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Abstract—This paper presents a new way to study registration in parallel. On the other hand, lacking an online learning
based trackers by decomposing them into three constituent component, they are known to be non robust to changes in

sub modules: appearance model, state space model and searchye gpject's appearance and prone to failure in the presence
method. It is often the case that when a new tracker is introdaed

in literature, it only contributes to one or two of these sub of motion blur, occlusion, lighting variations or viewpein

modules while using existing methods for the rest. Since tse Cchanges. As a result, they are less popular in the vision
are often selected arbitrarily by the authors, they may not & community and often underrepresented in the aforemertione
optimal for the new method. In such cases, our breakdown can studies, thus making such an evaluation particularly usefu
help to experimentally find the best combination of methodsdr 4. 45lications where learning based trackers are urigaita
these sup quuleswhlle also providing a framework within witch A detailed IVSi ith test f K istrati
the contributions of the new tracker can be clearly demarcagd elalied analysis, with a test framework in registration
and thus studied better. We show how existing trackers can be based tracking, to the best of our knowledge. has never been
broken down using the suggested methodology and compare theattempted before.
performance of the default configuration chosen by the authis Many reported studies in this domaingd], [1], [2] have
against other possible combinations to demonstrate the new jniroguced new methods for only one of the three submodules
insights that can be gained by such an approach. We also prege . . . o .
an open source system that provides a convenient interface t without exploring the full extent of their f:pntr|but|0n50|F|n-
plug in a new method for any sub module and test it against all Stance, Baker et. al[ reported a compositional update scheme
possible combinations of methods for the other two sub modes for the state parametens (Eg. 1) instead of the additive
while also serving as a fast and efficient solution for practial scheme used inlp], but never experimented with different
tracking requirements. AMs. Conversely, Richa et. aP]] showed an improvement
over the existing efficient second order minimizatio?] [
approach by using the sum of conditional variance as the
Since its inception, research in object tracking has fodussimilarity metric instead of the sum of squared differences
on presenting new tracking algorithms to address specifiamilarly, Dame et. al T] used mutual information while
challenges in a wide variety of application domains lik&candaroli et. alj] used normalized cross correlation with the
surveillance, targeting systems, augmented reality ardicak inverse compositional method of][ However, neither of them
analysis. However, before an algorithm can be adopted iala reested their similarity measures with other search metbuds
life application, it needs to be extensively tested so tlth iis  though the latter had previously been shown to be a good
advantages and limitations can be determined. Recentestudnetric when used with the standard Lucas Kanade type tracker
in tracking evaluation 19, [16] show increasing efforts to [4].
standardize this crucial process. However, though suahiestu  Finding the optimal combination of methods for any track-
assign a global rank to each tracker, they often provide litting algorithm is a two step process. First, the sub module
feedback to improve these trackers since they treat themvesere the algorithm’s main contribution lies needs to be
black boxes predicting the trajectory of the object. A mordetermined, using, for instance, the method employed h [
useful evaluation methodology would be to have empiric&econd, all possible combinations for the other sub modules
validation of the tracker’s design or point out its shortéogs. that are compatible with this algorithm (since not all metho
An exhaustive analysis of learning based trackers is aior different sub modules work with each other) need to be
mittedly a daunting and impracticable task as these oftenumerated and evaluated. A generic framework would thus
use widely varying techniques that have little in commonre useful to avoid such fragmentation.
This, however, is not true for registration based trackeg,[  To summarize, following are the main contributions of this
[1] which - as we show in this work - can be decomposegork:
into three well defined modules, thus making their systemmati « Empirically test different combinations of submodules

I. INTRODUCTION

analysis feasible. These trackers are generally fasteremd leading to several interesting observations and insights
precise than learning based trackerS][which makes them that were missing in the original papers. Experiments are
more suitable for applications such as robotic maniputatio done using two large datasets with over 77,000 frames in

visual servoing and SLAM, where multiple trackers are used all to ensure their statistical significance.
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o Report for the first time, to the best of our knowledgeways [L] depending on which image is searched for the warped
results comparing robust similarity metric&Z], with patch -1, or I - and how the parameters of the warping func-
traditional SSD type measures. tion are updated in each iteration - additive or composiion

o Compare formulations against popular online learninghe four resulting variants - forward additiv€ALK ) [19],
based trackers to validate their usability in precise trackverse additivelALK ) [17], forward compositionalfCLK)
ing applications. [27] and inverse compositionalGLK ) [1] - were analyzed

« Provide an open source tracking framewbtsing which mathematically and shown to be equivalent to first order serm
all results can be reproduced and which, owing to iis [1]. Here, however, we show experimental results proving
efficient C++ implementation, can also be used to addretbat their performance on real video benchmarks is quite
practical tracking requirements. different (Seclll-D1).

A relatively recent update to this approach was in the form
of Efficient Second order MinimizatiorESM) [2] technique

A registration based tracker can be decomposed into thteat tries to make the best of both inverse and forward
sub modules: appearance mod@lM), state space modelformulations by using the mean of the initial and current

(SSM) and search methodsM). Figure 1 shows how these Jacobians. We would like to mention here that, even though

modules work together in a complete tracking system assuthe authors of J] used S£3 parameterization for their ESM

ing there is no model update wherein the appearance moftgmulation and gave theoretical proofs as to why it is esiaken

Il. DESCRIPTIONS OF SUBMODULES

of the object is updated as tracking progresses. for this SM, we have used standard parameterization (ilegus
matrix entries P7], [1]) for all our experiments since, as we
N State Space show later (Seclll-D3), ESM actually performs identically
l / Model with several different parameterizations.
& Further, since the standard formulations for these SMgusin
Appearance| /(Io(xo), It(w(xo. p))) the Gauss Newton Hessiand], [1], [2] do not work with
Model a,,gg,ie%;ilﬁ/lljvtvl&ﬂ» any AMs besides SSD/], [25], a modified version with the

so calledHessian after convergend€], [25] has been used
Fig. 1: Modular breakdown of a registration based trackésr our experiments. Also, the extended formulation for ESM
assuming there is no dynamic update to the appearance mogiorted in f], [25] has been used instead of the original one
This shows how different components work, as formulated iA [2]. The exact formulations used can be found ][
Eql Nearest neighbor search (NN) is another SM that has
recently been used for tracking][thanks to the FLANN
library [19] that makes real time search feasible. Since the
performance of stochastic SMs like NN depends largely on
the number of random samples used, we have reported results
pixel values in imagel as I(w(x,p)). Tracking can then with 1000 and 10000 samples, with the respective SMs named

be formulated (Eql) as a search problem where we nee s NN1K and NN10OK. Further, this method tends to give
to find the optimal transform parametass for an imagel, Jittery and unstable results when used by itself due to thg ve

. oo : . limited search space and so was used in conjunction with a
that maximize the similarity, measured by a suitable mefric : ; .
between the target patd — To(w(x, po)) and the warped gradient descent type SM i][to create a composite tracker

: that performs better than either of its constituents. AsSin [
image patchly (w(x, pt)). we have used ICLK as this second tracker due to its speed
pt = argmax f(I", Iy(w(x,p))) 1) and the resultant composite SM is nani¢NIC. Unlike NN,

p results for NNIC are only reported using 1000 samples for
We refer to the similarity metrigf, the warp functionrw and NN as NN10OK is too slow to be combined with ICLK.
the algorithm that maximizes Etjrespectively as AM, SSM
and SM. A more detailed description of these submodulgs Appearance Model
follows.

When a geometric transformv with parametersp =
(p1,p2, ..., ps) is applied to an image patch the transformed
patch is denoted bk’ = w(x,p) and the corresponding

This is the similarity metric defined by the functighn Eq.
A. Search Method 1 using which the SM compares different warped patches from

This is the optimization procedure that searches for th&e Current image to get the closest match with the original
warped patch in the the current image that best matcHE§Plate. .
the original template. Gradient descent is the most popular' "€ sum of squared differenceS§D) [14], [1], [] or the
optimization approach used in tracking due to its speed ahd nNorm of pixel differences is the AM used most often used
simplicity and is the basis of the classic Lucas Kanade (LK} literature especially with SMs based on gradient descent

tracker [L€]. This algorithm can be formulated in four differentSéarch due to its simplicity and the ease of computing its
derivatives. However, the same simplicity also makes ihgt

Lavailable online ahttp:/webdocs.cs.ualberta.calis/mif/ able to providing false matches when the object’'s appearanc
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changes due to factors like lighting variations, motiorrfalnd being often closely intertwined in practical implemerias.

occlusion. However, though the SSMs used in this work are limited
To address these issues, more robust AMs have been poothe standard hierarchy of geometric transformationgemo

posed including Sum of Conditional Varianc8QV) [21], complex models like piecewise projective transforms dstexi

Normalized Cross CorrelatioNCC) [25], Mutual Informa- and it is also theoretically possible to impose novel caists

tion (MI) [9], [7] and Cross Cumulative Residual Entropyn the search space that can significantly decrease thensearc

(CCRE) [24], [27], all of which supposedly provide a degredime while still producing sufficiently accurate resulthelfact

of invariance to changes in illumination. There also exatsthat such a constraint will be an important contributionts i

slightly different formulation of the former known as Resed own right justifies the use of SSM as a sub module in this

SCV (RSCV) [8] where; is updated rather thaky. There work to motivate further research in this direction.

has also been a recent extension to it callsRiCV [20]

that uses multiple joint histograms from corresponding sub

regions within the target patch to achieve greater robgstné\. Dataset and Error Metric

to localized intensity changes. It has further been shaWi [ 15 puplicly available datasets have been used to analyze
that maximizing NCC between two images is equivalent ®e trackers:

minimizing the SSD between two z-scoré5] normalized . . .
images. We consider the resultant formulation as a difteren 1) Tracking f_or Man|pulat|on TasksTMT ) dataset 2
that contains videos of some common tasks performed

AM called Zero Mean NCCANCC). at several speeds and under varying lighting conditions
It may ne noted that these AMs can be divided into 2 distinct It has 109 sequences with a total of 70592 frames.

categories - those that use some form of the L2 norm as the2 i .
S . _2) Visual Tracking Dataset provided HyCSB [11] that
similarity function - SSD, SCV, RSCV, LSCV and ZNCC has 96 short sequences of different challenges in object

and those that do not - Ml, CCRE and NCC. The latter are . .

tracking with a total of 6889 frames. The sequences here
henceforth called robust models aftér]. . A

are more challenging but also rather artificial since they
C. State Space Model were created specifically to address various challenges

The SSM represents the set of allowable image motions of rather than represent realistic scenarios.
the tracked object and thus embodies any constraints that BPth these datasets have full pose (8 DOF) ground truth
placed on the search space of warp parameters to make @At Which makes them suitable for evaluating high pregisio
optimization more efficient. This includes both the degredkckers that are the subject of this study. In addition, we u
of freedom (DOF) of allowed motion, as well as the actudignment Error (E4z) [8] as metric to compare tracking
parameterization of the warping function. For instance tf€sult with the ground truth since it accounts for fine mis-
ESM tracker, as presented ifi]] can be considered to havealignments of pose better than other common measures like
a different SSM than conventional LK type trackersd] center location error and Jaccard index.

[1] even though both involve 8 DOF homography, since | .

uses theSL3 parameterization rather than the actual entriegs' Evaluation Measure

of the corresponding matrix. We model 7 different SSMs - We measure a tracker’s overall accuracy througbutscess
trans'ation’ isometry, Simi"tude' affine and homograpﬁﬂ [ rate (SR) which is defined as the fraction of total frames where
along with two extra parameterizations of homograpl§3  the tracking errorE,, is less than a threshold of pixels.
and corner based (using x,y coordinates of the four corrfersf@rmally, SR = % whereS = {f' € F': By, <tp}, F'is

the bounding box). the set of all frames andl’,; is the error in theé'” frame f°.

The advantage of using higher DOF SSM is achieving§ince we have far too many sequences to present results for
greater precision in the aligned warp since transforms thedich, we instead report an overall summary of performance
are higher up in the hierarchyi§] can better approximate by averaging the success rates over all the sequences in both
the projective transformation process that captures tlative datasets, i.ef’ is treated as the set of all frames in TMT and
motion between the camera and the object in the 3D world intdlCSB with |F'| = 70592 + 6889 — 205 = 77276 - we do not
the 2D images. However, there are two issues with having ¢onsider the first frame in each sequence, where the tracker
estimate more parameters - the iterative search takesrlonigenitialized, for computing the SR. Finally, we evaluat® S
to converge making the tracker slower and the search procémsseveral values of,, ranging from 0 to 20 and study the
becomes more likely to either diverge or end up in a locasulting SR vst, plot to get an overall idea of how precise
optimum causing the tracker to be less stable and more likelgd robust a tracker is.
to lose track. The latter is a well known phenomenon with LK
type trackers J] whose higher DOF variants are usually les§: Parameters Used
robust. All results have been generated using a fixed sampling

It may be noted that this sub module differs from the otheesolution of50x50 irrespective of the tracked object’s size.
two in that it does not admit new methods in the conventionahe input images were smoothed using a Gaussian filter with
sense and may even be viewed as a part of the SM with the tawé x5 kernel before being fed to the trackers. Iterative SMs

IIl. EXPERIMENTAL RESULTS AND ANALYSIS



were allowed to perform a maximum &0 iterations per confirm that the version reported here performs identically
frame but only as long as the L2 norm of the change ihat one.
bounding box corners in each iteration remained greater tha Thirdly, we see that NNIC does not perform better than
0.001. For the NN tracker, a standard deviation(@®5 was ICLK on any of the AMs and is in fact significantly poorer
used for generating the random warps. The learning baseith ZNCC. This yet again does not agree with the results
trackers whose results are reported in S8eD3 were run reported in §] using both static experiments and the Metaio
using default settings provided by their respective asgh@ll  dataset [7]. We have already seen in our first observation
speed tests were run on a 2.66 GHz Intel Core 2 Quad Q945at static experiments may not always agree with real world
machine with 4 GB of RAM. No multi threading was used. tests and it must be admitted that sequences in the Metaio
benchmark are highly artificial in nature as they neither
D. Results represent real tasks nor include an actual background droun

The results presented in this section are organized irttee tracked patch. We did try to perform experiments on
three sections corresponding to the three sub modulesch ethis dataset to check for possible bugs in our implementatio
of these, we present and analyze results comparing differeat unfortunately the Metaio evaluation service is no lange
methods for implementing the respective sub module with oagailable. However, to the best of our belief, there is nchsuc
or more combinations of methods for the other sub moduldsig and the discrepancy does indeed arise from the diffesenc
SSM is fixed to homography for the first two sections. between artificial and real world benchmarks.

1) Search MethodsFig. 2 presents the results for all SMs  Fourthly, we can note that both additive LK variants and
except NN1K and NN10K which are presented separately @specially IALK perform much poorer compared to the com-
Fig. 5. This separation was needed because NN, due to fissitional variants with the robust AMs than with the SS2lik
stochastic nature, tends to have significantly lower SR féiMs. This is probably to be expected since the Hessian after
smaller thresholds than other SMs. In order to maximize tlvenvergence approach used for extending the Gauss Newton
visibility of individual curves in the various plots withiRig. method to these AMs does not make as much sense for additive
2, the y axis in each has been limited to the range where tleemulations [].
curves in that plot actually lie. Inclusion of NN results @er We conclude this section by examining the effect of number
would have caused this range to increase significantly, thols samples on NN as well as its relative performance to
decreasing the separation between these curves and makjraglient descent SMs from Figd. and 5. We can see by
analysis more difficult. SCV and CCRE results are excludegdmparing these plots to Fig3 that NN performs better
here too, the former because they are very similar to LSG¥lative to the latter with the robust AMs and in fact CCRE
while the latter are presented separately in Bifpr the same actually fares best with NN1OK for larger,. This might
reason as NN but now pertaining to Fig). indicate that the poor performance of CCRE, and to an extent

Several interesting observations can be made from Fidél, with LK type trackers has more to do with gradient
2 and 4. Firstly, we see that the four variants of LK dodescent optimization itself rather than some limitatiorthafse
not perform identically - FCLK is the best for all AMsAMs as good similarity metrics. The gain in performance
and is significantly better than FALK especially for smallebetween NN10K and NN1K though seems to be similar for
thresholds. ICLK with IALK, on the other hand, are morall AMs as it is caused by an improved coverage of the SSM
contentious, being very similar for three AMs - SSD, RSC¥earch space and so should depend only on that.
and LSCV - but ICLK being appreciably better for the other 2) Appearance ModelsFig. 3 shows the SR curves for all
four. This is especially true for CCRE where it is almosAMs except CCRE whose results are in F#yfor reasons
equivalent to FCLK for larget,, and much better than bothalready mentioned in the previous section. This reasolf itse
the additive variants. This finding contradicts the eq@nak is the most obvious point to be noted by comparing Fiys.
between these variants that was reportedlinand justified and4 - that CCRE, even though it is the most sophisticated
there using both theoretical analysis and experimentaltees and computationally expensive AM, performs much poorer
The latter, however, were only performed on synthetic insagéhan other AMs with all SMs except those based on NN.
and even the former used several approximations. So, itAsother interesting fact is that it actually performs farre®
perhaps not surprising that this supposed equivalencerdieswith NNIC than it does with either NN1K or ICLK which
hold under real world conditions. is very unexpected as the composite tracker uses inputs from

Secondly, we note that ESM fails to outperform FCLKooth and so should perform at least as well as the best of
for any AM except MI and even there it does not lead bthese. A similar phenomenon can be observed with ZNCC
much. This fact too emerges in contradiction to the thecaéti too. We repeated these experiments several times but these
analysis in P] where ESM was shown to have second ordatiscrepancies remained.
convergence and so should be better than first order methodBurther, even Ml is only slightly better than SSD on average,
including FCLK. It might be argued that the extended versicgxcept with NN where it is among the best, being almost at
of ESM [5], [25] used here might not possess the charactgrar with NCC. It is much better than CCRE, however, in spite
istics of the formulation described ir?][ but we conducted of the two AMs differing only in the latter using a cumulative
extensive experiments with that exact formulation too aad cjoint histogram. It seems likely that the additional conxjte



Success Rates for SMs using different AMs with Homography SSM
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Fig. 2: Success rates for SMs using Homography SSM and dliftekMs. Best viewed on a high resolution screen.
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Fig. 3: Success rates for AMs using Homography SSM and diffeEMs. Best viewed on a high resolution screen.



Success Rates for SMs using CCRE and Homography ¢, its yse of joint probability distributions while ZNCC is

merely the L2 norm between the pixel values normalized
0.6 to have zero mean and unit variance. We can note too that
LSCV, notwithstanding, its reported(]] increased invariance
05 to localized intensity changes, fails to offer any improesin
o _—— over either SCV or RSCV even though several of the tested
§0 4 — sequences do exhibit such lighting changes. Consideriaty th
o SCV and its variants are significantly more expensive than
§037 ZNCC to compute, there seems little reason to use these
A :lFCCLL; instead as the computational savings from ZNCC can be used
——ESM to employ other ways (i.e. higher sampling resolution or enor
0.2 —FALK iterations) to improve performance.
IALK 3) State Space Model:he results presented in this section
0.1 _mﬁ follow a slightly different format from the other two seati®
——NN10K due to the difference in the motivations for using low DOF
GO 1‘0 1‘5 2‘0 SSMs - the principle one being that reducing the dimen-
Error Threshold sionality of the search space of warp parameters decreases

Fig. 4: Success rates for SMs using CCRE with Homograp%%e. likelihood of thg search process getting stuck in a local
Success Rates for AMs using NNIOK/INNZK with Homography timum, thus_ mgkm_g the tracker more robust. The other less
08 , important motivation is that lower DOF SSMs tend to be faster
since Jacobians are typically less expensive to compute.
Limiting the DOF also makes registration based trackers
directly comparable to learning based trackers as these too
0.6r — w2777 work in low DOF search spaces. As a result, in this section,
we also present results for five state of the art learningase

0.7
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-
-

-------
_____
-
-

()
&50'5’ trackers [ 6] - discriminative scale space trackeD3ST),
§O a kernelized correlation filter trackeKCF), tracking-learning-
8 —SSD detection TLD), real time compressive trackeRCT) and
B03 —2ZNCC consensus-based matching of keypoints trackivT). We
—RSCV have used C++ implementations of all these trackers that are
0.2- LSCV fully integrated into our framework. This not only makes it
MI easy to reproduce the results presented here and but algsmak
0.1 —CCRE : :
— NGC it reasonable to compare the speeds of these trackers with th
o= ‘ ‘ ‘ ., faster registration based trackers since slower speedei©bn
0 10 15 20 the main reasons why learning trackers are often not used in
Error Threshold

robotics applications.
Fig. 5: Success rates for AMs using NN1OK and NNIK | astly, in order to make the evaluations fair, we have
with Homography represented witplid and dashed lines ysedlower DOF ground truthsfor all accuracy results in
respectively. SCV, being almost identical to LSCV, has beghis section. These were generated for each SSM using least
ommitted for clarity. squares optimization to find the warp parameters that, when
applied to the initial bounding box, will produce a warped
box whose alignment errorl ;) with respect to the full 8
of CCRE along with the resultant invariance to appearanpeDF ground truth is as small as it is possible to achieve given
changes significantlseducests basin of convergence]. This the constraints of that SSM. In most cases, the ground truth
leads to poor performance with gradient descent type SMs beidrners thus generated represent the best possible parfoem
as expected, does not affect the efficacy of stochastic SMsthat can theoretically be achieved by any tracker that fiedlo
The next fact to note is that NCC is the best performéhe constraints of that SSM. In some rare cases, however,
with all SMs except IALK (which performs poorly with all the resulting corners can be quite unexpected so we also
robust AMs anyway as noted in the previous section). Wesually inspected all lower DOF corners and corrected any
also note that, though ZNCC is supposedly equivalent to NGRat appeared unreasonable.
[24] and also has a wider basin of convergence due to its SSCFig. 6 shows the performance of all SMs with translation
like formulation, it usually doesiot perform as well as NCC. SSM in terms of both accuracy, evaluated against 2 DOF
However both ZNCC and NCC are almost always better thgmound truth, and speed, measured in terms of the average
SCV and its extensions LSCV/RSCV. number of frames processed by the tracker per second (FPS).
This last observation is rather contrary to expectationsesi In addition to the SMs described in Sdt-A, results from
SCV is supposedly more robust against lighting changes dareother SM based on particle filtefi4], generated using



Success Rates for SMs using ZNCC and Translation compared to learning based trackers Average Speeds
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Fig. 6: Success Rates for SMs using ZNCC and Translation #sawdor 5 learning based trackers. The former are shown
with solid lines and the latter imlashedlines. 2 DOF ground truth was used for all evaluations. Nbtd the speed plot on
the right usedogarithmic scaling on the x axis to increase visibility of the latter though tltual figures are mentioned too.

1000 particlesRF1K), are also reported here. This is anothémomography (Fig5). It seems, however, that more samples do
stochastic SM like NN that, though present in our frameworkpot help much with low DOF search spaces as 1000 samples
only works well with translation at the time of this writingis already enough to cover it well and it is thlgiality of
and is thus not mentioned in the previous sections. samples that forms the bottleneck now. It may be noted too
As expected, all the learning based trackers have low $fRat PF performs at par with the best registration trackehs
for smallert, since they are less precise in genefia][What is unsurprising since PF is known to perform well with low
is more interesting, however, is that none of these trackeRBOF when large number of particles are available - an asset
with the exception of DSST, managed to surpass the b#sat comes at the cost of much slower speed.
registration based trackers even for larggthough they did ) )
close the gap. Even DSST only managed it at the extrer g  SUccess Rates for SSMs using ESM with ZNCC
tail end of the plot and by a small margin. The superiority ¢ -
DSST over other learning based trackers is at least consist 0.8
with results published elsewher&d].
The speed comparisons in Fi§.clearly show the main @
reason why learning trackers are not suitable for high speS
tracking scenarios - they aié to 30 times slower than their @

(%] |
registration based counterparts. It is not surprisingttiaaking § 0.8 — Translation
based SLAM systems like SVOL(] use registration based 3 Isometry
trackers as they need to track hundreds to thousands ofgsatc 0.5 — Similitude
per frame. It may be noted that the speeds of the former dept Affine
he size of the initial bounding box and so varied widel 04 —ovs Homography
on the size o . 9 . Corner Homography
between sequences unlike the latter where a fixed sampl — Homography
resolution was used. However, the mean figures reported h 0.3 : ‘ ‘ !
. . 0 5 10 15 20
do provide a good idea of the general performance that c Error Threshold
be expected from these trackers. Fig. 7: Success Rates for all SSMs using ESM with ZNCC.

Some interesting observations can be made by compariige that homography has 3 parameterizations that overlap

the different SMs too. Firstly, we see that FALK and FCLKyerfectly. These plots were generated using corresporioling
show perfect overlap which is to be expected as the twoop ground truth for each SSM.

formulations are identical for translation. Secondly, ween

that NN1K and NN10K have practically identical performance

in terms of both accuracy and speed. The latter is to beTo conclude the analysis in this section, we tested the
expected since the KD Tree index used by FLANN librarperformance of different SSMs against each other and the
[19) is largely independent of the number of samples - only thesults are reported in Figl using ESM with ZNCC. The
initialization time increases when a larger index is to b#tbu plots for each SSM were generated by using the corresponding
The former, however, is a bit more difficult to explain sincéow DOF ground truth. As stated before, we were expecting
NN10K does perform significantly better than NN1K withower DOF trackers to perform better here but this is not the



case since higher DOF trackers seem to perform better with] A. Dame. A unified direct approach for visual servoing and visual

the exception of affine which is better than homography for tzr?)il(()inz? using mutual informationPhD thesis, University of Rennes,
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