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Abstract—Object detection is a major challenge in computer
vision, involving both object classification and object localiza-
tion within a scene. While deep neural networks have been
shown in recent years to yield very powerful techniques for
tackling the challenge of object detection, one of the biggest
challenges with enabling such object detection networks for
widespread deployment on embedded devices is high compu-
tational and memory requirements. Recently, there has been
an increasing focus in exploring small deep neural network
architectures for object detection that are more suitable for em-
bedded devices, such as Tiny YOLO and SqueezeDet. Inspired
by the efficiency of the Fire microarchitecture introduced in
SqueezeNet and the object detection performance of the single-
shot detection macroarchitecture introduced in SSD, this paper
introduces Tiny SSD, a single-shot detection deep convolutional
neural network for real-time embedded object detection that
is composed of a highly optimized, non-uniform Fire sub-
network stack and a non-uniform sub-network stack of highly
optimized SSD-based auxiliary convolutional feature layers
designed specifically to minimize model size while maintaining
object detection performance. The resulting Tiny SSD possess
a model size of 2.3MB (∼26X smaller than Tiny YOLO) while
still achieving an mAP of 61.3% on VOC 2007 (∼4.2% higher
than Tiny YOLO). These experimental results show that very
small deep neural network architectures can be designed for
real-time object detection that are well-suited for embedded
scenarios.
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I. INTRODUCTION

Object detection can be considered a major challenge in
computer vision, as it involves a combination of object classi-
fication and object localization within a scene (see Figure 1).
The advent of modern advances in deep learning [7], [6]
has led to significant advances in object detection, with the
majority of research focuses on designing increasingly more
complex object detection networks for improved accuracy
such as SSD [9], R-CNN [1], Mask R-CNN [2], and other
extended variants of these networks [4], [8], [15]. Despite the
fact that such object detection networks have showed state-
of-the-art object detection accuracies beyond what can be
achieved by previous state-of-the-art methods, such networks
are often intractable for use for embedded applications due
to computational and memory constraints. In fact, even faster
variants of these networks such as Faster R-CNN [13] are only

Figure 1. Tiny SSD results on the VOC test set. The bounding boxes,
categories, and confidences are shown.

capable of single-digit frame rates on a high-end graphics
processing unit (GPU). As such, more efficient deep neural
networks for real-time embedded object detection is highly
desired given the large number of operational scenarios that
such networks would enable, ranging from smartphones to
aerial drones.

Recently, there has been an increasing focus in exploring
small deep neural network architectures for object detection
that are more suitable for embedded devices. For example,
Redmon et al. introduced YOLO [11] and YOLOv2 [12],
which were designed with speed in mind and was able to
achieve real-time object detection performance on a high-end
Nvidia Titan X desktop GPU. However, the model size of
YOLO and YOLOv2 remains very large in size (753 MB and
193 MB, respectively), making them too large from a memory
perspective for most embedded devices. Furthermore, their
object detection speed drops considerably when running on
embedded chips [14]. To address this issue, Tiny YOLO [10]
was introduced where the network architecture was reduced
considerably to greatly reduce model size (60.5 MB) as well
as greatly reduce the number of floating point operations
required (just 6.97 billion operations) at a cost of object
detection accuracy (57.1% on the twenty-category VOC 2017
test set). Similarly, Wu et al. introduced SqueezeDet [16], a
fully convolutional neural network that leveraged the efficient
Fire microarchitecture introduced in SqueezeNet [5] within
an end-to-end object detection network architecture. Given
that the Fire microarchitecture is highly efficient, the resulting
SqueezeDet had a reduced model size specifically for the
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purpose of autonomous driving. However, SqueezeDet has
only been demonstrated for objection detection with limited
object categories (only three) and thus its ability to handle
larger number of categories have not been demonstrated.
As such, the design of highly efficient deep neural network
architectures that are well-suited for real-time embedded
object detection while achieving improved object detection
accuracy on a variety of object categories is still a challenge
worth tackling.

In an effort to achieve a fine balance between object
detection accuracy and real-time embedded requirements
(i.e., small model size and real-time embedded inference
speed), we take inspiration by both the incredible efficiency
of the Fire microarchitecture introduced in SqueezeNet [5]
and the powerful object detection performance demonstrated
by the single-shot detection macroarchitecture introduced
in SSD [9]. The resulting network architecture achieved
in this paper is Tiny SSD, a single-shot detection deep
convolutional neural network designed specifically for real-
time embedded object detection. Tiny SSD is composed
of a non-uniform highly optimized Fire sub-network stack,
which feeds into a non-uniform sub-network stack of highly
optimized SSD-based auxiliary convolutional feature layers,
designed specifically to minimize model size while retaining
object detection performance.

This paper is organized as follows. Section 2 describes the
highly optimized Fire sub-network stack leveraged in the Tiny
SSD network architecture. Section 3 describes the highly
optimized sub-network stack of SSD-based convolutional
feature layers used in the Tiny SSD network architecture.
Section 4 presents experimental results that evaluate the
efficacy of Tiny SSD for real-time embedded object detection.
Finally, conclusions are drawn in Section 5.

II. OPTIMIZED FIRE SUB-NETWORK STACK

The overall network architecture of the Tiny SSD network
for real-time embedded object detection is composed of two
main sub-network stacks: i) a non-uniform Fire sub-network
stack, and ii) a non-uniform sub-network stack of highly
optimized SSD-based auxiliary convolutional feature layers,
with the first sub-network stack feeding into the second sub-
network stack. In this section, let us first discuss in detail
the design philosophy behind the first sub-network stack
of the Tiny SSD network architecture: the optimized fire
sub-network stack.

A powerful approach to designing smaller deep neural
network architectures for embedded inference is to take a
more principled approach and leverage architectural design
strategies to achieve more efficient deep neural network
microarchitectures [3], [5]. A very illustrative example of
such a principled approach is the SqueezeNet [5] network ar-
chitecture, where three key design strategies were leveraged:

1) reduce the number of 3× 3 filters as much as possible,

Figure 2. An illustration of the Fire microarchitecture. The output of
previous layer is squeezed by a squeeze convolutional layer of 1× 1 filters,
which reduces the number of input channels to 3× 3 filters. The result of
the squeeze convolutional layers is passed into the expand convolutional
layer which consists of both 1× 1 and 3× 3 filters.

2) reduce the number of input channels to 3 × 3 filters
where possible, and

3) perform downsampling at a later stage in the network.
This principled designed strategy led to the design of what

the authors referred to as the Fire module, which consists of
a squeeze convolutional layer of 1x1 filters (which realizes
the second design strategy of effectively reduces the number
of input channels to 3× 3 filters) that feeds into an expand
convolutional layer comprised of both 1× 1 filters and 3× 3
filters (which realizes the first design strategy of effectively
reducing the number of 3× 3 filters). An illustration of the
Fire microarchitecture is shown in Figure 2.

Inspired by the elegance and simplicity of the Fire
microarchitecture design, we design the first sub-network
stack of the Tiny SSD network architecture as a standard
convolutional layer followed by a set of highly optimized
Fire modules. One of the key challenges to designing this
sub-network stack is to determine the ideal number of Fire
modules as well as the ideal microarchitecture of each of
the Fire modules to achieve a fine balance between object
detection performance and model size as well as inference
speed. First, it was determined empirically that 10 Fire
modules in the optimized Fire sub-network stack provided
strong object detection performance. In terms of the ideal
microarchitecture, the key design parameters of the Fire
microarchitecture are the number of filters of each size
(1 × 1 or 3 × 3) that form this microarchitecture. In the
SqueezeNet network architecture that first introduced the
Fire microarchitecture [5], the microarchitectures of the Fire
modules are largely uniform, with many of the modules
sharing the same microarchitecture configuration. In an effort
to achieve more optimized Fire microarchitectures on a per-
module basis, the number of filters of each size in each Fire



Figure 3. An illustration of the network architecture of the second
sub-network stack of Tiny SSD. The output of three Fire modules and
two auxiliary convolutional feature layers, all with highly optimized
microarchitecture configurations, are combined together for object detection.

module is optimized to have as few parameters as possible
while still maintaining the overall object detection accuracy.
As a result, the optimized Fire sub-network stack in the Tiny
SSD network architecture is highly non-uniform in nature for
an optimal sub-network architecture configuration. Table I
shows the overall architecture of the highly optimized Fire
sub-network stack in Tiny SSD, and the number of parameters
in each layer of the sub-network stack.

III. OPTIMIZED SUB-NETWORK STACK OF SSD-BASED
CONVOLUTIONAL FEATURE LAYERS

In this section, let us first discuss in detail the design
philosophy behind the second sub-network stack of the Tiny
SSD network architecture: the sub-network stack of highly
optimized SSD-based auxiliary convolutional feature layers.

One of the most widely-used and effective object detection
network macroarchitectures in recent years has been the
single-shot multibox detection (SSD) macroarchitecture [9].
The SSD macroarchitecture augments a base feature extrac-
tion network architecture with a set of auxiliary convolutional
feature layers and convolutional predictors. The auxiliary
convolutional feature layers are designed such that they
decrease in size in a progressive manner, thus enabling the
flexibility of detecting objects within a scene across different
scales. Each of the auxiliary convolutional feature layers
can then be leveraged to obtain either: i) a confidence score
for a object category, or ii) a shape offset relative to default
bounding box coordinates [9]. As a result, a number of object
detections can be obtained per object category in this manner
in a powerful, end-to-end single-shot manner.

Inspired by the powerful object detection performance
and multi-scale flexibility of the SSD macroarchitecture [9],
the second sub-network stack of Tiny SSD is comprised of
a set of auxiliary convolutional feature layers and convo-

Table I
THE OPTIMIZED FIRE SUB-NETWORK STACK OF THE TINY SSD

NETWORK ARCHITECTURE. THE NUMBER OF FILTERS AND INPUT SIZE TO
EACH LAYER ARE REPORTED FOR THE CONVOLUTIONAL LAYERS AND
FIRE MODULES. EACH FIRE MODULE IS REPORTED IN ONE ROW FOR A

BETTER REPRESENTATION. ”x@S – y@E1 – z@E3" STANDS FOR x
NUMBERS OF 1× 1 FILTERS IN THE SQUEEZE CONVOLUTIONAL LAYER, y
NUMBERS OF 1× 1 FILTERS AND z NUMBERS OF 3× 3 FILTERS IN THE

EXPAND CONVOLUTIONAL LAYER.

Type / Stride Filter Shapes Input Size
Conv1 / s2 3× 3× 57 300× 300
Pool1 / s2 3× 3 149× 149

Fire1 15@S – 49@E1 – 53@E3 74× 74
Concat1

Fire2 15@S – 54@E1 – 52@E3 74× 74
Concat2

Pool3 / s2 3× 3 74× 74
Fire3 29@S – 92@E1 – 94@E3 37× 37

Concat3
Fire4 29@S – 90@E1 – 83@E3 37× 37

Concat4
Pool5 / s2 3× 3 37× 37

Fire5 44@S – 166@E1 – 161@E3 18× 18
Concat5

Fire6 45@S – 155@E1 – 146@E3 18× 18
Concat6

Fire7 49@S – 163@E1 – 171@E3 18× 18
Concat7

Fire8 25@S – 29@E1 – 54@E3 18× 18
Concat8

Pool9 / s2 3× 3 18× 18
Fire 9 37@S – 45@E1 – 56@E3 9× 9

Concat9
Pool10 / s2 3× 3

Fire10 38@S – 41@E1 – 44@E3 4× 4
Concat10

lutional predictors with highly optimized microarchitecture
configurations (see Figure 3).

As with the Fire microarchitecture, a key challenge to
designing this sub-network stack is to determine the ideal
microarchitecture of each of the auxiliary convolutional
feature layers and convolutional predictors to achieve a fine
balance between object detection performance and model
size as well as inference speed. The key design parameters
of the auxiliary convolutional feature layer microarchitecture
are the number of filters that form this microarchitecture.
As such, similar to the strategy taken for constructing
the highly optimized Fire sub-network stack, the number
of filters in each auxiliary convolutional feature layer is
optimized to minimize the number of parameters while
preserving overall object detection accuracy of the full Tiny
SSD network. As a result, the optimized sub-network stack
of auxiliary convolutional feature layers in the Tiny SSD
network architecture is highly non-uniform in nature for
an optimal sub-network architecture configuration. Table II
shows the overall architecture of the optimized sub-network
stack of the auxiliary convolutional feature layers within the
Tiny SSD network architecture, along with the number of



Table II
THE OPTIMIZED SUB-NETWORK STACK OF THE AUXILIARY

CONVOLUTIONAL FEATURE LAYERS WITHIN THE TINY SSD NETWORK
ARCHITECTURE. THE INPUT SIZES TO EACH CONVOLUTIONAL LAYER

AND KERNEL SIZES ARE REPORTED.

Type / Stride Filter Shape Input Size
Conv12-1 / s2 3× 3× 51 4× 4
Conv12-2 3× 3× 46 4× 4
Conv13-1 3× 3× 55 2× 2
Conv13-2 3× 3× 85 2× 2
Fire5-mbox-loc 3× 3× 16 37× 37
Fire5-mbox-conf 3× 3× 84 37× 37
Fire9-mbox-loc 3× 3× 24 18× 18
Fire9-mbox-conf 3× 3× 126 18× 18
Fire10-mbox-loc 3× 3× 24 9× 9
Fire10-mbox-conf 3× 3× 126 9× 9
Fire11-mbox-loc 3× 3× 24 4× 4
Fire11-mbox-conf 3× 3× 126 4× 4
Conv12-2-mbox-loc 3× 3× 24 2× 2
Conv12-2-mbox-conf 3× 3× 126 2× 2
Conv13-2-mbox-loc 3× 3× 16 1× 1
Conv13-2-mbox-conf 3× 3× 84 1× 1

parameters in each layer.

Table III
OBJECT DETECTION ACCURACY RESULTS OF TINY SSD ON VOC 2007

TEST SET. TINY YOLO RESULTS ARE PROVIDED AS A BASELINE
COMPARISON.

Model Model mAP
Name size (VOC 2007)

Tiny YOLO [10] 60.5MB 57.1%
Tiny SSD 2.3MB 61.3%

Table IV
RESOURCE USAGE OF TINY SSD.

Model Total number Total number
Name of Parameters of MACs

Tiny SSD 1.13M 571.09M

IV. PARAMETER PRECISION OPTIMIZATION

In this section, let us discuss the parameter precision
optimization strategy for Tiny SSD. For embedded scenarios
where the computational requirements and memory require-
ments are more strict, an effective strategy for reducing
computational and memory footprint of deep neural networks
is reducing the data precision of parameters in a deep neural
network. In particular, modern CPUs and GPUs have moved
towards accelerated mixed precision operations as well as
better handling of reduced parameter precision, and thus the
ability to take advantage of these factors can yield noticeable
improvements for embedded scenarios. For Tiny SSD, the
parameters are represented in half precision floating-point,
thus leading to further deep neural network model size

reductions while having a negligible effect on object detection
accuracy.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To study the utility of Tiny SSD for real-time embed-
ded object detection, we examine the model size, object
detection accuracies, and computational operations on the
VOC2007/2012 datasets. For evaluation purposes, the Tiny
YOLO network [10] was used as a baseline reference com-
parison given its popularity for embedded object detection,
and was also demonstrated to possess one of the smallest
model sizes in literature for object detection on the VOC
2007/2012 datasets (only 60.5MB in size and requiring
just 6.97 billion operations). The VOC2007/2012 datasets
consist of natural images that have been annotated with 20
different types of objects, with illustrative examples shown
in Figure 4. The tested deep neural networks were trained
using the VOC2007/2012 training datasets, and the mean
average precision (mAP) was computed on the VOC2007
test dataset to evaluate the object detection accuracy of the
deep neural networks.

A. Training Setup

The proposed Tiny SSD network was trained for 220,000
iterations in the Caffe framework with training batch size of
24. RMSProp was utilized as the training policy with base
learning rate set to 0.00001 and γ = 0.5.

B. Discussion

Table III shows the model size and the object detection
accuracy of the proposed Tiny SSD network on the VOC
2007 test dataset, along with the model size and the object
detection accuracy of Tiny YOLO. A number of interesting
observations can be made. First, the resulting Tiny SSD
possesses a model size of 2.3MB, which is ∼26X smaller
than Tiny YOLO. The significantly smaller model size of
Tiny SSD compared to Tiny YOLO illustrates its efficacy
for greatly reducing the memory requirements for leveraging
Tiny SSD for real-time embedded object detection purposes.
Second, it can be observed that the resulting Tiny SSD
was still able to achieve an mAP of 61.3% on the VOC
2007 test dataset, which is ∼4.2% higher than that achieved
using Tiny YOLO. Figure 5 demonstrates several example
object detection results produced by the proposed Tiny SSD
compared to Tiny YOLO. It can be observed that Tiny SSD
has comparable object detection results as Tiny YOLO in
some cases, while in some cases outperforms Tiny YOLO in
assigning more accurate category labels to detected objects.
For example, in the first image case, Tiny SSD is able to
detect the chair in the scene, while Tiny YOLO misses the
chair. In the third image case, Tiny SSD is able to identify
the dog in the scene while Tiny YOLO detects two bounding
boxes around the dog, with one of the bounding boxes
incorrectly labeling it as cat. This significant improvement



Figure 4. Example images from the Pascal VOC dataset. The ground-truth bounding boxes and object categories are shown for each image.

in object detection accuracy when compared to Tiny YOLO
illustrates the efficacy of Tiny SSD for providing more
reliable embedded object detection performance. Furthermore,
as seen in Table IV, Tiny SSD requires just 571.09 million
MAC operations to perform inference, making it well-suited
for real-time embedded object detection. These experimental
results show that very small deep neural network architectures
can be designed for real-time object detection that are well-
suited for embedded scenarios.

VI. CONCLUSIONS

In this paper, a single-shot detection deep convolutional
neural network called Tiny SSD is introduced for real-time
embedded object detection. Composed of a highly optimized,
non-uniform Fire sub-network stack and a non-uniform sub-
network stack of highly optimized SSD-based auxiliary
convolutional feature layers designed specifically to minimize
model size while maintaining object detection performance,
Tiny SSD possesses a model size that is ∼26X smaller than
Tiny YOLO, requires just 571.09 million MAC operations,
while still achieving an mAP of that is ∼4.2% higher than
Tiny YOLO on the VOC 2007 test dataset. These results
demonstrates the efficacy of designing very small deep neural
network architectures such as Tiny SSD for real-time object
detection in embedded scenarios.
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