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Abstract—Automatic detection of students’ engagement in
online learning settings is a key element to improve the quality
of learning and to deliver personalized learning materials to
them. Varying levels of engagement exhibited by students in
an online classroom is an affective behavior that takes place
over space and time. Therefore, we formulate detecting levels
of students’ engagement from videos as a spatio-temporal
classification problem. In this paper, we present a novel end-to-
end Residual Network (ResNet) and Temporal Convolutional
Network (TCN) hybrid neural network architecture for stu-
dents’ engagement level detection in videos. The 2D ResNet
extracts spatial features from consecutive video frames, and
the TCN analyzes the temporal changes in video frames to
detect the level of engagement. The spatial and temporal arms
of the hybrid network are jointly trained on raw video frames
of a large publicly available students’ engagement detection
dataset, DAiSEE. We compared our method with several
competing students’ engagement detection methods on this
dataset. The ResNet+TCN architecture outperforms all other
studied methods, improves the state-of-the-art engagement level
detection accuracy, and sets a new baseline for future research.

Keywords-engagement detection; spatio-temporal; Temporal
Convolutional Network; Residual Neural Network

I. INTRODUCTION

With the widespread availability and adoption of internet
services across major urban centers and universities, online
education, telehealth, telemedicine, and telerehabilitation are
becoming more ubiquitous and mainstream. In situations
such as the COVID-19 pandemic with strict social distanc-
ing guidelines, these online services made it possible for
students to complete their courses [1] and patients to receive
the necessary care and health support [2]. Online services
offer many advantages compared to the traditional in-person
settings, in terms of being more accessible, economical,
and customizable [1]. However, these online services also
bring other types of challenges. For instance, in online
classroom setting, students and tutor are behind a ‘virtual
wall’, it becomes very difficult for the tutor to assess the
students engagement in the class being taught [3]. This
problem is further exacerbated if the group of students
is large [4]. Therefore, from a tutor’s perspective, it is
important to automatically detect the level of engagement

among students to provide them real-time feedback and take
necessary actions to engage the students to maximize their
learning objectives.

Various modalities have been utilized to automatically
detect students’ engagement, including students’ images
[5], videos [6], [7], audio [6], [8], and Electrocardiogram
(ECG) [9]. Video cameras/webcams are mostly used in
student learning environment; thus, they have been exten-
sively used in assessing students’ engagement in online
classroom setting. Video cameras and webcams offer a
cheaper, ubiquitous and unobtrusive alternative to other
sensing modalities. Therefore, majority of the recent works
on student engagement detection are based on the visual data
of students acquired by cameras and using computer-vision
techniques [9], [10].

The computer-vision based approaches for student en-
gagement are categorized into image-based and video-
based approaches. The former approaches detect engage-
ment based on single images [11], or single frames extracted
from the videos [5]. A major limitation of this approach is
that it only utilizes spatial information from single frames,
whereas engagement detection is a spatio-temporal affective
behaviour [12]. Another challenge with frame based ap-
proaches is that annotation is needed for each frame, which
is an arduous task in practice. The latter approach is to detect
students’ engagement from videos instead of using single
frames. In this case, one label is needed after each video
segment. Less annotations is required in this case; however,
the classification problem is more challenging due to the
coarse labeling.

In traditional settings, in the video-based approaches,
handcrafted features, such as eye gaze and head pose, can
be extracted and classification algorithms can be trained to
detect the level of engagement [7], [13], [14], [15], [16].
More recently, end-to-end video-based approaches have been
proposed to detect student engagement, in which consecutive
raw frames of video are fed to variants of Convolutional
Neural Networks (CNNs) to detect the level of engagement
[7], [13], [14], [15], [16].

Sinatra et al. [17] defined students’ engagement from
person-oriented perspective: engagement is the cognitive,
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affective, and motivational states of the student at the
moment of learning and are best captured with fine-grained
physiological and behavioral measures (e.g., facial expres-
sions, actions, body postures). D’Mello et al. [12] implied
that students’ engagement is not stable over time, and
should be assessed at fine-grained time scales ranging from
seconds to a few minutes. For this reason, we consider
students’ engagement as a spatio-temporal data (video)
analysis problem. To detect the level of engagement from
video data, in addition to the state of the student in each
video frame, the changes in the state of the student over
consecutive frames need to be analyzed. Therefore, for
detecting students’ engagement in an end-to-end setting, uti-
lizing sequential neural networks in conjunction with CNNs
can be beneficial. With this motivation, we propose a novel
end-to-end Residual Network (ResNet) [18] and Temporal
Convolutional Network (TCN) [19] hybrid neural network
architecture (Resnet+TCN) for detecting students’ engage-
ment level from videos. The ResNet extracts spatial features
from consecutive frames, and the TCN analyzes the temporal
changes in consecutive frames to detect the level of en-
gagement. We evaluate the performance of the Resnet+TCN
architecture on a publicly available dataset, the Dataset for
the Affective States in E-Environments (DAiSEE) [7]. The
DAiSEE dataset contains 9,068 10-second videos captured
from 112 students in online classroom setting, and annotated
by the engagement level of students. Our results on the
DAiSEE dataset outperformed other competing methods and
improved the results on the state-of-the-art methods by 3.9%
in engagement level detection accuracy.

II. LITERATURE REVIEW

Over the recent years, extensive research efforts have
been devoted to study student engagement detection using
computer vision and deep learning techniques [9], [10],
[6]. We review recent works on the computer-vision based
student’s engagement detection with a focus on the works
that performed their experiments on the DAiSEE dataset
(described in Section. IV).

Two types of approaches were found prominently in
computer-vision based engagement detection problem, i.e.,
feature-based models and end-to-end models.

In the feature-based engagement detection approaches,
firstly, multi-modal handcrafted features are extracted from
video/image and then fed to a classifier or regressor to
detect the level of engagement in video/image [10], [6], [20],
[21]. Wu et al. in [20] proposed a feature-based approach
for student’s engagement level detection in EmotiW dataset
[6]. They extracted facial and upper-body features from
videos and classified the features using a combination of
Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) to detect the level of engagement. Zhu et
al. in [21] proposed an attention-based GRU model to
classify hand-crafted face and body features from videos and

detect the level of engagement in the EmotiW dataset [6].
Whitehill et al. in [5] proposed different feature-extraction
(box filters and Gabor features) and classification (SVM and
GentleBoost) combinations to detect the level of engagement
of students from single images in their dataset.

Huang et al. [13] proposed Deep Engagement Recognition
Network (DERN) which combines bidirectional LSTM and
attention mechanism to classify extracted features from faces
and detect the level of engagement. They achieved 60%
engagement level detection accuracy on the DAiSEE dataset.
Wang et al. [14] proposed a CNN architecture to classify
facial landmarks and features extracted from faces to detect
the level of engagement with an accuracy of 57% on the
DAiSEE dataset.

In the end-to-end approaches, the raw frames of videos or
images are fed to a deep CNN classifier/regressor to detect
engagement. Gupta et al. [7] introduced the DAiSEE dataset
and established benchmark results using different end-to-
end convolutional video-classification techniques, including
the InceptionNet [18], C3D [22], and Long-term Recurrent
Convolutional Networks (LRCN) [23], achieving 46.4%,
56.1%, and 57.9% accuracy, respectively.

Geng et al. [15] utilized C3D classifier along with the
focal loss to classify the level of engagement in the DAiSEE
dataset, and achieved 56.2% accuracy. Zhang et al. [16]
proposed a modified version of the Inflated 3D (I3D) along
with the weighted cross entropy loss to classify the level of
engagement in the DAiSEE dataset, and achieved 52.35%
accuracy. In addition to the original four-level engagement
classification problem in the DAiSEE, Zhang et al. [16]
considered the engagement detection in the DAiSEE as a
two-class classification problem. They changed the labels
from low and very-low levels of engagement to not-engaged
and from high and very-high levels of engagement to en-
gaged. They trained the I3D model to solve the binary,
not-engaged/engaged, classification problem, and obtained
98.82% accuracy. The above two loss functions, the focal
loss in [15] and the weighted cross entropy loss in [16], are
used to tackle the problem of imbalanced data distribution
in the DAiSEE dataset.

Liao et el. [24] proposed Deep Facial Spatio-Temporal
Network (DFSTN) for students’ engagement detection in
online learning. Their model for engagement detection con-
tains two modules, a pretrained SE-ResNet-50 is used for
extracting spatial features from faces, and a LSTM with
global attention for generating an attentional hidden state.
They evaluated their method on the DAiSEE dataset and
achieved an accuracy of 58.84%.

Dewan et el. [25] and [26], modified the original four-level
video engagement annotations in the DAiSEE dataset, and
defined two and three-level engagement detection problems
based on the labels of other emotional states in the DAiSEE
dataset. They also changed the video engagement detection
problem in the DAiSEE dataset to image engagement de-



tection problem and performed their experiments on 1800
images extracted from videos in the DAiSEE dataset. For the
two-level engagement detection (not-engaged and engaged),
the face images originally labeled as bored, confused, and
frustrated are assigned the label not-engaged. The labels for
the engaged face images has not been changed. For the three-
level engagement detection (not-engaged, normally-engaged,
and very-engaged), the engaged face images with intensity
1 and 2 are given the label normally-engaged. The engaged
face images with the intensity values higher than 2 are given
the label very-engaged. The face images with labels bored,
confused, and frustrated are given the label not-engaged
[25]. In [25], they used Local Directional Pattern (LDP)
to extract person-independent edge features for different
facial expressions, Kernel Principal Component Analysis
(KPCA) to capture the nonlinear correlations among the
extracted features, and Deep Belief Networks (DBN) to
classify the extracted features and detect the level of en-
gagement. They achieved 90.89%, and 87.25% accuracy for
two and three-level engagement detection, respectively. In
[26], the extracted face regions are fed to different 2D CNN
architectures to detect the level of engagement, and achieved
92.33% accuracy for two-level engagement detection. The
authors in [25] and [26] have altered the original video
engagement detection problem in the DAiSEE dataset [7] to
image engagement detection problem and have not evaluated
their methods on the video test set in the DAiSEE dataset
(described in Section IV). Therefore, their reported accuracy
would be hard to verify for generalization of results and their
methods working with images cannot be compared to other
works on the DAiSEE dataset that use videos.

We formulate the student engagement problem from
videos as a spatio-temporal classification problem. We first
extract spatial features from raw frames using a ResNet
architecture. Since the engagement behavior varies across
different video frames, we build a TCN network on the
spatial features to model the temporal variation. Next, we
describe the ResNet+TCN architecture.

III. RESNET+TCN ARCHITECTURE FOR DETECTING
STUDENT ENGAGEMENT

Figure. 1 shows the structure of the ResNet+TCN hybrid
neural network architecture for determining student engage-
ment levels in videos. This method is end-to-end, without the
need to extract manual or handcrafted features from videos
or frames, and the features are learned on the fly while
jointly training the network. The input to the ResNet+TCN is
a sequence of raw frames of video, and the output is detected
ordinal class corresponding to the level of engagement of
student in the video.

As discussed above, engagement is a spatio-temporal
affective state that takes place in consecutive frames of video
over time, its detection requires analyzing video spatially and
temporally. The ResNet and TCN are powerful deep neural

network architectures for spatial and temporal analysis of
large volumes of data. In previous works, spatial and tem-
poral neural network architectures have been combined in
different video-analysis applications. For instance, Donahue
et al. [23] combined 2D CNN and LSTM and proposed
LRCN for activity recognition and description in video.
Petridis et al. [27] combined 3D CNN and ResNet (for
spatial feature extraction from video) with bidirectional GRU
(for temporal analysis) for lip reading in video. Ma et al.
[28] modified the method proposed by Petridis et al. [27]
by substituting the GRU with the TCN [19] for lip reading
in video.

We adapt an altered version of the architecture proposed
in [28] and propose a new architecture using ResNet and
TCN. In [28], spatio-temporal features are extracted from
videos using 3D CNN. The extracted features by 3D CNN is
given to ResNet, and the output of ResNet is given to TCN
for temporal analysis. In our architecture, spatial features
are extracted from frames using ResNet, and the outputs of
ResNet are given to TCN for temporal analysis.

In our proposed architecture, the ResNet [18] and TCN
[19] are combined to model and jointly train on the spatio-
temporal data in sequences of frames in video. We choose
TCN because of its superiority in modeling sequences of
larger length and retaining memory of history in com-
parison to generic recurrent architectures such as LSTMs
and GRUs [19]. The ResNet extracts spatial features from
single frames, and the TCN models the temporal changes
in sequence of frames and outputs the detected level of
engagement. Given a video sequence, the input to the
ResNet+TCN is an L × C × H × W tensor, where L, C,
H, and W correspond to the number of frames, number of
channels, frame height, and frame width, respectively. After
removing the final fully-connected layer of the standard
Resnet18 [29], it is used as the (trainable) feature extractor
from single frames of the input video. The extracted feature
vectors from the consecutive frames are considered as the
multi-dimensional input to the consecutive time steps of
a dilated TCN [19] to model temporal information in the
video. The output of the final time step of the TCN is fed
to a fully-connected layer and a softmax function to detect
the level of student engagement from the input video.

One common problem in the existing student engagement
detection datasets is the highly imbalanced distribution of
engagement levels [7], [6], [5]. The number of samples with
low levels of engagement is much less than the number of
samples with high levels of engagement. In such sample
distribution, it is highly likely that most of the minority-level
samples are classified to the majority levels of engagement.
To tackle this problem, we use weighted cross entropy loss
function [29]. The weights of the cross entropy loss function
for each class are determined according to the proportion of
the samples in the corresponding class to all the samples in
the training set.



Figure 1: The proposed end-to-end architecture, ResNet+TCN, for engagement level detection from video. The input to the
ResNet+TCN is a sequence of L raw frames of video, and the output is detected ordinal class corresponding to the level of
engagement of student in the video. The 2D ResNet extracts spatial features from consecutive video frames, and the TCN
analyzes the temporal changes in video frames to detect the level of engagement. The extracted feature vectors (by ResNet)
from the consecutive frames are considered as the input to the consecutive time steps of the TCN. One fully connected layer
after the last time step of the TCN outputs the predicted class.

Another problem encountered during training the network
is that due to random sampling in each training iteration, the
batches may not contain samples from all the classes because
the minority class samples may be left out. Since, in most
of training iterations, there are no samples of the minority
classes in training batches, the weighted loss function will
not be able to affect the network to be trained by the minority
class samples. To circumvent this problem, we adopted a
customized sampling strategy in which the samples of all
classes are included in each batch of the Stochastic Gradient
Descent (SGD) during training [29].

level train validation test

0 34 23 4
1 213 143 84
2 2617 813 882
3 2494 450 814

total 5358 1429 1784

Table I: The number of samples in train, validation, and
test sets in different levels of engagements in the DAiSEE
dataset [7], see Section. IV-A.

IV. EXPERIMENTAL RESULTS

A. Dataset

The DAiSEE dataset, introduced by Gupta et al. [7], is
used to evaluate the performance of the ResNet+TCN in
comparison to the previous related methods. The dataset
contains 9,068 videos captured from 112 students in online
courses for recognizing their affective states of boredom,
confusion, engagement, and frustration in the wild. We

only focus on the student engagement, with four levels of
engagement as level 0 (very low), 1 (low), 2 (high), and 3
(very high). These scores were given based on Whitehill et
al. [5]. The length, frame rate, and resolution of the videos
are 10 seconds, 30 fps, and 640 × 480 pixels. Table. I
shows the distribution of samples in train, validation, and
test sets according to the authors of the DAiSEE dataset
[7]. We use these sets in our experiments to fairly compare
the ResNet+TCN method with the previous methods on the
DAiSEE dataset. We combined 5358 and 1429 videos in the
train and validation sets to train ResNet+TCN model and
report results on 1784 test videos. As can be seen in Table.
I, the dataset is highly imbalanced, only 0.63%, 1.61%, and
0.22% percent of train, validation, and test sets are in the
level 0 (corresponding to very low engagement).

B. Experimental Setting

The videos were down-sampled, temporally and spatially,
to get 50 × 3 × 224 × 224 (L × C × H × W) tensors
as inputs to the ResNet+TCN architecture (as discussed in
Section. III). The 3 × 224 × 224 dimensions are the standard
dimension for input to the ResNet18 [29]. The SGD is used
for parameter optimization with learning rate and batch size
of 0.001 and 5, respectively. The ResNet extracts feature
vectors of dimension 512 from the consecutive frames and
feeds them to the TCN. The parameters of the TCN, giving
the best results, are as follows, 8, 128, 7, and 0.25 for the
number of levels, number of hidden units, kernel size, and
dropout [19]. We implemented the experiments in PyTorch
[29] on a server with 64 GB of RAM and NVIDIA Tesla
P100 PCIe 12 GB GPU. The code of Resnet+TCN is
available at https://github.com/abedicodes/ResNet-TCN.



C. Results

For comparing the ResNet+TCN network with other
works, we took reported results from the following meth-
ods: video-level and frame-level InceptionNet [7], C3D [7],
I3D [16], DERN [13], and DFSTN [24]. In addition, we
implemented the combination of the ResNet with LSTM,
and C3D (up to the layer pool-5) [22] with LSTM (one-layer
unidirectional with 128 hidden neurons) to investigate their
performance compared to the ResNet+TCN method. Figure.
2 shows the results of applying different end-to-end methods
to the four-class engagement level detection problem in
the DAiSEE dataset. In this figure, the accuracy is shown
for the previous works and the methods we implemented
to evaluate on the DAiSEE dataset. Figure. 2 shows that
the ResNet+TCN method achieves the highest accuracy of
63.9%, which is 2.75% higher than the best performing
method of Resnet with LSTM (61.15%) and 3.9% higher
than the state-of-the-art DERN method (60%), and higher
than other previous methods. These results show the superi-
ority of the ResNet+TCN in modeling students’ engagement
level as a spatio-temporal classification problem.

None of the previous works on the DAiSEE dataset,
working with the original four-class annotations, reported
their confusion matrices for test set [7], [16], [14], [13],
[15], [24], and only reported the accuracy results. Therefore,
it is hard to determine the individual performance of their
methods on each of the engagement levels. We implemented
some of the previous methods, including C3D (feature ex-
traction) [7], C3D (fine tuning) [7], C3D + LSTM [30], and
C3D averaging + LSTM [30] to investigate their confusion
matrices compared to the proposed architectures. Figure. 3
shows the confusion matrices of the ResNet+TCN compared
to the other implemented methods. It can be observed that
due to the highly-imbalanced sample distribution, none of
the methods are able to classify any samples to the first two
classes correctly.

Liao et al. [24] reported their confusion matrix for one
fold of cross validation during training on the DAiSEE
dataset. They didn’t report the confusion matrix on the test
set of the DAiSEE dataset. Based on their report, they
also observed that all the samples were classified to the
two higher levels of engagement, and their method cannot
correctly classify any samples to the two lower levels of
engagement.

As described in Section. III, after using the customized
sampling strategy and weighted loss function in our pro-
posed ResNet+TCN architecture, some samples are correctly
classified to the first two levels of engagement (Figure. 3
(h)), albeit at the cost of reducing the overall accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new end-to-end spatio-
temporal hybrid architecture, ResNet+TCN, for determin-
ing the level of engagement among students in an online

Figure 2: Engagement-level classification accuracy of dif-
ferent methods on the DAiSEE dataset [7], (a) video-level
InceptionNet [7], (b) frame-level InceptionNet [7], (c) C3D
feature extraction [7], (d) C3D averaging + LSTM [30], (e)
I3D [16], (f) ResNet + TCN with sampling and weighted
loss (proposed), (g) C3D + LSTM [30], (h) LRCN [23],
(i) C3D fine tuning [22], (j) DFSTN [24], (k) C3D + TCN
(proposed), (l) DERN [13], (m) ResNet + LSTM (proposed),
(n) ResNet + TCN (proposed).

classroom setting. We evaluated the performance of the
ResNet+TCN method and compared to several previous
end-to-end methods. The Resnet+TCN architecture showed
improved results in comparison to the state-of-the-art en-
gagement classification accuracy on the DAiSEE dataset.
Our results showed that it is very challenging to detect
the minority engagement level with very few samples in
a supervised classification setting. When class weight term
is added to the loss function, some minority level samples
were detected at the cost of more false alarms and reducing
the overall accuracy of the classifier. In future, we aim to
evaluate the performance of the proposed method on other
publicly available user engagement datasets, including [6].
We aim to work on utilizing end-to-end models on extracted
body/face regions of videos. We also aim to investigate the
effectiveness of different features [10], [6], [31] in engage-
ment detection and develop neural network models to detect
engagement using those features. One possible direction of
research to detect the minority levels of engagement is to
apply anomaly detection approaches based on autoencoders
and generative adversarial networks.



Figure 3: Engagement-level confusion matrices of different methods on the DAiSEE dataset [7], (a) C3D feature extraction
[22], (b) C3D fine tuning [22], (c) C3D + LSTM [30], (d) C3D averaging + LSTM [30], (e) ResNet + LSTM (proposed),
(f) C3D + TCN (proposed), (g) ResNet + TCN (proposed), (h) ResNet + TCN with weighted sampling and weighted loss
(proposed).
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