C++ and the Point Cloud
Library (PCL) [19] is mainly used for plane estimation
and visualization purposes. Nearest neighbor search was
performed using the FLANN-library [20]. Up to now, none of
the parts are parallelized or optimized in any way, therefore
a typical runtime for the scene voxel grid filling (from



0

0,5

1

1,5

2

2,5

3

3,5

0

20

40

60

80

100

120
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

an
gl
e 
[r
ad
]

di
st
an
ce
 [m

]

distance angle

Figure 10. Distance and angle errors of the estimated transformations for
a scene size of 30 scans and transformation type 3.

0

0,5

1

1,5

2

2,5

3

3,5

0

10

20

30

40

50

60

70

80

90

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

an
gl
e 
[r
ad
]

di
st
an
ce
 [m

]

distance angle

Figure 11. Distance and angle errors of the estimated transformations for
a scene size of 50 scans and transformation type 3.

recorded data), plane estimation and final transformation
estimation took around 83 seconds. First results with a
parallelized version indicate a speedup of factor 8 using a
12 core processor.

V. CONCLUSION

Our results show that the presented approach allows for
a successful global localization in the model. Although the
voxel grid position and orientation as well as the scene size
considerably affect the localization performance, localization
at adequate locations is possible even under poor conditions.
Especially if the z-axis (should correspond to the direction
of gravity) is nearly identical for the model and the scene,
which was the case with transformation type 3, the success
rate is above 50 %. The alignment of the z-axes can be
achieved by using a low-cost IMU.

Transformation type 2 yields better results than type 1, be-
cause the faked translation has similarities with the ”ground-
truth” translation. Thus the resulting voxel grid alignment is
more similar to the one of the model.

0

0,5

1

1,5

2

2,5

3

3,5

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

an
gl
e 
[r
ad
]

di
st
an
ce
 [m

]

distance angle

Figure 12. Distance and angle errors of the estimated transformations for
a scene size of 100 scans and transformation type 3.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

T1 T2 T3 T4

transformation type

30

50

100

Figure 13. Proportion of correctly estimated transformations for all evalu-
ated cases: four transformations and three scene sizes. A transformation is
considered as correct, if the distance is below 5 m and the angle is below
10◦.

A widespread scene increases the probability of a suc-
cessful localization, because the scene covers a greater area
and more likely contains distinct geometrical constellations.
E.g., a scene containing only a long building parallel to the
street is less distinct than a crossing. This can be observed
in the details of the results: in many places the localizations
work well, however, a local lack of geometrical complexity
in the scene could avoid a successful localization.

We presented a successful approach for model based
self-localization, which for the sake of performance works
on voxels rather than directly on points. Furthermore it
accomplishes a global search and does not need any pre-
localization. While the performance is dependent on the
voxel grid alignment, it is still sufficient: a global local-
ization is not needed for new every position, instead it can
be tracked over time and corrected as soon as a (initial)
localization succeeded.

Further work will concentrate on verification and plane
based fine registration with special consideration of the voxel
cell planes. Beside this, the localization will be combined
with a system for handling multiple states and their probabil-



ity – like a particle filter. Additional tests will be performed
with publicly available datasets.

REFERENCES

[1] M. Hebel, M. Arens, and U. Stilla, “Change detection in urban
areas by object-based analysis and on-the-fly comparison of
multi-view ALS data,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 86, pp. 52–64, 2013.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization
and mapping: part I,” Robotics Automation Magazine, IEEE,
vol. 13, no. 2, pp. 99–110, 2006.

[3] M. Bosse and J. Roberts, “Histogram Matching and Global
Initialization for Laser-only SLAM in Large Unstructured
Environments,” in Robotics and Automation, 2007 IEEE
International Conference on, 2007, pp. 4820–4826.

[4] M. Himstedt, J. Frost, S. Hellbach, H. J. Böhme, and
E. Maehle, “Large scale place recognition in 2D LIDAR scans
using Geometrical Landmark Relations,” in Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Con-
ference on, 2014, pp. 5030–5035.

[5] B. Steder, G. Grisetti, and W. Burgard, “Robust place recog-
nition for 3D range data based on point features,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference
on, 2010, pp. 1400–1405.

[6] M. Bosse and R. Zlot, “Place recognition using keypoint
voting in large 3D lidar datasets,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on, 2013, pp.
2677–2684.

[7] M. Magnusson, H. Andreasson, A. Nüchter, and A. J. Lilien-
thal, “Automatic appearance-based loop detection from three-
dimensional laser data using the normal distributions trans-
form,” Journal of Field Robotics, vol. 26, no. 11-12, pp. 892–
914, 2009.

[8] M. Bosse and R. Zlot, “Place Recognition Using Regional
Point Descriptors for 3D Mapping,” in Field and Service
Robotics, ser. Springer Tracts in Advanced Robotics, B. Si-
ciliano, O. Khatib, F. Groen, A. Howard, K. Iagnemma, and
A. Kelly, Eds. Springer Berlin Heidelberg, 2010, vol. 62,
pp. 195–204.

[9] H. Chen and B. Bhanu, “3D free-form object recognition in
range images using local surface patches,” Pattern Recogni-
tion Letters, vol. 28, no. 10, pp. 1252–1262, 2007.

[10] F. Tombari and L. Di Stefano, “Hough voting for 3d object
recognition under occlusion and clutter,” IPSJ Transactions
on Computer Vision and Applications, vol. 4, no. 0, pp. 20–
29, 2012.

[11] A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Pot-
thast, B. Zeisl, R. B. Rusu, S. Gedikli, and M. Vincze,
“Tutorial: Point Cloud Library: Three-Dimensional Object
Recognition and 6 DOF Pose Estimation,” Robotics Automa-
tion Magazine, IEEE, vol. 19, no. 3, pp. 80–91, 2012.

[12] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-
shape descriptor for enhanced 3D feature matching,” in Image
Processing (ICIP), 2011 18th IEEE International Conference
on, 2011, pp. 809–812.

[13] A. Johnson, “Spin-Images: A Representation for 3-D Surface
Matching,” Ph.D. dissertation, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, 1997.

[14] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature
histograms (FPFH) for 3D registration,” in Robotics and
Automation, 2009. ICRA’09. IEEE International Conference
on, 2009, pp. 3212–3217.

[15] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point
feature extraction on 3D range scans taking into account
object boundaries,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on, 2011, pp. 2601–2608.

[16] A. P. Ashbrook, R. B. Fisher, C. Robertson, and N. Werghi,
“Finding surface correspondence for object recognition and
registration using pairwise geometric histograms,” in Com-
puter Vision — ECCV’98, ser. Lecture Notes in Computer
Science, H. Burkhardt and B. Neumann, Eds. Springer Berlin
Heidelberg, 1998, vol. 1407, pp. 674–686.

[17] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle, “Surface Reconstruction from Unorganized
Points,” in Proceedings of the 19th Annual Conference on
Computer Graphics and Interactive Techniques, ser. SIG-
GRAPH ’92. ACM, 1992, pp. 71–78.

[18] Ş. S. Bayin, Essentials of mathematical methods in science
and engineering. Hoboken, N.J.: Wiley, 2008.

[19] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library
(PCL),” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, Shanghai, China, May 9-13
2011, pp. 1–4.

[20] M. Muja and D. G. Lowe, “Scalable nearest neighbor al-
gorithms for high dimensional data,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 36, 2014.




