
Instance Segmentation based Semantic Matting for Compositing Applications

Guanqing Hu
Centre for Intelligent Machines, McGill University

Montreal, Canada
bonniehu@cim.mcgill.ca

James J. Clark
Centre for Intelligent Machines, McGill University

Montreal, Canada
clark@cim.mcgill.ca

Original image Instance segmentation Instance 1 trimap Instance 2 trimap Alpha matte 1 Alpha matte 2

Instance 1 Instance 2 Composite 1 Composite 2 Composite all
Figure 1: Our approach first generates coarse instance masks that are used to create trimaps. Then, the trimaps and the
original image are used by the image matting network to produce an alpha matte for each instance. Finally, the alpha mattes
are used for image compositing.

Abstract—Image compositing is a key step in film making
and image editing that aims to segment a foreground object
and combine it with a new background. Automatic image
compositing can be done easily in a studio using chroma-
keying when the background is pure blue or green. However,
image compositing in natural scenes with complex backgrounds
remains a tedious task, requiring experienced artists to hand-
segment. In order to achieve automatic compositing in natural
scenes, we propose a fully automated method that integrates
instance segmentation and image matting processes to generate
high-quality semantic mattes that can be used for image editing
task.

Our approach can be seen both as a refinement of existing
instance segmentation algorithms and as a fully automated
semantic image matting method. It extends automatic image
compositing techniques such as chroma-keying to scenes with
complex natural backgrounds without the need for any kind of
user interaction. The output of our approach can be considered
as both refined instance segmentations and alpha mattes with
semantic meanings. We provide experimental results which
show improved performance results as compared to existing
approaches.

Keywords-image matting; compositing; instance segmenta-
tion;

I. INTRODUCTION

Image compositing is a key technique in movie produc-
tion and image editing. It combines visual elements from

different sources into one image. The process of extracting
visual elements from a source typically involves precise
extraction of foreground objects from the background using
either manual rotoscopy, where an artist traces the object
to be extracted, or by an automatic chroma-keying when
the object is in front of a uniformly colored background
(e.g. green-screen). In this work, we present a method for
automatic foreground object extraction that can work even
with complex backgrounds. Our method combines instance
segmentation and image matting processes, which allows for
multiple foreground objects to be classified and segmented
and extracted from the background. The semantic labels
provided by the instance segmentation process provides
a way to automatically extract objects of different types.
For example, we can extract all people in the scene from
the background, leaving other types of foreground objects
behind. Or, we can obtain multiple mattes, one for each in-
stance, and these can be used as desired in later compositing
operations.

Object segmentation is considered as one of the most
important and complex tasks in Computer Vision. There
have been many recent advances in segmentation algorithms
based on learning-based methods, in large part due to a
number of publicly available datasets that provide human-
drawn segmentation masks as ground truths. However, most
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of these masks are coarse and unrefined, which makes the
segmentation algorithms also provide coarse and unrefined
object boundaries. These image segmentation techniques
lack sufficient refinement to be used for high quality image
composition tasks.

On the other hand, image matting is another fundamental
problem in Computer Vision that has been studied since the
1950s. Similar to segmentation, which involves generating a
coarse binary mask for each object, image matting extracts
an interesting object from a static image or a set of video
frames by estimating an alpha matte α containing the opacity
value for each pixel in the image. Typically, pixels in the
foreground have alpha values equal to 1 while those in the
background are given alpha values equaling 0. However,
because of the extended size of pixels as well as motion
blur in videos, pixels on the boundary between foreground
and background objects have contributions from both the
foreground and background objects and hence are given
alpha values between 0 and 1. This relation is interpreted
in Equation 1, where i, FG, BG represent pixel position,
foreground image, and background image respectively.

Ii = αi × FGi + (1 − αi) × BGi (1)

In equation 1, the only known value is the image input I,
while the variables FG, alpha, BG are unknown and need
to be estimated. To simplify the estimation process, most
image matting algorithms require a manual intervention in
the form of user-labeled inputs. One type of user-labeled
input is called the trimap (Figure2b), which densely labels
the opacity of the known (foreground and background) and
unknown (boundary) regions. In the trimap, the foreground
and the background are labeled α = 1 and 0, respectively,
while the remaining regions are initially given a label of
αi = 0.5. Another common type of user-labeled input are
strokes (Figure2c), which labels the region of foreground
and background coarsely using scribbled strokes. Stroke-
based algorithms are faster, requiring less user input, but
produces lower quality results. Finally, there exist semi-
automated methods for generating matting features directly
from RGB input (e.g. Levin’s spectral matting approach
[11]) as shown in Figure 2d. These techniques are considered
semi-automated since they still require a small amount
of user guidance to select the corresponding foreground
features. The requirement of user interaction not only causes
major delays and expense in the image editing workflow, but
also severely limits the applications that image matting can
be used on.

In this paper, we propose a fully automated image
segmentation-matting approach in which accurate segmenta-
tion can be achieved on general natural image datasets such
as COCO [4]. The proposed method takes an RGB image
without any additional user-labeled input and generates an
alpha matte for all the detected object instances in the scene.
The proposed deep learning-based approach consists of two

(a) RGB
input

(b) Trimap (c) Strokes (d) Spectral
features

(e) Alpha
matte

Figure 2: Image matting input and output indication.
Spectral features in (d) requires user guidance to select

foreground features.

stages. First, the input image is fed into a Mask R-CNN
network [2] where the object bounding box and instance
mask are generated. Then, using these two results, a trimap
is estimated for each detected object in the image. Next,
the trimap and the original RGB image are used together as
inputs to a Deep Image Matting network [3] to generate the
final alpha matte. The final output of the pipeline is not only
the refined foreground object mask but also an alpha matte
with an accompanying semantic label that can be used to
extract specific types of objects in a complex scene.

We evaluate our technique qualitatively by comparing
results with other approaches tackling automatic matting
or automatic soft segmentation problems. Experimental re-
sults demonstrate comparable and, in some cases, superior,
performance in extracting alpha mattes as compared with
existing approaches. Our method is also capable of com-
positing with the motion blur that is often encountered in
movies and videos so that the new background pixels show
through on the blurred region. Our approach allows non-
experts to perform natural image compositing easily by just
selecting the object categories to keep and the auto-generated
semantic alpha mattes will do the rest. It will also accelerate
video compositing tasks that originally required artists to
laboriously trace objects frame by frame. An example of
using our approach in image compositing can be seen in
Figure 1, including the intermediate trimaps and instance
segmentations.

II. RELATED WORK

A. Natural Image Matting

Image matting estimates an alpha matte for an interesting
object by generating an opacity value for each pixel in the
image. A trimap is a typical input to matting algorithms
which indicates uncertain or unknown opacity (boundary)
regions that the algorithms should work on, as well as known
foreground and background regions. Matting methods can
be categorized into: Non-learning-based and Learning-based
methods. There are many non-learning image matting meth-
ods such as sampling-based [6], Bayesian-based [7], affinity-
based methods like Closed-form Matting [9], and Poisson
Matting [8]. Learning-based methods were only recently
developed because of the difficulty in generating large scale
ground truth data. Xu et al. used deep learning in solving



Figure 3: Proposed method as a pipeline

the matting problem by creating a new dataset with real
world images and expanded the dataset scale by compositing
it with different background images. They use a two-stage
deep learning method consisting of a deep convolutional
encoder-decoder network and a fully convolutional network
for refinement [3]. Using the same dataset, [11] replaces the
refinement stage in [3] with adversarial model, achieving
state-of-the-art performance on benchmark. Learning based
methods have the advantage that the semantic meaning of
the objects are learned, thus performing better in the tricky
cases, for example, when the foreground and background
colors are similar.

B. Instance Segmentation

Instance Segmentation is a combination of object detec-
tion and semantic segmentation. Object detection classifies
each object into a category and localize each object by
predicting a bounding box. Semantic segmentation classifies
each pixel in the image into an object category without
distinguishing different instances. Mask R-CNN [2] is a
state-of-the-art instance segmentation method. It takes an
RGB image as input and generates three types of annotations
for each detected object. The common dataset to train Mask
R-CNN is COCO dataset [4] containing 81 object categories.
For each recognized object in the input image, Mask R-CNN
returns an object label, a bounding box indicating object
location and scale, and a segmentation mask specifying the
object in pixel level.

C. Soft Segmentation

Soft segmentation, in contrast to traditional segmentation
that focuses on generating coarse object masks, estimates
more precise object boundary transactions. Semantic Soft
Segmentation [5] is a state-of-the-art work achieving good
performance on automatic soft segmentation. It uses high-
level semantic features extracted from the semantic seg-
mentation model DeepLab [13] to categorize and combine
low-level texture and color features generated from spectral
decomposition.

III. METHODOLOGY AND EXPERIMENTAL SET-UP

This section introduces the pipeline of the proposed
method (Figure 3) and how each key part works indi-
vidually and together. The pipeline starts with taking an
input image into a Mask R-CNN network through which
the object bounding box and instance mask are generated.
Using these intermediate outcomes, a coarse trimap with
large uncertainty region can be estimated for each detected
object. To estimate the final alpha matte, this trimap and the
input image are fed to the image matting network. Due to
the coarseness of the instance mask leading to low-quality
trimaps, the alpha matte generated in the first pass is also
poor. Estimating a new trimap from the generated alpha
matte and passing through the matting stage again generally
improves the segmentation and matting results. This forms
a feedback loop in the pipeline where the trimap and alpha
matte improve each other.

A. Segmentation stage

The first stage of the pipeline could use any instance
segmentation network that produces instance masks and
bounding boxes. We use the Mask R-CNN [2] algorithm
in our approach. As the first stage of the pipeline, the
inference error of Mask R-CNN influences the accuracy of
the latter steps. Therefore, we use Mask R-CNN with bells
and whistles that achieves higher accuracy in both bounding
box and mask inference. The model is built on a deeper
backbone architecture ResNeXt-152-32x8d-FPN trained on
ImageNet-5k as opposed to the usual ImageNet-1k [12].
We use the pre-trained Mask R-CNN model from Detectron
Pytorch version [12].

B. Trimap estimation stage

Trimap estimation makes use of the intermediate outputs
from Mask R-CNN to produce a trimap for each detected
object instance. We make an assumption that the region
near the mask boundary is the region that requires the most
further estimation, i.e. the unknown region where the image
matting algorithm should focus on. Therefore, a certain
region dilated from the object mask is defined to be the
unknown area in the trimap with αi = 0.5. The region further



inside the mask defines the foreground area with αi = 1,
while the region further outside the mask is assigned as the
background with αi = 0.

The amount of the dilation is determined by the object
size. The approximate width and height of an object can be
estimated using its bounding box coordinates as width =
bbox[2] − bbox[0] and height = bbox[3] − bbox[1]. We
choose the dilation rate to be a fixed percentage of the width-
and-height average. There is a trade-off in choosing a higher
or lower dilation rate. A precise trimap is favored by the
matting network as it imposes stronger constraints. When the
mask boundary is close to the object true boundary, a small
rate of dilation is enough to cover the region that needs to
be refined. But there are also cases when larger dilation rate
is preferable to recover errors of poor object mask, resulting
in larger uncertainty region in the trimap that could degrade
the matting stage.

C. Matting stage

For image matting, we use the learning-based method
Deep Image Matting by Lin et al. [3]. It is a VGG16-based
encoder-decoder network followed by a fully-connected re-
finement stage. Taking advantage of the semantic meaning
extracted by VGG16, Deep image matting has an outstand-
ing performance on natural scenes where the foreground
color and background color are sometimes very similar. Its
performance is also less dependent on the quality of the
trimap than non-learning methods. This data-driven model
uses the dataset Lin et al. created [3]. The dataset contains
431 unique objects with associated alpha mattes but the
object variety is still limited compared to common object
datasets (with no mattes) used for training object classifiers.

1) Network training: We only train the network without
the last refinement layers due to hardware limitations. We
expect our results to be even better with the refinement
layers. The implementation uses the dataset from Lin et
al. [3]. Training data of the network is pre-processed as
320×320 image patches centering at an unknown pixel (i.e.
αi = 0.5) randomly cropped from training images.

2) Inference: During test time, we pre-process the test
images similarly as in training in order to achieve better
performance. When dealing high resolution test images we
could simply resize them (in our case to 320×320). However,
this may cause unavoidable issues in terms of network
performance and coarse alpha mattes. Indeed, downsampling
methods causes detail loss especially when the ratio of the
size of test images to the desired size is very high. To
avoid this, we implemented a patch-based pre-processing
method on the input test images. This approach consists
in cropping a test image into patches of 320 × 320. Each
patch of that single image is separately fed to the network
giving multiple alpha matte results. Then, these results are
blended together. A limitation in using this technique is
the fact that we must make sure that the cropped input

images are centered at an unknown pixel in the trimap. If
this is not the case the network may perform poorly. In
addition to that, the network performance is compromised
when the content of the cropped patch is very different
from the training data used during the training phase of the
network. To address these issues, the high resolution test
image is first downsampled to 640× 640. Then, patches are
randomly cropped with their centers moving along the gray
region of the trimap until the whole unknown region gets
covered. For each patch, an alpha matte patch is generated.
All these alpha matte patches are pasted back to their
original locations and averaged with the existing overlaps
of patches. With this method of averaging we found some
issues related to discontinuities especially along the borders
as well as susceptibility to outliers. Hence, we developed
a multiple Sampling method which consists in running the
test algorithm on each image for K = 10 times and take the
median of each set of alpha values at a pixel to exclude any
possible outliers and proceed in smoothing the final alpha
matte.

D. Feedback loop

Since the trimap generated directly from the instance
mask is generally coarse, the alpha matte from the first pass
of the pipeline is normally undesirable with low boundary
accuracy. So, a feedback connection was inserted between
the alpha matte output and the image matting network
input. From this, a new trimap is created by dilation from
the previous pass’s alpha values. The latter is fed back
to the image matting network for further refinement. The
motivation behind this implementation is that the quality of
trimap and alpha matte increases at each pass and leads to
a simultaneous improvement. With this increase in quality,
the dilation rate of the trimap is decreased. Generally, four
feedback loops leads to accurate results as demonstrated in
Section IV.

E. Handling multiple objects

When faced with an input image that contains multiple
objects, we proceed in dealing with one object at a time
(i.e. in a case of two objects in one image we consider
the first object as foreground and the second as background
image, then vice-versa). This method copes with superposing
regions of the trimap after performing dilation of the bound-
aries. Moreover, since the matting network used in this work
is one designed for single-object matting, this method of
distinction of object within a single image is more effective.

IV. EXPERIMENTAL ANALYSIS

Natural image matting results can be evaluated numeri-
cally if the ground truth alpha matte is available. However,
the purpose of our method is to generalize natural image
matting to common datasets (e.g COCO) so that matting
techniques can adapt to more general applications. In these



datasets, ground truth alpha matte is not available. Therefore,
this section mainly focuses on analysing qualitative results.
We first analyse the effect of the pipeline structure that
successfully refines coarse instance mask to alpha matte that
can be used for image editing task. Then we compare results
with existing fully automate methods including Semantic
Soft Segmentation and Spectral Matting. In the end, we
present some limitations and failure cases.

(a) RGB input (b) Mask RCNN (c) Trimap, no feedback

(d) Alpha, no feedback (e) Trimap after 2nd

pass
(f) Alpha after 2nd

pass

(g) Trimap after 4th
pass

(h) Alpha after 4th pass (i) Compositing result

Figure 4: Matting results of potted plant image

Figure 4 presents result details of an example image from
the COCO dataset [4]. Mask RCNN detects the pot and the
potted plant as two separate objects. Since the boundary
structure of the pot is fairly simple, we only show the
matting results of the potted plant. Figure 4c is the initial
trimap generated directly from the instance segmentation
mask with the widest and most coarse uncertain region. The
alpha matte based on such a trimap, as shown in Figure 4d,
lacks detail, but is slightly better than the original instance
mask. A second trimap can be created by dilating this
alpha matte, resulting in better trimap which then leads to
better alpha matte. Figures 4e-4h demonstrate the gradual
improvement of trimaps and alpha mattes, where the number
indicates at which feedback loop the corresponding result is
generated from. A composite is created with the extracted
plant region using the alpha matte generated after four
feedback passes (Figure 4h). On a Nvidia Tesla K40 GPU,
Mask RCNN takes an average of 39 seconds to generate
separated trimap for each detected object and the matting
stage takes 10 seconds with four feedback passes on each

object.
The number of feedback passes is a hyper-parameter that

need to be adjusted based on the application requirements.
We found that four feedback passes are generally enough to
achieve high-quality performance.

A. Comparison

As a comparison, segmentation results of the bouquet
are also generated using Semantic Soft Segmentation [5]
and Spectral matting [10] as shown in Figure 5. Both
approaches suffer at the regions where the foreground object
color is similar to the background as outlined in red. Both
algorithms generate low-level features first as shown in the
middle image and then gather the low-level features together
using high-level features. Semantic Soft Segmentation takes
advantage of high-level semantic meanings and groups low-
level features into a few layers. However, there are still
important details missing when the color of the foreground
is too close to the background (e.g. around the most left
leaves of the bouquet).

(a) Semantic Soft Segmentation results [5]

(b) Spectral matting results [10]

Figure 5: Results of Semantic Soft Segmentation and Spec-
tral matting. From left to right: original image, extracted
features, final result.

Results of more images from COCO dataset are presented
in Figure 7 and 8 including comparisons with Semantic Soft
Segmentation and Spectral matting. The index on the left
of each line in Figure 7 and 8 will be used to refer to
each presented image. Image 1-5 are the ones shown in
the Semantic Soft Segmentation paper [5]. The resolution
of these images are slightly different than the originals
in COCO. However, we expect the method to be robust
to small image scale changes. For image 1-4 and 8, our
approach achieves as good performance as Semantic Soft
Segmentation. In image 4, our approach is the only one
that correctly labels the black region on the top of the
person’s left shoulder as background. Although in image 8,
the person’s left hand is not detected, the composited result
is still visually correct.

Image 5 demonstrates our approach’s capability of cap-
turing motion blur like the person’s right arm, while the



other two methods cannot. Image 6, 7, and 9 demonstrate the
advantage of using instance-level segmentation as guideline
because when the scene contains more than one object
that belongs to the same semantic category, only using
semantic segmentation features tend to merge multiple dif-
ferent instances into one. Our approach is more flexible in
choosing which instance to keep and this selection can also
be automated by using the class label and bounding box
position as instance identity.

B. Limitations

One limitation of our approach is that the trimap gen-
eration is limited at object borders, hence for objects with
large area of transparency or other type of complex opacity,
the proposed method cannot generate trimaps covering such
a large region, which results in incorrect alpha matte. The
image matting network also suffers from the limited amount
of object categories it is trained on. When applied to
unfamiliar objects, the network tends to generate fuzzy and
transparent alpha even though the truth object boundary is
solid. As can be seen in Figure 6b, our approach confuses
background grass as part of the fuzzy boundaries of the fire
hydrant. The Semantic Soft Segmentation algorithm does
not have the same issue, but has problems at the bottom of
the hydrant.

V. CONCLUSION

In this work, we propose a fully automated image
segmentation-matting approach in which accurate segmen-
tation can be achieved on general image datasets such as
COCO [4]. The proposed method does not require any
additional user-labeled input and generates individual alpha
matte for all the detected objects in the image. Our approach
can be seen as both a segmentation enhancing approach
and a fully automated image matting approach that works
on common dataset. The performance is evaluated and
compared with related approaches. Our approach performs
as well as these approaches with advantage in instance-level
selections. Our approach could help non-expertise in image
compositing tasks and accelerate the image editing process.
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Figure 7: From left to right are RGB input image, Mask-RCNN, trimap at the 4th feedback loop, alpha matte at the 4th
feedback loop, instance compositing, result of Semantic Soft Segmentation, and result of spectral matting.



RGB input

7

Mask R-CNN Trimap 1 Trimap 2 Alpha matte 1 Alpha matte 2

Instance
compositing

Semantic Soft
Segmentation Spectral Matting

8

9

Figure 8: From left to right are RGB input image, Mask-RCNN, trimap of instance 1 at the 4th feedback loop, , trimap of
instance 2 at the 4th feedback loop, alpha matte of instance 1 at the 4th feedback loop, alpha matte of instance 2 at the

4th feedback loop, instance compositing, result of Semantic Soft Segmentation, and result of spectral matting.
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