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Abstract—The ability to visually re-identify objects is a fun-
damental capability in vision systems. Oftentimes, it relies on
collections of visual signatures based on descriptors, such as
SIFT or SURF. However, these traditional descriptors were
designed for a certain domain of surface appearances and
geometries (limited relief). Consequently, highly-textured sur-
faces such as tree bark pose a challenge to them. In turn, this
makes it more difficult to use trees as identifiable landmarks
for navigational purposes (robotics) or to track felled lumber
along a supply chain (logistics). We thus propose to use data-
driven descriptors trained on bark images for tree surface re-
identification. To this effect, we collected a large dataset con-
taining 2,400 bark images with strong illumination changes,
annotated by surface and with the ability to pixel-align them.
We used this dataset to sample from more than 2 million 64×64
pixel patches to train our novel local descriptors DeepBark
and SqueezeBark. Our DeepBark method has shown a
clear advantage against the hand-crafted descriptors SIFT and
SURF. For instance, we demonstrated that DeepBark can
reach a mAP of 87.2% when retrieving 11 relevant bark im-
ages, i.e. corresponding to the same physical surface, to a bark
query against 7,900 images. Our work thus suggests that re-
identifying tree surfaces in a challenging illuminations context
is possible. We also make public our dataset, which can be
used to benchmark surface re-identification techniques.

Keywords-Computer vision; Deep Learning; Local feature
descriptor; Tree Bark; Instance retrieval; Metric learning;

I. INTRODUCTION
The tracking of objects is important in many domains. For

instance, tracking within the supply chain is a key element
of the Industry 4.0 philosophy [11]. In the forestry industry,
it would consist in re-identifying trees cut in the forest, when
they arrive at the wood yard [16], for supply-chain tracking
purposes. In the context of mobile robotics, being able to
uniquely identify trees would improve localization in forests
[15], [21]. Robots could use trees as robust visual landmarks,
in order to localize themselves. In order to perform tracking
on trees, one must be able to re-identify them, potentially
from bark images. In this paper, we explore this problem by
developing a method to compare images of tree bark and
determining if they come from the same surface or not.

The difficulty of re-identifying bark surfaces arises in part
from the self-similar nature of their texture. Moreover, the
bark texture induces large changes in appearance when lit
from different angles. This is due to the presence of deep
troughs in the bark of many tree species. Another difficulty
is the absence of a dataset tailored to this problem. There

Figure 1. Qualitative matching performance of descriptors, for two im-
ages of the same bark surface. Every match shown in the image passed a
geometric verification. Some false positive matches still remain, due to the
high level of self-similarity. Notice the strong illumination changes between
the image pair, a key difficulty in tree bark re-identification.

are already-existing bark datasets [10], [23], [6], but these
are geared towards tree species classification.

To this effect, we first collected our own dataset with 200
uniquely-identified bark surface samples, for a total of 2,400
bark images. With these images, we produced a feature-
matching dataset enabling the training of deep learning fea-
ture descriptors. We also have established the first state-of-
the-art bark retrieval performance, showing promising re-
sults in challenging illumination conditions. In particular, it
surpassed by far common local feature descriptors such as
Scale Invariant Feature Transform (SIFT) [14] or Speeded
Up Robust Features (SURF) [1], as well as the novel data-
driven descriptor DeepDesc [19]: see Figure 1 for a qual-
itative assessment.

In short, our contributions can be summarized as follows:
• We introduce a novel dataset of tree bark pictures for

image retrieval. These pictures also contain specific
fiducial markers to infer camera plane transformation.

• Using our dataset and standard neural network architec-
tures, we establish a new state-of-the-art performance
for bark re-identification.

II. RELATED WORK

Our problem is related to three main areas: image re-
trieval, local feature descriptors and metric learning, all dis-
cussed below. We also discuss the application of computer
vision methods to the identification of bark images.

A. Image retrieval

The problem of image retrieval can be defined as follows:
given a query image, we seek other images in a database
that look similar to the query one. In mobile robotics, an
instance of this problem is known as Visual Place Recogni-
tion (VPR) [7], [8], where image retrieval is used to perform
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localization. There, the objective is to determine if a loca-
tion has already been visited, given its visual appearance.
The robot could then localize itself by finding previously-
seen and geo-referenced images. In the area of surveil-
lance, the problem is defined as Person Re-Identification
(Person Re-Id). It aims at following an individual through a
number of security camera recordings [26]. This implies the
ability to map multiple images of an individual to the same
compact description, despite variation of view-point, illumi-
nation, pose or even clothes. Our tree bark re-identification
is closest to this Person Re-Id problem, since we desire to
track an individual bark surface despite changes in illumi-
nation and viewpoint.

B. Local feature descriptor

To describe and compare images while being invariant to
view point and illumination changes, we based ourselves on
local feature descriptors. The goal of these descriptors is to
summarize the visual content of a small image patch. The
ideal descriptor is a) compact (low dimensionality) b) fast to
compute c) distinctive and d) robust to illumination, transla-
tion and rotations. A popular approach is to use hand-crafted
descriptors. They often rely on histograms of orientation and
magnitude of image gradients, as in SIFT or SURF.

Recently, data-driven approaches based on machine learn-
ing have appeared [17]. Some learn a parametric function
that maps image patches to compact descriptions that can be
compared by their distance [5], [19]. Instead of describing
an image patch alone, [24] takes two patches at once and
directly provides a similarity probability. Some also propose
a pipeline trained end-to-end (detector + descriptor) [9].

C. Metric learning

To build a learned local feature descriptor, we turned to
the field of metric learning. In this paradigm, one tries to
learn a distance function between data points. More pre-
cisely, it seeks to make this distance small for similar ex-
amples, and large for dissimilar ones. This is in line with
the points c) and d) of an ideal descriptor. This approach
has been explored in [19], [9], where training relied on the
so-called contrastive loss. Another line of work attempts in-
stead to make the inter-class variation larger than the intra-
class variation by a chosen margin in the vector space. This
formulation corresponds to the triplet loss [18]. [22] instead
chose to compare a similar pair of examples to multiple
negative ones, using a clever batch construction process.

D. Vision applied to bark/wood texture

Exploiting the information present in bark images has
been explored before. For instance, hand-crafted features
such as Local Binary Patterns (LBP) [12], [23], SIFT de-
scriptors [10] and Gabor filters [27] have been used for tree
species recognition. More closely related to our work, [3]
compared variants of the LBP method for image retrieval,

but only at the species level. If bark is framed as a texture
problem, one can find interesting work [25] that use ground
textures such as asphalt or wood floor to enable robots to
localize themselves. However, their technique is based on
images with almost no variations. Moreover, each query is
compared with one set of SIFT descriptions from their whole
texture map. Data-driven approaches such as deep learning
also were applied on images of bark, but strictly for species
classification [6].

III. PROBLEM DEFINITION

The problem we are addressing is an instance of re-
identification. Given an existing database of bark images
and a query image Iq , our goal is to find all images in the
database that correspond to the same physical surface, in
order to re-identify the tree, as seen in Figure 2. For in-
stance, if the image compared to Iq is from the same tree
but a different bark area, then it is not a valid match and the
tree is not re-identified. We assume that Iq has a meaningful
match in our database, i.e., we are not solving an open-set
problem; See FAB-MAP [7] for novel locations detection.

Figure 2. Here is a simplified example of bark images from two different
trees, on which two different surfaces have been photographed. With two
images per surface, this gives us eight images. Our goal is to take one
bark image and retrieve the other bark image corresponding to the exact
same surface. This way, we can recognize a previously-seen tree, using
bark pictures as signature.

A. Image global signature si

We perform the bark image search via global image sig-
natures, defined as si = (Ki, Vi, bi). These signatures are
extracted for each image (database and query Iq), as de-
picted in Figure 3. For this, we mostly follow the method
used in [20], summarized below. First, a keypoint detector
extracts a collection Ki of keypoints from an image. For
each of these keypoints k ∈ Ki, we extract a description v
of dimension 128, yielding a list of descriptions Vi. These
descriptions can be from standard descriptors, such as SIFT
or SURF, or our novel descriptors, described further below.
The remaining component of an image signature si is a
Bag of Words (BoW) representation bi ∈ R1000, calculated
from the list of descriptions Vi. We also apply the standard
TF-IDF technique. In [20], the comparison between two
BoW is done using the cosine distance. Instead, we have l2-
normalized once every BoW as a pre-processing step and
use the l22 distance to compare them. This way, our distance
ranking is equivalent to the pure cosine distance, but without
using a dot product.



Figure 3. Illustration of the global signature si = (Ki, Vi, bi) extraction
pipeline, for a single image Ii. First, the keypoints Ki are detected. Then,
for each keypoint k, a descriptor v is computed, creating the list Vi. Fi-
nally, a Bag of Words (BoW) representation bi of Vi is computed from the
quantization of all descriptions v via a visual vocabulary.

B. Signature matching

The search is performed mainly by computing a score g
between a query image signature sq and each image signa-
ture si in the database, and retrieving the best match based
on g. For the BoW technique, we simply use the distance
between two BoWs ||bq− bi||22 as our score g. Another way
to calculate a score between sq and si begins by taking the
l22 distance between every description of Vq and Vi to ob-
tain a collection M of putative matching pairs of features,
m ∈M = (v ∈ Vq, v ∈ Vi) with |M | = |Vq|. Then, we ex-
plored the use of two potential false match filters. The first
one is the Lowe Ratio (LR) test introduced in [14]. The sec-
ond one is a Geometric Verification (GV), which is a simple
neighbors check. It begins by taking a match m = (vx, vy),
then retrieving the keypoints (kx, ky) associated with each
description v of the match. Following this, we find the α
nearest neighbors of each of the keypoints in their respec-
tive images. Finally, the match is accepted if at least ρ%
of the α neighbors of kx have a match m ∈ M with the
α neighbors of ky . The number of matches after filtering is
then considered as the matching score g.

IV. OUR APPROACH: DATA-DRIVEN DESCRIPTORS

Considering that tree bark highly-textured surfaces are
problematic to hand-crafted descriptors, and the non-
availability of datasets tailored to our task (see Table 1), we
present here the main contribution of our paper, which is
data-driven descriptors for bark image re-identification. First,
we describe our novel bark image dataset. We then discuss
how to process it in order to generate keypoint-aligned image
patches required to train our descriptors. These descriptors
are then described in detail, followed by training details.
A. Bark Image Datasets

In order to develop our data-driven descriptors, we col-
lected a dataset of tree bark images. To ensure drastic illu-
mination changes, we took the pictures at night, and varied
the position of a 550 lumen LED EnergizerTM lamp. We

Reference Number of
images Public Instance

Retrieval
Pixel
Align

[27] 200
[12] 300

TRUNK12, [23] 393 X
[4] 540
[2] 920

AFF, [10] 1183
BarkNet, [6] 23616 X

Ours 2400+750 X X X

Table 1
Comparative of the existing bark datasets based on their size, availability,

and applications. All datasets contain tree bark images designed for
species classification, except ours. Adapted from [6].

also varied the position of the camera, an LG Q6 cellphone
with a resolution of 4160× 3120 pixels. Since our training
approach (subsection IV-B) requires keypoint-aligned image
patches, we used fiducial markers on a wooden frame at-
tached to trees to automate and increase the precision of the
image registration, as shown in Figure 4.

We collected bark images for two different tree species,
namely Red Pine (RP) (an evergreen) and Elm (EL) (a de-
ciduous tree). For each species, 50 trees were selected, on
which we further chose two different and distinct surfaces
and took 12 photos for each of these surfaces. Each bark was
surrounded by a custom-made wooden frame of 50.5 cm by
15 cm. We limited ourselves to only two species, to avoid
positively biasing image retrieval results. Indeed, neural net-
works have the capacity to easily distinguish between tree
species [6]. In total, we took 12 images per distinct surface
with the aforementioned variations. To make our evaluation
on EL bark more challenging, we also collected unseen bark
images from elm trees without any markers. To keep these
new images close to our original appearance distribution, we
took them at night with three different illumination angles,
but with limited changes in point of view. We collected a
total of 30 images per tree for 25 trees with some physical
overlap, spread nearly uniformly around the trunk. This gave
us a total of 750 manually-cropped non-relevant images for
any EL query taken at a scale similar to all of our other
images.

Figure 4. Images from our database of the same surface of Elm (EL) bark,
but for different illuminations and camera angles. In each image, there are
four fiduciary markers on a custom-made wooden frame, used for pixel-
wise registration.

B. Descriptor Training Dataset

Our descriptors require a dataset of 64 × 64 patches for
training with metric learning. Moreover, these patches not
only need to be properly indexed per bark surface, they



must also be centered around the same physical location,
corresponding to the keypoint. After automatically cropping
the excess information from images (background, frame,
shadow, etc), we performed registration between every im-
age of a bark surface with a reference frame R via a ho-
mography Hr. We used the fiducial markers affixed to our
wooden frame surrounding the bark surface (See Figure 4)
to estimate these transformations. Then, for each bark im-
age, we detected the maximum number of keypoints and
projected them to the reference frame R via the homogra-
phy Hr. We filtered all of the keypoints in R to require a
minimum distance of 32 pixels between them to minimize
overlap. This resulted in around 800-1000 distinct keypoints
in R. For each of these keypoints, we then found the 12
image patches (one per image, see subsection IV-A) using
a homography Hi that gives the transformation from the
reference frame R to a specific bark image. This resulted in
a collection of 64× 64 image patches corresponding to the
exact same physical location on the bark, but with changes
in illumination and point of view (rotation, scaling and per-
spective). Figure 5 shows three images of a unique bark
surface, with the manual correspondence between keypoints.
Figure 6 shows 12 examples of a keypoint extracted accord-
ing to our algorithm used to create the training dataset.

Figure 5. Top row: pictures of the same bark surface with strong changes
in illumination. Each circle color is a distinct keypoint. Bottom row: close
up of the red keypoints from their respective images. This highlights the
importance for a descriptor to be as immune as possible to such illumination
changes.

Figure 6. Actual example of 64× 64 patches of a keypoint. Red arrows
indicate the orientation of the original bark images.

C. DeepBark and SqueezeBark Descriptors

To perform description extraction, we implemented two
different architectures with Pytorch 0.4.1. The first one,
DeepBark, is based on a pre-trained version of ResNet-18
on ImageNet. We removed the average pool and the fully
connected layers and replaced them with one fully con-
nected layer (no activation function). The second one,

SqueezeBark, is a smaller network based on the pre-
trained version of SqueezeNet 1.1 [13] on ImageNet. We
again removed the average pool and the fully connected
layers. We replaced them with a max pooling layer (to re-
duce the feature map) and a fully connected layer (no ac-
tivation function). In both cases, the network computes a
128-dimensional vector, fed to an l2 normalization layer.
Removing our last fully connected layer and calculating the
number of parameters for the remaining convolutionnal lay-
ers, DeepBark is then composed of a total of 10,994,880
parameters and SqueezeBark includes 719,552 parame-
ters. Our intention here is to be able to compare a number
of network representation powers on the descriptor quality.

D. Training details

To train our networks (DeepBark or SqueezeBark),
we chose the N-pair-mc loss [22]. The only difference in our
implementation is that, instead of using l2 regularization to
avoid degeneracy, we l2-normalized the descriptor vectors v
to keep them in a hypersphere [18].

Our dataset is composed of 64×64 patches around 70,800
distinct keypoints for the training set and 17,500 for the val-
idation set for most of our experiments. Using 12 patches by
keypoint for training and 2 for validation, this totals 884,600
64×64 bark images patches. At each iteration, we only used
a pair of examples for every keypoint in the training set.
However, to ensure an equal probability for every patch to be
seen together with every other patch, we randomly selected
each patch tuple. We added online data augmentation in the
form of color, luminosity and blurriness jitter. Each input
image was normalized between (−1, 1) by subtracting 127.5
and then divided by 128. We optimized using Adam starting
with a learning rate of 1e−4 and reducing it by a factor of
0.5 each time the validation plateaued for 20 iterations.

We built the validation set by finding all keypoints in the
bark images set aside for validation, and randomly selected
2 patches from the 12 available for each distinct keypoint.
This gave us a fixed validation set, where every patch had a
corresponding one. During training we validated our model
by selecting 50 keypoints with their 2 examples at the time
and performed a retrieval test to calculate the Precision at
rank 1 (P@1). The final validation score was simply the
average of every P@1 calculated for every batch of 50 key-
points. After training, we selected the model with the highest
validation score. The training was stopped either with early
stopping when the validation stagnated for 40 iterations, or
when a maximum number of iterations was reached.

V. RESULTS

Together with DeepBark and SqueezeBark, we eval-
uated hand-crafted descriptors, namely SIFT and SURF. We
also included DeepDesc, a learned descriptor originally
trained on the multi-view stereo dataset [5] and our re-
implementation of DeepDesc renamed DeepDescBark,



which we train on bark data following our training proce-
dure. All descriptors used the SIFT keypoint detector, except
for SURF that used its own detector. For all experiments, we
used a ratio of 0.8 for the LR test, and set α = 15 and ρ =
0.33 for the GV filter. Also, each visual vocabulary voc was
computed from the training images of each respective ex-
periment, while being clustered using the k-mean algorithm.

Image retrieval can be evaluated in multiple ways.
In our case, we favored metrics based on an ordered
set, as they align best with our problem. Here are
Precision at rank K (P@K) and Recall at rank K (R@K):

P@K =
p(K)

K
, (1) R@K =

p(K)

|I|
. (2)

In Equation 1 and 2, K is a rank and the function p returns
the number of relevant images ranked between the first rank
and the K rank (K included). For Equation 2, I is the set
of relevant images. We also present Precision Recall (PR)
graph defined as:

PR = {i ∈ I | (R@ik, P@ik)}. (3)

In Equation 3, i ∈ I represents one image and ik is the
rank where the image i can be found. Taking the mean of
every P@ik gives the Average Precision (AP). Keep in mind
that these metrics are calculated for every query, averaged
together. Thus, instead of AP we write mean Average Pre-
cision (mAP).

A. Hyperparameters search

Our approach comprises three hyperparameters: γ, φ and
σ. The first one, γ, is the maximum number of keypoints in
an image. From experiments, increasing γ beyond 500 did
not significantly improve the performance of any descriptor.
The second hyperparameter is the downsizing factor φ of
the original image. Downsizing allowed the receptive field
of any method to be increased, without changing its process.
Our experiments showed that using φ = 2 generally helped
every descriptor. Our third hyperparameter σ is the size of
the gaussian kernel used in the blurring performed before
passing the image through the keypoint detector. Note that
the blur was used for the keypoint detection, but after that
we used either the unblurred image to compute the descrip-
tion of learned descriptors (DeepBark, SqueezeBark,
DeepDesc and DeepDescBark) or the blurred image for
SIFT and SURF. The latter was necessary, as they used the
keypoint information found on the blurred image. We found
that the best blur filter value σ varied greatly between de-
scriptors. The chosen values for the subsection V-C exper-
iment are shown in Table 2. These values were found by
averaging the results over 36 randomly-selected queries run
on the validation set for each hyperparameter combination.
B. Impact of training data size

Data-driven approaches based on Deep Learning tend to
be data hungry. To check the impact of the training data

Descriptors φ σ mAP Avg. Keypoint Num.
SIFT 1.5 3 0.406 469.4 ±69.9
SURF 2.0 3 0.489 499.6 ±4.8

DeepDesc 2.0 1 0.091 497.0 ±17.4
DeepDescBark 2.0 0 0.076 492.8 ±18.4
SqueezeBark 2.0 0 0.183 492.8 ±18.4
DeepBark 2.0 0 0.966 492.8 ±18.4

Table 2
Hyperparameters chosen after careful examination of the grid search, with

the mean number of keypoints found at test time. The number of
keypoints was capped to 500. mAP results shown have been obtained

with the GV method. Some descriptors perform better with other scoring
methods not shown here.

size, we created 5 training scenarios by tree species, which
used 10%, 20%, 30%, 40% and 50% of the dataset. All
trained descriptors were validated and tested on the same
set (10% and 40% respectively) of each species dataset. We
stopped training when the validation P@1 stagnated for 40
consecutive iterations.

Table 3 shows the performance of the descriptor
DeepBark, for each training set size. For each species, the
P@1, the R Precision (R-P) and the mAP are reported for
the three scoring techniques: GV, LR and BoW. It is good to
note that the BoW is also affected by the size of the training
set, since the voc of the BoW is computed from that same
training set. From these metrics, we concluded that perfor-
mance gains were minimal beyond 40%. This confirmed that
our training database is sufficiently large to obtain good per-
formance. For references, when using 50% of RP as training
data, we have access to approximately 42,700 distinct key-
points giving 512,000 bark image patches of 64×64 pixels.

Red Pine
Metric 10% 20% 30% 40% 50%

BoW
P@1 0.971 0.985 0.985 0.996 0.994
mAP 0.633 0.713 0.769 0.785 0.812

GV
P@1 0.988 0.990 0.998 0.996 0.998
mAP 0.777 0.848 0.892 0.905 0.922

LR
P@1 1.000 1.000 1.000 1.000 1.000
mAP 0.882 0.932 0.956 0.962 0.967

Elm
Metric 10% 20% 30% 40% 50%

BoW
P@1 0.940 0.956 0.971 0.979 0.983
mAP 0.607 0.691 0.721 0.759 0.764

GV
P@1 0.944 0.965 0.977 0.981 0.983
mAP 0.707 0.752 0.791 0.816 0.806

LR
P@1 0.985 0.996 0.998 0.998 1.000
mAP 0.665 0.740 0.779 0.800 0.798

Table 3
Performance of the DeepBark descriptor, when training with 10%, 20%,
30%, 40% and 50% of the data from a single tree species. The remaining
data has been used for validation (10%) and testing (40%). Hyperparameters

were fixed through testing. Best results are in bold for each row.

C. Descriptors comparison

We selected 50% of red pine bark surfaces and 50% of elm
bark surfaces to create a test set, while using the remaining
data for the training and validation sets. This corresponded
to 80 unique bark surfaces for the training, 20 for the vali-
dation and 100 for testing, while keeping the ratio between
tree species to 50/50 in each set. The data-driven descriptors



DeepBark, SqueezeBark and DeepDescBark were
trained for 200 iterations, and we kept their model with
the best validation. With 12 images for each bark surface,
the test set had a total of 1200 images, with 600 per tree
species. Each of these images was used as a query during
the retrieval test. The results were averaged over all queries.
We report results in Figure 7 as PR curves. This way, all 11
true positives are taken into account in our experimentation,
properly estimating how well our approach resists to strong
illumination/viewpoint changes.

From Figure 7, we can see that hand-crafted descriptors
often successfully retrieve one image, but struggle beyond
this. We can also see that DeepBark clearly dominates all
descriptors. We can also notice that the precision is over
98% up to a recall of 6 images, when it is combined with
GV. Interestingly, the results for SqueezeBark are mit-
igated. This might indicate that finding a good descriptor
for bark images under strong illumination changes is a dif-
ficult problem, requiring a neural architecture with suffi-
cient capacity. This is further supported by DeepDescBark
exhibiting worse performance than SqueezeBark and
DeepBark, which are larger networks. The very-low ca-
pacity of DeepDesc might also explain why it performed
worse that SIFT or SURF at times. Finally, one can see that
appropriate data improves performance, as demonstrated by
the performance of DeepDescBark over DeepDesc.

D. Generalization across species

In the experiments of subsection V-C, we reported results
on networks trained on both species, instead of training and
testing each architecture on a single species. Our intention
was to double the amount of training data and benefit from
the potential synergy between species, which is often seen
in deep networks (multi-task learning). Here, we precisely
look at the generalization of our networks across species. We
thus devised two experiments to evaluate the generalization
from one species to the other and vice versa. The first one is
composed of a training set with 80% of the RP data, using
the remaining 20% as the validation set and all of the EL
data as the test set (labelled RP->EL). We also performed
the converse (EL->RP). We only report in Figure 8 the PR
curve for the GV, as the trend is similar for other scoring
methods. Figure 8 first shows that DeepBark is capable
of generalizing across species, but that SqueezeBark do
so to a lesser extent. Also, there is no clear trend for the
generalization direction, since SqueezeBark generalized
better from EL to RP but DeepBark generalized better in
the opposite direction (from RP to EL).

E. Extra negative examples

To extrapolate how our system would perform on a larger
database, we added 6,700 true negative elm examples with
a crop size similar to query images. Half of them were
original images, and the other images were generated via

data augmentation, by doing either a rotation, scale or affine
transformation. Note that the original 3,350 images contain
some physical overlap, as they come from 25 trees.

We reused the DeepBark network and the voc previously
trained in subsection V-C. For the test, we removed the red
pine images and kept the elm images that we separated into
two crops (top and bottom halves) giving us a total of 1,200
images. We thus obtain a database of 7,900 bark images.
Again, every query had 11 relevant images. This experiment
is the only one where we split bark images into two crops,
solely done to increase the database size. This has a negative
impact on the performance, as the visible bark (and thus the
number of visible features) is reduced by half. This can be
seen by comparing Figure 7 and Figure 9.

Metric 0 1600 6700

BoW
P@1 0.952 ±0.214 0.924 ±0.265 0.885 ±0.319
mAP 0.659 ±0.258 0.572 ±0.276 0.491 ±0.281

GV
P@1 0.998 ±0.041 0.998 ±0.041 0.998 ±0.041
mAP 0.874 ±0.165 0.874 ±0.166 0.872 ±0.168

LR
P@1 0.999 ±0.029 0.998 ±0.050 0.998 ±0.050
mAP 0.812 ±0.198 0.794 ±0.209 0.768 ±0.223

Table 4
Results of the negative examples test for DeepBark. The number in the

header indicates how many negative examples were added. The best
results for each metric are in bold.

Among the three scoring methods evaluated, the most af-
fected by the amount of negative examples was the BoW, as
seen in Figure 9 and Table 4. The LR filter displays a smaller
degree of degradation, as a function of the amount of extra
negative examples. However, it still retains almost the same
P@1. Finally, when looking at the GV, it is clear that the
impact of extra negative examples is negligible. This again
demonstrates the importance of performing GV filtering. We
can thus conclude that our approach with GV would work
on a much larger, realistic dataset.

F. Computing time considerations

Descriptors R@25 R@50 R@100 R@200
SIFT-0 0.248 0.316 0.403 0.520

SIFT-6700 0.150 0.176 0.215 0.268
DeepBark-0 0.728 0.795 0.857 0.908

DeepBark-6700 0.561 0.625 0.681 0.739

Table 5
R@K for different values of K using the BoW. Results taken from the

experiment with negative examples. The number beside the method
names indicates how many negative examples were added.

Even if the LR test and the GV filter perform better, it is
unrealistic to use them to search a whole database. Instead,
the BoW can be used as pre-filtering to propose putative
candidates to the other methods. To this end, we provide
Table 5, which shows the R@K for various K for the BoW
approach. These results suggest that keeping the 200 best
matching scores calculated using the BoW on DeepBark
would retain 73.9% of the 11 relevant images among 7,900



Figure 7. PR Curve for all descriptors tested on 50% of RP and EL. Learned descriptors were trained on the remaining 50% of bark. Each of the 1200
images of the test set is use as a query. No extra negative examples were added.

Figure 8. PR curve for the generalization test using the GV method. The
arrow -> indicates the generalization direction (trained on -> tested on).

possible matches. As shown by [8], the BoW is fast to com-
pare and can handle large datasets. To get a sense of the
time that could be saved by the pre-filtering, we calculated
the averaged time of 500 signature comparisons using our
actual algorithms on a single thread of an Intel Core I-7.
The BoW, GV, LR methods took respectively 0.002, 131.5
and 179.4 ms on averaged. It is important to note that the
BoW technique could be sped up further using an inverted
index and by taking advantage of its sparsity (on average
71.8% of it has a null entry in our experiments). From this,
we can see that applying the GV on the K = 200 top from
the original 7,900 images can be accomplished in 35.88 s,
while the BoW only took 0.016 s for the 7,900 images.

VI. CONCLUSION

In this paper, we explored bark image re-identification in
the challenging context of strong illumination and viewpoint
variations. To this effect, we introduced a novel bark image
dataset, from which we can extract over 2 million keypoint-
registered image patches. Using the latter, we developed two
local feature descriptors based on Deep Learning and met-
ric learning, namely DeepBark and SqueezeBark. We
showed that both our descriptors performed better than SIFT,
SURF and DeepDesc on any of the three scoring meth-
ods presented. Our results indicate that using our descriptor
DeepBark, retrieval is viable even for large datasets with

thousands of negative examples. Moreover, the approach can
be sped up by using Bag-of-Words.

Our results are encouraging, but performance in a real-
life scenario might differ. More data should be collected, in
particular we should expand collection and testing on more
tree species, as we have only tested generalization across one
species to another. Also, it would be interesting to quantify
the effect of the BoW size, the generalization capacity over
more tree species or the effect of using other keypoint detec-
tors. The training procedure could be further improved, in
allowing for longer training, testing other networks, adding
pre-training or using hard mining approaches.
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