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ABSTRACT

Pruning is one of the most effective model reduction techniques. Deep networks require massive
computation and such models need to be compressed to bring them on edge devices. Most existing
pruning techniques are focused on vision-based models like convolutional networks, while text-
based models are still evolving. The emergence of multi-modal multi-task learning calls for a general
method that works on vision and text architectures simultaneously. We introduce a differentiable
mask, that induces sparsity on various granularity to fill this gap. We apply our method successfully
to prune weights, filters, subnetwork of a convolutional architecture, as well as nodes of a recurrent
network.

1 Introduction

Recent models on machine translation, self-driving cars, strategy games have shown game-changing breakthroughs.
However, most of these models are highly over-parametrised for a variety of reasons, ranging from the increase of com-
putational power to the lack of domain expertise. Subsequently, deploying these models on constrained edge devices is
counter-intuitive. For instance, real-time updates to mobile phones is hampered by the model size. Consequently, the
training and inference time are impacted. An alternative is to store deep models on the cloud rather than edge devices
to overcome many of the edge implementation drawbacks, and perform computation on the cloud server. However,
the cons far outweigh the pros, especially in terms of security, and the latency in transferring the data to and from the
cloud. Most of the models are preferred to be stored and computed on the edge in real applications. This goal can be
achieved only by simplifying neural networks computations.

Many categories of simplifications include quantization [1f], [2]], low-rank compression, pruning, and network archi-
tecture search. We propose a pruning technique while training a neural network, and induce structured sparsity through
node, filter or subnetwork pruning. Given an input and an output node in a computational graph, we define a subnet-
work as a subset of the graph that has a directed path from the input to the output node going through a series of
transformations.

We introduce 1) a simple technique of jointly pruning and training convolutional as well as recurrent networks. ii)
a differentiable mask function to allow rejuvenation of a pruned entity through the training process. iii) additional
regularizer to control the amount of pruned parameters directly.

2 Related Work

Pruning can be divided into major five categories, including 1. Mask-based, 2. Lasso/Group Lasso, 3. Magnitude-
based, 4. Reinforcement Learning (RL), 5. Miscellaneous.

*Equal contribution, order decided by coin flip



One of the earliest methods introduced [3] is a magnitude based approach where the weights with the lowest magnitude
were considered to have low importance and hence removed. However, this technique inherently induces unstructured
sparsity and at the inference level would require specialized hardware to make use of this sparsity.

Various techniques have been used in masked-based approaches, such as using scaling factors as mask values [4]].
Others created annealed pruning, as a substitution to dropout, and used non-trainable masks based on the weight
magnitude [5]. Alternatively, many other works were based on a similar mask-based approach [6]. They use Straight
Through Estimator (STE) for back-propagation for the mask function. Some other techniques make use of hard thresh-
old of weights using a mask function that has similar drawbacks to magnitude based pruning. Scalpel was introduced
[7] for pruning based on SIMD hardware architecture. Often in node pruning, a mask function is applied to prune
nodes that are below a threshold value. They also use a STE in back-propagation. The STE has been shown to be
effective in training quantized networks while retaining the accuracy.

Network Slimming [8] has been the most widely adopted technique as a baseline and uses ¢; regularization. They
impose /1 regularization on the scaling factors of batch normalization layer and prune low-magnitude scaling factors.
The technique is a post-training pruning method and the motivation is to identify insignificant output channels by
pushing the batch normalization scaling factors to zero. Group lasso [9]] is also proposed to control the amount of
pruning at different levels [[10]. The group lasso is applied on filters, channels, layers, and filters.

Channel-based pruning techniques include filter pruning using ¢; norm [[11]] as the saliency score. The relative impor-
tance of each filter in a layer is obtained by calculating the sum of absolute weights in the filter or the ¢; norm. This
approach is equivalent to training a network with ¢; regularization and then pruning it. Unfortunately magnitude-based
filter pruning does not correctly prune redundant filters, so Thinet was introduced [12]] to prune channels based on the
output of the next layer. After pruning, the reconstruction loss is reduced by the use of scaling factors and the network
is then fine-tuned. Even random pruning sometimes provides better results than £;-norm magnitude pruning [13].

Some pruning methods benefit from the reinforcement learning formalism. [[14] make use of a deterministic policy
gradient approach for pruning. The agent processes network layer-wise, and the state-space consists of an encoding of
various parameters. The agent outputs a compression ratio as an action (between 0 and 1) and the validation accuracy
is used as reward to train the RL model. Once the sparsity ratio is obtained for each layer, the model is trained from
scratch. The aim is to discover the exact number of non-redundant parameters in a layer for a network. The overall
time taken for convergence of RL based approaches generally require large training time compared to other traditional
techniques.

Other miscellaneous techniques include optimal brain damage [15]], that uses a second order Taylor expansion to eval-
uate the saliency of the parameters. The idea is to obtain parameter saliency by observing the shift in the loss function
as a result of its pruning. However, the use of magnitude-based pruning and the metric of importance of weight in the
network is not theoretically sound as it does not take into account potential correlation between parameters. Another
well-known method is discrimination-aware channel pruning [[16] which is shown to be effective in compressing net-
works. They propose to start with a pre-trained network and use strategies to obtain channels that truly contribute to
the discriminative power of the network. They add extra discriminative losses to each convolutional layers and op-
timize the reconstruction error. [17] brought a novelty by rejuvenating the dead neurons while training. They use a
binary mask to showcase the importance of each neuron in a layer. Once the neuron is rejuvenated, the weights are
reinitialized or set to null.

Methodologies mentioned above have pros and cons. Many of them use a pre-trained network and prune the network
after training. This would require multiple iterations of pruning and fine tuning to improve the model. In magnitude-
based pruned weights with low magnitude correlate with other non-pruned weights, so the metric of importance of
weights may not be sound. Most masked-based pruning techniques use a hard-threshold and a non-differentiable mask
and often fall on post-train pruning methods. Some methods use the ¢; norm of the filters which may not provide the
best generalization capabilities and need for a better metric for pruning. Having a low ¢; norm does not mean the filter
is useless and correlation between the elements in the filter often plays a crucial role.

The closest recent work to our technique is the sparsity induction through ¢; regularization [18]. They make use of a
scaling factor for pruning and push the scaling factors towards the origin to ensure sparsity. For optimization of the
scaling factor, they used Accelerated Proximal Gradient, which requires modification of the training process. Another
comparable work [19] use a differentiable mask function that activates based on a latent parameter trained via back-
propagation, and add a compression ratio control regularizer. However, as they do not scale their output, the filters of
the model could get deactivated abruptly and consequently suffer from instability.
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Figure 1: A ResNet-style sub-network (left panel), DMP filter pruning (middle panel), DMP block pruning (right
panel).

3 Proposed method

Let {(x;,y:) | # € N} be a dataset of N samples with x; representing the input vector and y; the output vector. We
consider a model M with L layers, where a layer [ € L represents a prunable entity and its parameters denoted by 0;.
We define a prunable entity as a node in the computational graph that does not invalidate the graph upon its parameters
being removed (i.e. the forward pass can still be performed). Let f : R™ — R"™ be any element-wise transformation
mapping on a node’s output (eg. ReLU, Batch Normalization, Identity etc.). Let J(6) be the objective to be minimized,

J* = min J(6),
0o
where O is the space all learnable parameters and J* is the optimized loss.

We introduce Differentiable Mask Pruning (DMP) for gradual pruning while training a network. Our method can be
generalized to unstructured (i.e. weights) or structured (i.e. vector of parameters, filter, subnetwork) sparsity. We define
DMP as follows.

Suppose X is the feature matrix. Let . € R+d be a strictly positive scaling factor of dimension d for a given prunable
entity, f be a scale sensitive differentiable function (i.e. f(a ® X) # f(X)), I(«) be a mask function where

1 if|af >t
I(a) = ’ !
(@) {0 otherwise. 0

and t be a small thresholding value. The intuition behind our approach is to to replace f(X) with ¢(X) = f(a ®
I(a) ® X) and apply ¢;-regularization on « to intorduce sparsity on its corresponding prunable entity. Formally we
propose to replace J(6) with
J(0,0) = C(0,0) + R(0) + A _ ||eul]1, 2
leL
in which C'(6, ) is the cost function, R(6) is regularizer, often an £ norm on weights. For filter pruning, the prunable

entities are the filters §; € R™>"***k in a convolution layer with m filters, n outputs kenel of size k x k, in which
a € Ry™ (i.e. one scaling factor per filter). We may consider f(X) = ReLU(BatchNorm(Conv(X, 6;)).

For subnetwork pruning, the prunable entity is the subnetwork (Figure[I), & € R (i.e. one scaling factor per sub-
network). The output of the network is defined as h(X1,X3) = f(X;) + X2 where f(X7) is the output of the
subnetwork.



Figure 2: Original mask function (left) and its derivative (right).
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Figure 3: Approximated mask function (left) and its derivative (right).

The mask function I(«) in (T), returns either 0 or 1 based on the value of v in comparison to a tiny positive ¢ ~ 107°.
Within the loss function, we apply ¢; regularization on « to enforce sparsity over each of the pruning entities. The
primary reason for using 7 () is to ensure that the pruning happens while training. The ¢; regularization may not push
the value to zero numerically, and I («) is used to correct this numerical error. Moreover, instead of using the regular /5
regularization of the weights for preventing over-fitting, we make use of a modified ¢, regularization. The purpose is
to ensure the weights that are already pruned do not contribute to the loss, unless the weights are rejuvenated through
the differentiable masks. This is somehow a numerical correction to the elastic net penalty [20] motivated by garotte
correction [21]] to an ¢;-regularized estimator.

The loss function can be defined therefore as

J(0,0) = C(0,0) + M Y laulls + A2 > [[1(cr)0]]3. (3)

leL leL

The differentiable mask function is used in this case instead of a direct hard thresholding of the scaling factors such that
the network learns to prune and un-prune filters. The network therefore learns to adjust its weights while maintaining
its stability through the learning process. Therefore, as pruning is gradual as opposed to doing it all-at-once, the
network has more flexibility to learn using a reduced number of parameters.

In Figure [2] the mask function is non-differentiable at two points and the overall gradient remains zero except at the
threshold. Using the derivative of this hard-thresholding function during back-propagation, ends up freezing scaling
factors. Approximating derivatives which provides gradients everywhere, mimics a straight-trough estimator, and is a
common practice in quantization of deep networks. Having a continuous smooth approximation function close to the
original instead of a plain straight-through estimators improves learning. Therefore, we use the approximation of this
mask function from the first derivative of foothill function [22] and use its derivative (Figure[3)) in back-propagation to
provide better gradient flow. The equation below is the first derivative of the foothill function with unit shape parameter.
We take the absolute value of this equation to obtain Figure [3] For the backward pass, the derivative of the equation
(@) is used as an approximation. The first derivative of the foothill function with unit shape parameter is

f(z,3) = tanh <52“T> + %535 sech? (?) , 4)

and its second derivative is

% - %5 sech? <52‘T> {2 — Bz tanh (%”)} (5)

see [22] for more details. Here is a brief highlight of our proposed method

1. Based on the value of «, the prunable entity will either be retained or pruned as training proceeds.



2. Through the training of the network, the prunable entity can be recovered through the differentiable masks.

3. The mask function /(«) is used as a numerical error correction of « as ¢; penalty does not push the value
exactly to zero.

4. A smoother version of the mask function is used as an extension of the foothill function derivative to improve
gradient flow and improve forward and backward match.

4 Pruning ratio control

Our proposed technique controls the amount of filters to be pruned only through the regularization constant A in ().
To provide a more fine-grained control on the number of pruned parameters, we propose to solve the constrained
optimization
J* = min J(0)
N (6)
subject to (0;) = ¢

where 7(0;) is the pruned ratio in model M, given c the target ratio. Motivated by the lasso, we recommend to minimize
a soft-version which is practically easier

J(8,0) =C(6,0) + MY llaulli + Ao Y |1(cr)6l]3

leL leL

1 (7
+ Az3max {0, (K Z I(cu)lls — c) } .

leL

Note that K is the total number of filters in M and this additional regularizer is deactivated whenever it reaches the
target ratio 1 — c.

Hyper-parameters of such as A1, Ag, A3 need to be tuned to obtain results that compete with state of the art.
However, we recommend to use hyper-parameter optimization techniques to help searching for the best values of
these hyper-parameters if maximum accuracy is the target.

5 Results

We report results on a vision and a natural language processing task. For the vision task, we report the results on
CIFAR-10 [23]], a dataset commonly used to benchmark methodological approaches. This vision task involves pre-
dicting an image’s class between ten different categories. Similarly, to show the flexibility of our technique we use
the IMDB [24] sentiment analysis dataset for sentiment classification, which involves classifying an input text as a
positive or negative sentiment and Penn Treebank dataset [25]], a language model task for predicting the next word.

CIFAR-10: The dataset consists of 50k training images and 10k testing images that belong to one of the ten classes.
The images are 32 x 32 pixels with 3 channels for RGB. During training, we apply data augmentation by padding
the images with 4 zeroes on each side then taking a random crop of 32 x 32 and randomly flipping them hori-
zontally. During both training and testing, the inputs are normalized using mean = (0.4914,0.4822,0.4465) and
std = (0.247,0.243,0.261) respectively. We first test our method and compare it with Network Slimming [8]] on the
same VGG-19 architecture for filter pruning. To have a fair comparison, we use the same hyper-parameters and trained
the network in a similar setting. We train the network for 160 epochs using the SGD optimizer and an initial learning
set to 0.1 and divided by ten at epochs 80 and 120. We perform subnetwork and filter pruning on ResNet-56 [26]],
a specialized residual network for CIFAR-10 dataset that consists of three downsampling stages of 9 subnetworks
(called a ResNet basic block), with each subnetwork consisting of two 3 x 3 convolution layers. We train the network
for 170 epochs using the SGD optimizer with a momentum of 0.9 and a starting learning rate of 0.1, decayed by ten
at epochs 80 and 160. The /5-regularization is applied on the weights with A\ = 10~*. The ¢;-regularization is applied
on the scaling factors with A\ = 10~3. The threshold of the mask function is set to 10~ for subnetwork pruning and
to 10~* for filter pruning. To show the versatility of DMP, we also show that it can be easily integrated with other
compression techniques such as quantization [27]].

IMDB sentiment classification: The IMDB movie review dataset consists of 25k train and 25k test reviews that are
either positive or negative sentiment. The network consists of an embedding layer, an LSTM layer (single stack) and a
fully connected layer. We train a sentencepiece model for encoding the input dataset. The text is truncated if it exceeds
200 words. The vocabulary size used was 5k with embedding dimension 300 and hidden dimension 150.



PTB Language Model: Penn Treebank dataset [25]], also known as PTB dataset, is widely used in machine learning
of NLP research as a benchmark. The network is exactly the same as mentioned in the sentiment analysis task apart
from the last fully connected layer that maps to the vocab size of 10k.

To elaborate the node pruning within the LSTM, we use the below conventional LSTM cell with the internal work
flow as shown below:

fr = O'(Wf[htf]_,xt} +bf)

iv = o(Wilhs_1,24] 4 b;)

g = tanh(Wglhi—1, 2] + by)
op = o(Wolhi—1,2¢] + o)

¢t = ftOc1+iOg

hy = o; ®tanh(c)

So the parameters within the cell are 4 weight matrices (with a stacking for hidden and input state). We apply the node
pruning within the cell as follows:

fo = ey ©o(ar© (Welhir.] + b))

it = I(a;)® U(ai © (Wilhi—1,z) + bi))

g = I(a,)® tanh (aQQ(Wg[ht,l,xt]erg))
o = Ia0) ©0(a,® (Wolhu 1,2, +by))

For IMDB sentiment analysis, the models were trained for 50 epochs with an initial learning rate of 10~* and divided
by 10 at epoch 20. The /5 regularization of 10~* was used in all experiments. The training technique for the language
model is chosen from [28]], using a medium LSTM model with hidden Dimension 650.

5.1 Filter Pruning

For filter pruning, we show flexibility of our method for two sets of models, VGG-19 and ResNet-56. Compared
to Network Slimming (NS) [8] using one iteration, our Differentiable Mask Pruning (DMP) is able to prune more
parameters ~ 8% and floating-point operations ~ 30% with only a negligible increase in test error +0.13 (Table[I).
After five iterations of prune-then-finetune, NS obtains similar compression ratio as DMP at the cost of an increase in
error of &~ 1.50%. We can clearly see that the network benefits from being pruned while training as it only requires
one iteration to achieve a similar compression ratio compared to five iterations of NS. Note that we did not fine-tune
the initial hyper-parameters when applying our method to have a side-by-side comparison, but with proper tuning we
expect to close the gap between our pruned model and the initial unpruned baseline. We further confirm this intuition
on ResNet-56 (Table for different set of \; values. For A\; = 10=* to A\; = 1073, there is a smooth transition for
the number of pruned filters ranging from pruning ratios of 0.12 to 0.78, while the accuracy drop is relatively low
compared to the baseline. There is versatility of DMP to combine pruning with 8-bit quantization. We also evaluate
our proposed control of pruning ratio regularizer on ResNet-56 with different target ratio 0.4, 0.6, 0.8 and compare the
actual target ratio after training. We observe that number of remaining parameters are within the range of this target
ratio constraint.

Method  Testerror Pruned Params  Pruned Flops
Unpruned 6.01 - -

Network
Slimming 6.20 0.88 0.51
DMP 6.33 0.96 0.80

Table 1: VGG-19 architecture run on CIFAR-10 to prune filters.

5.2 Subnetwork pruning

Subnetwork pruning can be seen as a generalization of architecture search, where our DMP method is similar to
architecture search using DARTS [29]. We evaluate the versatility of DMP on this task with ResNet-56 that consists of



Method A1 Test  Pruned filters  Ratio
x10™*  Error outof2032  x100
Unpruned - 6.53 0 0
DMP 1 6.81 264 12
DMP 5 8.48 1227 60
DMP 10 9.50 1599 78

Table 2: ResNet-56 architecture run on CIFAR-10, to prune filters with different regularization constant A; (7).
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Figure 4: The training process of 3 scaling factors for subnetwork pruning. As one scaling factor gets pruned, another
scaling factor compensates for the instability caused and increases in magnitude. The rightmost figure also shows the
scaling factor rejuvenating throughout the training process and finally pruned at epoch 80.

27 subnetworks (ResNet basic blocks). We observe a smooth transition in the number of pruned subnetworks ranging
from 5/27 to 17/27 while having a relatively low drop of ~ 1.3% in accuracy (Table . The resulting architecture for
the experiment that pruned 17/27 blocks is 3, 2 and 5 subnetworks in the first, second and last stage respectively. A
snapshot of scaling factors during the learning process is shown in Figure

Method A1 Test  Pruned subnets Pruned filters  Ratio
x10~%  Error out of 27 out of 2032 %100

Unpruned - 6.53 0 0 0
DMP 1 7.10 5 320 15.70
DMP 5 7.78 12 928 45.60
DMP 10 8.34 17 1152 56.60

Table 3: ResNet-56 run on CIFAR-10 to prune subnetworks with different regularization constant \;.

5.3 Filter versus sub-network pruning

For the ResNet56 architecture, we show the results of both filter (Table [2) and subnetwork (Table [3) pruning. The
results indicate the flexibility and robustness of our technique with similar pruning results on filter and subnetwork
pruning done independently on the same architectures. However, while comparing the effects of pruning and the
overall accuracy, empirically, subnetwork pruning provides a slightly better trade-off between pruning and accuracy
drop. We speculate that pruning the whole subnetwork reduces the overall noise in the network and hence acts as a
better regularizer.

5.4 Node Pruning

For the node pruning technique within the LSTM, we compare our results to the baseline on the LSTM network and
the results obtained show the versatility of the methodology on a text dataset on both sentiment analysis and language
model tasks, as shown in Table[d] and Table[3]

Overall, DMP obtains competitive results on node, filter and subnetwork pruning on two different tasks applied on a
variety of neural network architectures and showcases the potential and simplicity of the technique.



Method A Test Pruned nodes  Ratio
x1072  Error  out of 600 %100
Unpruned - 13.43 0 0
DMP 1 13.61 540 90.0
DMP 5 13.78 543 90.5
DMP 10 13.94 577 96.0

Table 4: IMDB Sentiment Analysis using recurrent networks to prune LSTM nodes.

Method A1 Test Pruned nodes  Ratio
x10~7  perplexity  outof 5200  x100
Unpruned - 84.90 0 0
DMP 1 85.10 524 10
DMP 5 85.02 672 12
DMP 10 86.10 940 18

Table 5: Penn Tree Bank Dataset Language model using recurrent networks to prune LSTM nodes.

6 Conclusion

We introduced DMP, a new technique that extends pruning on two directions: structured and unstructured. DMP
induces sparsity that can be easily extended to prune weights, nodes, vectors, filters and sub-networks. The main
shortcoming of pruning is to train the network properly with fewer parameters. We proposed to improve the training
procedure by approximating the hard threshold gradient, and updating back-propagation accordingly. DMP provides
the flexibility to recover pruned weights and improves the learning capacity of the pruned network during training.
Additionally, DMP even shows its versatility through the ease of integration with quantization. Here, we only focused
on simple vision and text tasks, but our initial experiments show promising performance on larger architectures and
more complex data. If pruning entity is a sub-network, DMP can be regarded as a differentiable architecture search
method, while spanning always on architectures with lower complexity.
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