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Abstract—With the rise of data driven deep neural networks
as a realization of universal function approximators, most
research on computer vision problems has moved away from
hand crafted classical image processing algorithms. This paper
shows that with a well designed algorithm, we are capable of
outperforming neural network based methods on the task of
depth completion. The proposed algorithm is simple and fast,
runs on the CPU, and relies only on basic image processing
operations to perform depth completion of sparse LIDAR
depth data. We evaluate our algorithm on the challenging
KITTI depth completion benchmark [1], and at the time of
submission, our method ranks first on the KITTI test server
among all published methods. Furthermore, our algorithm is
data independent, requiring no training data to perform the
task at hand. The code written in Python will be made publicly
available at https://github.com/kujason/ip basic.
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I. INTRODUCTION

The realization of universal function approximators via
deep neural networks has revolutionized computer vision and
image processing. Deep neural networks have been used to
approximate difficult high dimensional functions involved in
object detection [2], semantic and instance level segmenta-
tion [3], and even the decision making process for driving
a car [4]. The success of these function approximators on
AI-complete [5] tasks has lead the research community to
stray away from classical non-learning based methods to
solve almost all problems. This paper aims to show that
well-designed classical image processing algorithms can still
provide very competitive results compared to deep learning
based methods. We specifically tackle the problem of depth
completion, that is, inferring a dense depth map from image
and sparse depth map inputs.

Depth completion is an important task for machine vision
and robotics. Current state-of-the-art LIDAR sensors can
only provide sparse depth maps when projected back to
image space. This limits both the performance and the
operational range of many perception algorithms that rely
on the depth as input. For example, 3D object detection
algorithms [2], [6], [7] can regress bounding boxes only if
there are enough points belonging to the object.

Many different approaches have been proposed for depth
completion. These approaches range from simple bilateral
upsampling based algorithms [8] to end-to-end deep learning
based ones [9]. The latter are very attractive as they require
minimal human design decisions due to their data driven
nature. However, using deep learning approaches results in
multiple consequences. First, there is finite compute power
on embedded systems. GPUs are very power hungry, and
deploying a GPU for each module to run is prohibitive.
Second, the creation of deep learning models without proper
understanding of the problem can lead to sub-optimal net-
work designs. In fact, we believe that solving this problem
with high capacity models can only provide good results
after developing sufficient understanding of its underlying
intricacies through trying to solve it with classical image
processing methods.

This paper aims to show that on certain problems, deep
learning based approaches can still be outperformed by
well designed classical image processing based algorithms.
To validate this, we design a simple algorithm for depth
completion that relies on image processing operations only.
The algorithm is non-guided and relies on LIDAR data only,
making it independent of changes in image quality. Further-
more, our algorithm is not deep learning based, requiring
no training data, making it robust against overfitting. The
algorithm runs as fast as deep learning based approaches
but on the CPU, while performing better than the custom
designed sparsity invariant convolutional neural network of
[9]. To summarize, our contributions are as follows:

• We provide a fast depth completion algorithm that runs
at 90 Hz on the CPU and ranks first among all published
methods on the KITTI depth completion benchmark
[10].

• We show that our algorithm outperforms CNN based
approaches that have been designed to tackle sparse
input representations by a wide margin.

The rest of this paper is structured as follows: Section
II provides a brief overview of state-of-the-art depth com-
pletion algorithms. Section IV describes the problem of
depth completion from a mathematical perspective and then
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Figure 1: A flowchart of the proposed algorithm. Clockwise starting at top left: Input LIDAR depth map (enhanced for
visibility), inversion and dilation, small hole closure, small hole fill, extension to top of frame, large hole fill and blur,
inversion for output, image of scene (not used, only for reference).

introduces our proposed algorithm. Section V provides a
qualitative and quantitative comparison with the state-of-
the-art methods on the KITTI depth completion benchmark.
Finally, we conclude the paper with Section VI.

II. RELATED WORK

Depth completion or upsampling is an active area of
research with applications in stereo vision, optical flow, and
3D reconstruction from sparse LIDAR data. This section
discusses state-of-the-art depth completion algorithms while
categorizing them into two main classes: guided depth
completion and non-guided depth completion.

Guided Depth Completion: Methods belonging to this
category rely on colour images for guidance to perform
depth map completion. A variety of previous algorithms
have proposed joint bilateral filtering to perform “hole
filling” on the target depth map [11], [12], [13]. Median
filters have also been extended to perform depth completion
from colour image guidance [14]. Recently, deep learning
approaches have emerged to tackle the guided depth
completion problem [15], [16]. These methods have been
demonstrated to produce higher quality depth maps, but
are data-driven, requiring large amounts of training data
to generalize well. Furthermore, these algorithms assume
operation on a regular grid and fail when applied to very
sparse input such as the depth map output of a LIDAR
sensor. All of the above guided depth completion models
suffer from a dependency on the quality of the guiding
colour images. The performance on the depth completion
task deteriorates as the quality of the associated colour
image becomes worse. Furthermore, the quality of the
depth map output is highly correlated to the quality of
calibration and synchronization between the depth sensor
and the camera. Our proposed algorithm is non-guided and
requires no training data, resolving most of the problems
faced with the guided depth completion approach.

Non-Guided Depth Completion: Methods belonging to
this category use only a sparse depth map to produce a

dense one. [17] uses repetitive structures to identify similar
patches in 3D across different scales to perform depth
completion. [9] provides a baseline using Nadaraya-Watson
kernel regression [18] to estimate missing values for depth
completion of sparse LIDAR scans. Missing values do not
contribute to the Gaussian filter and therefore sparsity is
implicitly handled in the algorithm. [9] recently proposed a
sparsity invariant CNN architecture for depth completion.
The proposed sparsity invariant convolutional layer only
considers “valid” values in the output computation providing
better results than normal convolutional kernels. However,
[9] also provided results for CNNs trained on nearest
neighbour interpolated depth maps that outperformed these
sparsity invariant CNNs, diminishing the practical value of
pursuing this direction of research for depth completion.
As discussed in the previous sections, deep learning based
approaches are still too computationally taxing, requiring
systems to deploy power hungry GPUs to run instances of
the neural network. In the next sections, we aim to show
that our classical image processing algorithm can perform
as well as deep neural networks and at a similar frame rate
without incurring additional restrictions on the deployment
hardware.

Figure 2: A toy example summarizing the problem formula-
tion described in equation 1. Empty values are coloured in
red, and filled by applying the function f to Dsparse.



Figure 3: Different kernels used for comparison.

III. PROBLEM FORMULATION

The problem of depth completion can be described as
follows:
Given an image I ∈ RM×N , and a sparse depth map
Dsparse ∈ RM×N find f̂ that approximates a true function
f : RM×N × RM×N → RM×N where f(I,Dsparse) =
Ddense. The problem can be formulated as:

min. ||f̂(I,Dsparse)− f(I,Dsparse)||2F = 0 (1)

Here, Ddense is the output dense depth map, and has the
same size as I and Dsparse with empty values replaced
by their depth estimate. In the case of non-guided depth
completion, the above formulation becomes independent of
the image I as shown in Fig. 2. We realize f̂ via a series
of image processing operations described below.

IV. PROPOSED ALGORITHM

The proposed method, as shown in Fig. 1 is implemented
in Python and uses a series of OpenCV [19] and NumPy
[20] operations to perform depth completion. We leverage
the implementation of standard OpenCV operations, which
use larger pixel values to overwrite lower pixel values. This
way, the issue of sparsity can be addressed by selecting ap-
propriate operations to fill in empty pixels. By exploiting this
property of OpenCV operations, we realize depth completion
via the eight step algorithm described below.

The final result of the algorithm is a dense depth map
Ddense that can be used as input for 3D object detection,
occupancy grid generation, and even simultaneous localiza-
tion and mapping (SLAM).

1) Depth Inversion: The main sparsity handling mecha-
nisms employed are OpenCV morphological transformation
operations, which overwrite smaller pixel values with larger
ones. When considering the raw KITTI depth map data,

closer pixels take values close to 0 m while further ones
take values up to a maximum of 80 m. However, empty
pixels take the value 0 m too, which prevents using native
OpenCV operations without modification. Applying a dila-
tion operation on the original depth map would result in
larger distances overwriting smaller distances, resulting in
the loss of edge information for closer objects. To resolve
this problem, valid (non-empty) pixel depths are inverted
according to Dinverted = 100.0−Dinput, which also creates
a 20 m buffer between valid and empty pixel values. This
inversion allows the algorithm to preserve closer edges when
applying dilation operations. The 20 m buffer is used to
offset the valid depths in order to allow the masking of
invalid pixels during subsequent operations.

2) Custom Kernel Dilation: We start by filling empty
pixels nearest to valid pixels, as these are most likely to share
close depth values with valid depths. Considering both the
sparsity of projected points and the structure of the LIDAR
scan lines, we design a custom kernel for an initial dilation
of each valid depth pixel. The kernel shape is designed such
that the most likely pixels with the same values are dilated
to the same value. We implement and evaluate four kernel
shapes shown in Fig. 3. From the results of the experiments
performed in Section V, a 5× 5 diamond kernel is used to
dilate all valid pixels.

3) Small Hole Closure: After the initial dilation step,
many holes still exist in the depth map. Since these areas
contain no depth values, we consider the structure of objects
in the environment and note that nearby patches of dilated
depths can be connected to form the edges of objects. A
morphological close operation, with a 5 × 5 full kernel, is
used to close small holes in the depth map. This operation
uses a binary kernel, which preserves object edges. This step
acts to connect nearby depth values, and can be seen as a
set of 5× 5 pixel planes stacked from farthest to nearest.

4) Small Hole Fill: Some small to medium sized holes
in the depth map are not filled by the first two dilation
operations. To fill these holes, a mask of empty pixels is
first calculated, followed by a 7 × 7 full kernel dilation
operation. This operation results in only the empty pixels
being filled, while keeping valid pixels that have been
previously computed unchanged.

5) Extension to Top of Frame: To account for tall objects
such as trees, poles, and buildings that extend above the
top of LIDAR points, the top value along each column is
extrapolated to the top of the image, providing a denser
depth map output.

6) Large Hole Fill: The final fill step takes care of larger
holes in the depth map that are not fully filled from previous
steps. Since these areas contain no points, and no image data
is used, the depth values for these pixels are extrapolated
from nearby values. A dilation operation with a 31x31 full
kernel is used to fill in any remaining empty pixels, while
leaving valid pixels unchanged.



Sparse CNN Nearest Neighbor Interpolation + CNN Ours

Figure 4: The qualitative results of our proposed algorithm on three samples in the KITTI test set in comparison to Sparse
CNN and Nearest Neighbour Interpolation with CNN, both of which were proposed in [9]. Top: Output dense depth map.
Bottom: Visualization of the pixel-wise error in estimation ranging from blue for a low error to red for a high error. It can
be seen that our method has a lower error in estimation especially for further away pixels.

7) Median and Gaussian Blur: After applying the pre-
vious steps, we end up with a dense depth map. However,
outliers exist in this depth map as a by-product of the dilation
operations. To remove these outliers, we use a 5× 5 kernel
median blur. This denoising step is very important as it
removes outliers while maintaining local edges. Finally, a
5×5 Gaussian blur is applied in order to smooth local planes
and round off sharp object edges.

8) Depth Inversion: The final step of our algorithm is to
revert back to the original depth encoding from the inverted
depth values used by the previous steps of the algorithm.
This is simply calculated as Doutput = 100.0−Dinverted.

V. EXPERIMENTS AND RESULTS

We test our algorithm’s performance on the depth com-
pletion task in the KITTI depth completion benchmark. The
recently released depth completion benchmark contains a
large set of LIDAR scans projected into image coordinates
to form depth maps. The LIDAR points are projected to
the image coordinates using the front camera calibration
matrices, resulting in a sparse depth map with the same
size as the RGB image. The sparsity is induced by the
fact that LIDAR data has a much lower resolution than
the image space it is being projected to. Due to the angles
of LIDAR scan lines, only the bottom two-thirds of the
depth map contain points. The sparsity of the points in the
bottom region of the depth maps is found to range between
5 − 7%. The corresponding RGB image is also provided

for each depth map, but is not used by our unguided depth
completion algorithm. The provided validation set of 1000
images is used for evaluation for all experiments, and the
final results on the 1000 image test set are submitted and
evaluated by KITTI’s test server. The performance of the
algorithm and the baselines are evaluated using the inverse
Root Mean Squared Error (iRMSE), inverse Mean Average
Error (iMAE), Root Mean Squared Error (RMSE), and Mean
Average Error (MAE) metrics. We refer the reader to [9] for
a deeper insight on each of these metrics. Since methods are
ranked based on RMSE on KITTI’s test server, the RMSE
metric is used as the criterion for selecting the best design.

A. Performance on the Depth Completion Task

At the time of submission, the proposed algorithm ranks
first among all published methods in both RMSE and MAE
metrics. Table I provides the results of comparison against
the baseline Nadaraya-Watson kernel method (NadarayaW),
as well as the learning based approaches Sparsity Invariant
CNNs (SparseConvs) and Nearest Neighbour Interpolation
with CNN (NN+CNN) [9], all of which are specifically
tailored for processing sparse input. Our algorithm outper-
forms the NN+CNN, the runner up on the KITTI data set,
by 131.29 mm in RMSE and 113.54 mm in MAE. That is
equivalent to a difference of 11 cm mean error in the final
point cloud results, which is important for accurate 3D object
localization, obstacle avoidance, and SLAM. Furthermore,



Method iRMSE (1/km) iMAE (1/km) RMSE (mm) MAE (mm) Runtime (s)

NadarayaW 6.34 1.84 1852.60 416.77 0.05
SparseConvs 4.94 1.78 1601.33 481.27 0.01

NN+CNN 3.25 1.29 1419.75 416.14 0.02
Ours (IP-Basic) 3.78 1.29 1288.46 302.60 0.011

Table I: A comparison of the performance of Nadaraya-Watson kernel baseline, Sparse CNN, Nearest Neighbour Interpolation
with CNN, and our method, evaluated on the KITTI depth completion test set. Results are generated by KITTI’s evaluation
server [10].

our proposed algorithm runs at 90 Hz on an Intel Core i7-
7700K Processor, while both the second and third ranking
methods require an additional GPU to run at 50 and 100 Hz
respectively.

B. Experimental Design

To design the algorithm, a greedy design procedure is
followed. Since empty pixels nearby valid pixels are likely to
share similar values, we structure the order of the algorithm
with smaller to larger hole fills. This allows the area of
effect for each valid pixel to increase slowly while still
preserving local structure. The remaining empty areas are
then extrapolated, but have become much smaller than
before. A final blurring step is used to reduce output noise
and smooth out local planes.

The effect of design choices for the dilation kernel sizes
are first explored, followed by those of that kernel’s shape,
and finally the blurring kernels employed after dilation. We
choose the best result of each experiment to continue with
the next design step. Due to this greedy design approach,
the first two experiments on kernel size and shape do not
include the blurring of Step 7. The final algorithm design
uses the top performing designs from each experiment to
achieve the best result.

Custom Kernel Design: The design of the initial dilation
kernel is found to greatly affect the performance of the
algorithm. To find an optimal dilation kernel, a full kernel
is varied between 3 × 3, 5 × 5, and 7 × 7 sizes. A 7 × 7
kernel is found to dilate depth values past their actual area
of effect, while a 3×3 kernel dilation does not expand pixels
enough to allow edges to be connected by later hole closing
operations. Table II shows that a 5 × 5 kernel provides the
lowest RMSE.

Using the results of the kernel size experiment, the design
space of 5 × 5 binary kernel shapes is explored. A full
kernel is used as a baseline, and compared with circular,
cross, and diamond kernel shapes. The shape of the dilation
kernel defines the initial area of effect for each pixel. Table
II shows that a diamond kernel provides the lowest RMSE.
The diamond kernel shape preserves the rough outline of
rounded edges, while being large enough to allow edges
to become connected by the next hole closing operation.

Kernel Size RMSE (mm) MAE (mm)

3x3 1649.97 367.06
5x5 1545.85 349.45
7x7 1720.79 430.82

Kernel Shape RMSE (mm) MAE (mm)

Full 1545.85 349.45
Circle 1528.45 342.49
Cross 1521.95 333.94

Diamond 1512.18 333.67

Table II: Effect of dilation kernel shape and size on the
performance of the algorithm. The algorithm design is
optimized in a greedy fashion for kernel size first, then for
kernel shape.

It should be noted that the size and shape of the dilation
kernel is not found to have a significant impact on runtime.

Noise Reduction through Blurring: The depth map output
contains many small flat planes and sharp edges due to the
Manhattan [21] nature of the environment, and the series
of binary image processing operations applied during the
previous steps. Furthermore, small areas of outliers may
be dilated, providing erroneous patches of depth values. To
apply smoothing to local planes, round off object edges,
and remove outlier depth pixels, we study the effect of
median, bilateral, and Gaussian blurring on the algorithm’s
performance.

Table III shows the effect of different blur methods on
the final performance of the algorithm and on its runtime.
A median blur is designed to remove salt-and-pepper noise,
making it effective in removing outlier depth values. This
operation adds 2 ms to the runtime, but the improvement

Kernel RMSE (mm) MAE (mm) Runtime (s)

No Blur 1512.18 333.67 0.007
Bilateral Blur 1511.80 334.12 0.011
Median Blur 1461.54 323.34 0.009

Median + Bilateral Blur 1456.69 328.02 0.014
Gaussian Blur 1360.06 310.39 0.008

Median + Gaussian Blur 1350.93 305.35 0.011

Table III: Effect of blurring.
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Figure 5: Qualitative results of the application of our algorithm on LIDAR point clouds using both bilateral and Gaussian
blur kernels. Points have been colourized using the RGB image for easier visualization. It can be seen that ground truth
object detection bounding boxes in red have much more points in the dense point cloud.

can be seen through a decrease in both RMSE and MAE. A
bilateral blur preserves local structure by only blurring pixels
with other nearby pixels having similar values, and has
minimal effect on the evaluated RMSE and MAE metrics,
while adding 4 ms to the runtime. Due to the Euclidean
calculation of the RMSE metric, a Gaussian blur reduces
RMS errors significantly by minimizing the effect of outlier
pixel depths. The Gaussian blur also runs fastest, adding only
1 ms to the average runtime. The final algorithm employs a
combined median and Gaussian blur as this combination is
shown to provide the lowest RMSE.

Figure 5 shows the results of running the algorithm with
two different blurring kernels on a projected point cloud
from a sample in the KITTI object detection benchmark. The
steps of extending depth values to the top of frame and large
hole filling are skipped since they introduce a large number
of extrapolated depth values. For applications where a fully
dense depth map is not required, it is recommended to limit
both the upward extension per column and dilation kernel
size. While the Gaussian blur version provides the lowest
RMSE, it also introduces many additional 3D points to the
scene. The bilateral blur version preserves the local structure
of objects and is recommended for practical applications. It
should be noted that the points are colourized using the RGB
image, but image data is not used in our unguided approach.
An accurate, denser point cloud can be helpful for 3D
object detection methods [2], [6], [22] which rely on point
cloud data for both object classification and localization.
After depth completion, it can be seen that ground truth
labelled objects contain many more points. The structure
of the cars and road scene become much clearer, and
this is especially noticeable for the objects farther away.
More qualitative results are available in video format at
https://youtu.be/t CGGUE2kEM.

VI. CONCLUSION

In this work, we propose a depth completion algorithm
that takes as an input a sparse depth map to output a dense
depth map. Our proposed algorithm uses only traditional im-
age processing techniques and requires no training, making

it robust to overfitting. We show that our image processing
based algorithm provides state of the art results on the
KITTI depth completion benchmark, outperforming several
learning-based methods. Our algorithm also runs in real time
at 90 Hz and does not require any additional GPU hardware,
making it a competitive candidate to be deployed on embed-
ded systems as a preprocessing step for more complex tasks
such as SLAM or 3D object detection. Finally, this work is
not meant to undermine the power of deep learning systems,
but rather to shed light on the current trend in literature,
where classical methods are not carefully considered for
comparison although they can become powerful baselines
if designed properly.
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