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Abstract—We consider the task of semi-supervised semantic
segmentation, where we aim to produce pixel-wise semantic
object masks given only a small number of human-labeled
training examples. We focus on iterative self-training methods
in which we explore the behavior of self-training over multiple
refinement stages. We show that iterative self-training leads to
performance degradation if done naı̈vely with a fixed ratio
of human-labeled to pseudo-labeled training examples. We
propose Greedy Iterative Self-Training (GIST) and Random
Iterative Self-Training (RIST) strategies that alternate between
training on either human-labeled data or pseudo-labeled data
at each refinement stage, resulting in a performance boost
rather than degradation. We further show that GIST and
RIST can be combined with existing semi-supervised learning
methods to boost performance.

Keywords-semi-supervised learning; semantic segmentation;
self-training

I. INTRODUCTION

Semantic segmentation is the task of producing pixel-wise
semantic labels over a given image. This is an important
problem that has many useful applications such as medi-
cal imaging, robotics, scene-understanding, and autonomous
driving. Supervised semantic segmentation models are ef-
fective, but they require tremendous amounts of pixel-wise
labels, typically provided by a time consuming human
annotation process. To overcome the need of collecting
more pixel-wise labeled data, there has been an increase in
interest in semi-supervised semantic segmentation in recent
years [1], [2], [3], [4], [5], [6], [7], [8].

Self-training is a classic semi-supervised learning method
that uses pseudo-labels to guide its learning process. We
define pseudo-labels as predictions generated by a given
model in contrast to human-provided annotations. Self-
training means using a model’s own predictions as pseudo-
labels in its loss during training. Recently, there has been
a resurgence of self-training methods in semi-supervised
learning [9], [10], [11], [12], [13]. Despite the recent
comeback of self-training methods, most recent self-training
works are confined to only one refinement stage.

Iterative self-training consists of multiple refinement
stages, each consisting of K training iterations. At the
beginning of each stage the model is initialized with weights
from the previous stage, and pseudo-labels are regenerated
(see Sec. III-B). We aim to investigate the behaviour of self-
training after many (i.e. > 3) refinement stages for semi-
supervised semantic segmentation.
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Figure 1. The performance of iterative self-training with various
ratios of human-labels to pseudo-labels α on the PASCAL VOC 2012
validation datasets. Models are refined iteratively by bootstrapping on
weights trained on a previous refinement stage, with only 2% of human-
labels. A development set is used to select the best refinement stage.2

Iterative refinement on a small number of human-labels1

may cause over-fitting on the training set, as no new informa-
tion is introduced. Iterative refinement on pseudo-labels does
introduce new information which can improve performance.
However, it also results in a feedback loop that repeatedly
reinforces and compounds incorrect predictions from previ-
ous iterations, ultimately resulting in “pseudo-label bloat”,
where a single dominant class prediction spreads to cover
an entire image eventually (see Figure 2).

The naı̈ve solution of combining both human-labels and
pseudo-labels in each batch slows the rate at which pseudo-
label bloat occurs but does not combat it entirely. Instead, we
find that alternating training on only human-labels or only
pseudo-labels results in a more controlled training dynamic
where pseudo-labels help expand predictions to regions
that may have been missed, while human-labels prevent
pseudo-labels from drifting too far away from the expected

1For convenience, we refer to human-labeled training examples as
“human-labels” and pseudo-labeled training examples as “pseudo-labels”.
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annotations. By switching between these two extremes in a
greedy fashion (GIST) or random fashion (RIST), our model
enjoys the benefits of both label types, ultimately yielding
better performance (see Figure 1). Our contributions are the
following:
• We show that naı̈ve application of iterative self-training

to the problem of semi-supervised segmentation via
a fixed human-labels to pseudo-labels ratio results in
significant performance degradation when α < 1.

• We introduce Greedy Iterative Self-Training (GIST)
and Random Iterative Self-Training (RIST) to over-
come performance degradation through iteratively train-
ing on either human- or pseudo-labels.

• We demonstrate that both RIST and GIST can improve
existing semi-supervised learning methods, yielding
performance boost in both the PASCAL VOC 2012 and
City- scapes datasets across all eight subsets.

II. RELATED WORK

Semi-supervised semantic segmentation has gained
ground in recent years. Souly et al. [1] extend a typical
Generative Adversarial Network (GAN) network by de-
signing a discriminator that accepts images as input and
produces pixel-wise predictions, consisting of confidence
maps for each class and a fake label. Hung et al. [2] improve
GAN-based semantic segmentation by using a segmentation
network as a conditional generator. They also redesign the
discriminator to accept the segmentation mask as input
and restrict it to produce pixel-wise binary predictions.
Mittal et al. [3] extend Hung et al.’s network by making
the discriminator produce an image-level binary prediction.
They also add a feature matching loss and self-training loss
in their training pipeline. They further propose a separate
semi-supervised classification network [14] to clean up
segmentation masks’ prediction.

Recently, a few works propose non-GAN based solu-
tions for semi-supervised semantic segmentation. Mendel
et al. [4] propose an error-correcting network that aims
to fix the predictions of the main segmentation network.
This error-correcting network is also applied to unlabeled
images to correct the generated mask. French et al. [5]
adapt CutMix [15] to augment and regularize a segmen-
tation network by creating composite images via mixing
two different images and their corresponding segmentation
masks. Similarly, Olsson et al. [6] also aim to regularize
the segmentation network by mixing segmentation masks
from two images by selecting half of the classes from
one image and the other half from another image. Ouali
et al. [7] minimize consistency loss between features of
multiple auxiliary decoders, in which the perturbed encoder
outputs are fed. Alonso et al. [8] improve the supervision

2A development set is the set of additional images used for meta-
parameter selection (Sec 4 paragraph 1).

Input Image Ground Truth Stage 1 Stage 5 Stage 9

Figure 2. Pseudo-label degradation when a model is trained iteratively
with a fixed human-labels to pseudo-labels ratio (α = 0.75). The first
column consists of input images. The second column consists of ground
truth labels. The third to fifth columns show pseudo-labels generated after
at refinement stage 1, 5 and 9.

signals from their teacher model by storing more samples in
a separate memory banks.

We explore the iterative self-training method to tackle
semi-supervised semantic segmentation. Self-training or
pseudo-labeling is a classic semi-supervised learning recipe
that can be traced back to 1996, where it was used in an
NLP application [16]. A major benefit of self-training is
that it allows easy extension from an existing supervised
model without discarding any information. In the deep
learning literature, Lee et al. [9] popularized self-training in
semi-supervised classification. After its reappearance, it has
gained traction in recent years. Zhai et al. [11] show the
effectiveness of mixing self-supervised and semi-supervised
learning along with pseudo-labeling in their training regime.
Zoph et al. [12] show that a randomly initialized model with
self-training via a joint-loss can yield better performance
than a model initialized with a pre-trained model without
self-training. Xie et al. [13] show that iterative self-
training with noisy labels improves a classification model’s
accuracy and robustness. Radosavovic et al. [10] use self-
training in Omni-supervised learning, where they generate
pseudo-labels by taking the average prediction of multiple
perturbations of a single unlabeled image. Most of the recent
self-training works [9], [10], [11], [12] are confined to only
one refinement stage, with the exception of Xie et al.’s
work [13], where they benefit from iterative self-training by
repeating self-training for three stages of refinement. In this
work, we aim to extend self-training for semi-supervised
semantic segmentation and investigate self-training behavior
under many (i.e. > 3) refinement stages.



III. METHODS

Self-training is a semi-supervised learning method that
uses pseudo-labels to guide its learning process. As we
improve the model, we also improve the quality of pseudo-
labels. Self-training typically consists of the following steps:
(1) training a model using human-labeled data; (2) generat-
ing pseudo-labels using the trained model; and (3) finetuning
the trained model with the combination of human-labeled
data and pseudo-labels.

A. Combining both human-labels and pseudo-labels in
training

Given a set of images {(xi, yi)}, where xi represents the
image and yi represents the corresponding human-label, we
begin training a segmentation model, SEG for K iterations
using a 2D Cross-Entropy Loss, ENT on available human-
labeled data. The loss for iteration j is computed as:

Lj =
1

B

B∑
i

ENT(oi, yi), (1)

oi = SEG(xi).

where B represents the batch size, i indexes examples in a
batch, and oi represents a model’s output.

After a model is trained on available human-labeled
data, we can now use this pre-trained model to generate
pseudo-labels on unlabeled data. Given another set of im-
ages {(xpi , y

p
i )}, where xpi represents the unlabeled image

and ypi represents the corresponding pseudo-label, we can
now combine human-labels and pseudo-labels by a linear
combination of respective losses computed by Eq. 1.

Lαj =
1

B

B∑
i

(ENT(oi, yi)∗α+ENT(opi , y
p
i )∗(1−α)). (2)

We define α as the ratio of human-labels to pseudo-labels.
Eq. 1 is a small modification to the classic self-training
loss by Lee et al. [9], who apply a coefficient only to
the unlabeled loss term, where that coefficient is iteration-
dependent.

B. Iterative Self-training

Self-training can be repeated through multiple refinement
stages, where each refinement stage consists of a pseudo-
label generation step and a finetuning step. A naı̈ve solution
is to fix α throughout all refinement stages, which we call
Fixed Iterative Self-Training (FIST). Given that α can take
a floating-point number between zero and one, there are
infinitely many possible α values at each stage of refinement.
By making α binary, we turn the problem into discrete path
selection. In this setting, our goal is to find the sequence
of stages which yields the best solution. We explore two
different selection strategies: Greedy Iterative Self-Training
(GIST) and Random Iterative Self-Training (RIST).

We define S as the maximum number of refinement stages
and K as the maximum number of training iterations at
a given stage. The number of possible paths in the search
space (2S) is exponential in the number of refinement stages.

Algorithm 1 GIST
1: θlist ←− [θ0]; αlist ←− [0, 1]
2: for s←− 1 . . . S do
3: θ∗list ←− [ ]; Rlist ←− [ ]
4: for θc in θlist do
5: for α in αlist do
6: for m←− 1 . . . M do
7: yp ←− argmax(SEG(xpm))
8: end for
9: for j ←− 1 . . . K do

10: Lαj ←− 1
B

∑B
i (ENT (oi, yi) ∗α+ ENT

(
opi , y

p
i

)
∗ (1−α))

11: θc ←− θc − λ
∂Lαj
∂θc

12: end for
13: append θc to θ∗list
14: append EVAL(θc) to Rlist
15: end for
16: end for
17: sort θ∗list based on Rlist in descending order
18: keep top G items in θ∗list and assign it to θlist
19: end for

Algorithm 2 RIST
1: for s←− 1 . . . S do
2: α←− (Uniform(0, 1) > 0.5)
3: θs ←− θs−1

4: for m←− 1 . . . M do
5: yp ←− argmax(SEG(xpm))
6: end for
7: for j ←− 1 . . . K do
8: Lαj ←− 1

B

∑B
i (ENT (oi, yi) ∗ α+ ENT

(
opi , y

p
i

)
∗ (1− α))

9: θs ←− θs − λ
∂Lαj
∂θs

10: end for
11: end for

GIST works by finding the best stage of refinement by
relying on the development set. Algorithm 1 describes the
GIST algorithm, which is a beam search strategy. In line
3, we keep a list of candidates θ, and the corresponding
evaluation results, Rlist, using the EVAL function on the
development set. These lists are updated in lines 13 and 14.
In line 17, we sort θ∗list in descending order based on Rlist.
In line 18, we keep the top G θ in the θ∗list. and assign it to
θlist, where it will be used as the initial model for the next
stage of refinement. In Line 6 to 8, we generate our pseudo-
labels for M unlabeled images. In Line 9 to 12, we finetune
a segmentation model for K iterations with learning rate
λ. Figure 3 shows a hypothetical α path selection scenario
using GIST.

One weakness of GIST is its smaller search space when
compared to a random search (RIST). Bergstra et al. [17]
show that in low dimensions, random search is an effective
search strategy compared to a grid search. One can see that
a greedy search is a subset of a grid search where we only
explore the top performing branches. With a beam size of
1, the search space for a greedy search is log(S), and the
search space for a random search is 2S . At first glance, RIST
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Figure 3. A hypothetical α path selection scenario with six refinement
stages in self-training using the greedy approach (GIST). α indicates the
ratio of human-labels to pseudo-labels. The open nodes indicate that only
human-labels (α = 1) are being used for training and the shaded nodes
indicate only pseudo-labels (α = 0) are being used. The number of possible
paths is exponential in the number of refinement stages (26). At each stage
of refinement, we evaluate the mean intersection over union (mIOU) of a
model using a development set. Here, the optimum value is found at stage
four of the refinement process.

may seem counter-intuitive, but RIST’s performance spread
is relatively small (±0.93), and this spread can be reduced
by eliminating obvious degenerate solutions and increasing
search paths (see Sec. IV-A for details). Algorithm 2 de-
scribes the RIST algorithm. In line 2, we randomly set α
to either zero or one. Line 7 to 10 is similar to the GIST
algorithm (line 9 to line 12).

In GIST, the time complexity of a beam search is
O(S ∗ G). A beam search is only as efficient as a random
search if we can parallelize the training for each α at each
stage, and this condition requires a beam search to be trained
on consecutive numbers of GPU resources. Unlike a beam
search, each random search can be trained independently
on a single GPU resource. It is easier and cheaper to
obtain N independent GPUs rather than N consecutive GPU
resources, making RIST computationally cheaper and faster
in practical settings.

C. Additional Add-ons

In addition to cross entropy loss in Eq 2, we include
three additional add-ons to boost the performance of
FIST, GIST and RIST: Consistency Loss (CL), Label
Erase (LE), and Temperature Scaling (TS). Table V
shows the ablation study of the add-ons for both RIST
and GIST for models trained on the Pascal VOC 1/50 subset.

Consistency Loss (CL): Consistency Loss (CL) is a com-
mon loss in semi-supervised learning where the goal is to
minimize features between two perturbations of the same

input. CL is a common loss in semi-supervised learning [3],
[6]. Mittal et al. [3] use CL via a feature matching loss
to minimize the discrepancy between predicted features and
ground truth features. Olsson et al. [3] use CL via mean-
teacher [14] method. We also use the mean-teacher method
as our CL loss. We use the following equations (Equations 3
to 7) to calculate CL for both xi and xpi .

θ∗ = θ∗β + θ ∗ (1− β)) (3)
oi, fi = SEG(xi) (4)
o∗i , f

∗
i = SEG∗(xi) (5)

fi = drop(pool(fi)) (6)
f∗i = drop(pool(f∗i )) (7)
Lfeature = |fi − f∗i | (8)

Following [3], [2], we use DeepLabV2 [18] as our
segmentation model; therefore, fi represents features
before an Atrous Spatial Pyramid Pooling (ASPP) layer.
Equation 3 describes the weight update rule for the teacher
model, SEG∗, where an exponential moving average rule
is applied to its weights, θ∗, which is controlled by β,
(0 ≤ β ≤ 1). Equations 4 and 5 illustrate the extraction of
features before the ASPP layer in both the student model,
SEG, and the teacher model, SEG*. In Equations 6 and
7, we apply global average pooling followed by a dropout
perturbation to these features. After that, we compute the
absolute differences between these two features. Figure 4
summarizes the feature consistent loss in our model.

Student 
ResNet Model ASPP

Teacher
ResNet Model

Global Average
Pooling Dropout

Absolute Loss

Cross-Entropy
 Loss

Figure 4. Depiction of the Consistency Loss (CL). At each batch of
training, there are two copies of Resnet Models. The student model is the
main model that is used to predict the segmentation mask, and the teacher
model is a copy of the student model with an exponential moving weight
update. The goal of CL is to minimize the differences between the features
of the student and teacher models.

Label Erase (LE): Pseudo-labels are often very noisy,
especially when we have a small amount of human-labeled
data. To remove noise from pseudo-labels, we only keep
predictions that pass a certain confidence threshold, φ. Label
Erase (LE) is also used in [3], [6], [10], [12].

Equation 9 illustrates the process of flagging low confi-
dence prediction regions so that they are ignored by the loss



function in Equation 1. We define pixel-wise confidence, cpi,j
as the pixel softmax output of opi,j , where i represents the
image index and j represents the pixel index.

ypi,j =

{
argmax(cpi,j), if max(cpi,j) >= φ,

ignore label, if max(cpi,j) < φ,
(9)

Temperature Scaling (TS): Temperature scaling (TS) is
introduced by Hinton et al. [19], where it is used to create
a softer probability distribution for knowledge distillation.
The formula for TS is defined as qi = exp(yi∗T )∑

j exp(yj∗T ) . As
T becomes smaller, the output of the softmax function will
tend towards uniform distribution. We employ TS [19] to
overcome over-confident prediction in our model, where the
activation values after softmax are highly skewed towards
100% (see Figure 5).
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Figure 5. The before and after effects of applying temperature scaling
to the output activation of a single image. A temperature scale of 0.2 is
applied to the output activation.

IV. EXPERIMENTS

We perform experiments on two semantic segmentation
datasets: PASCAL VOC 2012 [20] and Cityscapes [21].
In each dataset, there are three subsets, where pre-defined
ratios (1/50, 1/20, and 1/8) of training images are selected
as images with human-labels. We also experiment on two
additional subsets (1/30 and 1/4) for the Cityscapes dataset.
These subsets of labeled images are selected using the same
split as [2], [3], [6]. We treat the remaining images as un-
labeled examples. We use the mean intersection-over-union
(mIoU) as a performance metric. The validation images for
both datasets are set aside and used for evaluation, which is
consistent with [2], [3], [6]. We select 50 additional images
from the training set as a modest “development set” for
meta-parameter tuning.

For all of our experiments, we follow the same exper-
imental setup as [2], [3], [6]. We use a DeepLabV2 [18]
segmentation model that is initialized with MS-COCO pre-
trained weights [22] 5. We also freeze all the BatchNorm

5DeepLabV2 backbone is used in our experiments so that our method is
comparable to S4GAN and ClassMix.

Layers in DeepLabV2. We optimize our model using the
Stochastic Gradient Descent (SGD) optimizer with a base
learning rate of 2.5e-4, a momentum of 0.9, and a weight
decay of 5e-4. We use a polynomial learning rate decay
policy, where we adjust the learning rate with the following
equation: λiter = λ0(1 − iter

max iter )
0.9 where λ0 is a base

learning rate. To augment the dataset, we use random-
cropping (321×321 for PASCAL VOC 2012 and 256×512
for Cityscapes), horizontal-flipping (with a probability of
0.5), and random-resizing (with a range of 0.5 to 1.5) in
all of our experiments.

For all subsets, we train our supervised models and stage-
0 models for 25,000 iterations. Additionally, for the Pascal
VOC 2012 dataset, we use a batch-size of 8, and we refine
our model for 3,000 iterations at each refinement stage
(Stage 1 to 9). For the Cityscapes dataset, we use a batch-
size of 6, and we refine our models for 4,000 iterations at
each refinement stage (Stage 1 to 9). We use a search cost
of two for both GIST and RIST and use the development
set to select the best path for all experiments.

Table I shows the results of our experiments as well as
relevant results that others have reported [2], [3], [5], [6].
We use the code provided by the respective authors for our
experiments with S4GAN [3] and ClassMix [6]. For a fair
comparison, we set the batch size for S4GAN and ClassMix
to match with our experiments, and we also select the best
iterations using our development set. We notice performance
differences in S4GAN and ClassMix when compared to
performances reported in the original papers. We speculate
that the differences are caused by best iteration selection and
batch sizes. For experiment with S4GAN+GIST/RIST and
ClassMix+GIST/RIST, we first train the segmentation model
with S4GAN and ClassMix algorithm (stage-0 models). Af-
ter that, we further refine the segmentation model using the
GIST/RIST algorithm by bootstrapping on the DeepLabV2
model trained with S4GAN/ClassMix.

A. Discussion

Figure 1 shows that a naı̈ve application of iterative self-
training leads to significant performance degradation in
both datasets. Figure 2 shows the qualitative evidence of
performance degradation in FIST at α = 0.75. FIST suffers
from over-confident pseudo-label predictions which spread
to the surrounding pixel. Over multiple stages of refinement,
the pseudo-labels expand and eventually engulf most of the
image. We speculate that this may be why most of the recent
self-training works are confined to one refinement stage.

Figure 1 also shows that both RIST and GIST overcome
performance degradation. Additionally, both RIST and GIST
generalize better than FIST in each successive refinement.
Table I shows that both RIST and GIST can improve other
semi-supervised segmentation techniques such as S4GAN
and ClassMix. We show that both RIST and GIST can
further refine S4GAN and ClassMix yielding performance



VOC 2012 (≈10k images) Cityscapes (≈3k images)
# of labeled images 211 529 1,322 59 100 148 371 743

Subset 1/50 1/20 1/8 1/50 1/30 1/20 1/8 1/4
Supervised 54.15 62.94 67.44 49.68 53.96 54.71 59.90 62.21

Supervised + GIST 66.33 66.95 70.27 53.51 56.38 58.11 60.94 63.04
Supervised + RIST 66.71 68.28 69.90 53.33 56.28 57.81 61.38 63.92

S4GAN [3] 62.87 62.35 68.56 50.48 54.58 55.61 60.95 61.30
S4GAN [3] + GIST 67.21 68.50 70.61 52.36 57.18 57.40 61.27 64.24
S4GAN [3] + RIST 66.51 68.50 70.31 53.47 57.12 57.48 62.50 64.64

ClassMix [6] 63.63 66.74 66.14 52.14 57.02 58.77 61.56 63.90
ClassMix [6] + GIST 65.60 69.05 70.65 52.43 58.70 59.98 62.44 64.53
ClassMix [6] + RIST 66.30 69.40 70.76 53.05 58.55 59.54 62.57 65.14

Table I
SEMANTIC SEGMENTATION RESULTS (MIOU) ON THE PASCAL VOC 2012 AND CITYSCAPES VALIDATION DATASETS.

boosts across all subsets in the Pascal VOC 2012 and
Cityscapes datasets. Figures 8 and 9 show RIST and GIST’s
qualitative results that are trained with 2% of human-labels
in both datasets.

0 1 2 3 4 5 6 7 8 9
Refinement Stages

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

m
IO

U

PASCAL VOC 2012 1/50 subset

stage-wise random (RIST)
batch-wise random

=0.75 (best FIST)

Figure 6. Self-training performance at various stages between batch-wise
and stage-wise random selection strategies on the PASCAL VOC 2012
validation set.

Figure 6 demonstrates the importance of training on a
single label type (i.e., human-label or pseudo-label) for
an extended number of iterations. We find that randomly
selecting the label type for each batch (batch-wise random)
performs just as poorly as training with both label types in
each batch (FIST). We speculate that the clean human-labels
and the noisy pseudo-labels represent competing objectives,
which are difficult for the model to satisfy simultaneously,
resulting in it getting stuck at poor solutions. By applying
stage-wise training, we allow the model to focus on a

single objective at a time, potentially escaping sub-optimal
solutions from a previous stage.

Selection mIoU (devel) mIoU (val) Group mIoU (val)
PPLLPLPLL 54.35 66.14 67.03
LPPLLLPPL 55.05 66.71
PPLLPPPLP 54.21 66.05
LPLPPLLPL 55.12 67.03
LLLLLLPPP 54.43 63.75
PPPPPPLLP 50.43 64.37 66.63
PPLLLPLPL 54.00 66.02
LLPLPLLPL 55.19 66.24
LPLPLLPLP 55.29 66.63
LLLPLPPLP 54.88 65.17
PLPLPPPLP 54.64 66.40 66.62
LPPLPPLPP 54.46 66.83
LPPLLLLPP 54.67 65.61
LPPPLLLLP 54.82 66.62
LPPPLLPPL 54.64 66.61
Mean±1 std. dev. 66.01±0.93 66.76±0.23

Table II
RIST SEMANTIC SEGMENTATION RESULTS ON THE PASCAL VOC

2012 VALIDATION SET. GROUP EXPERIMENT RESULTS ARE SELECTED
BASED ON THE BEST DEVELOPMENT MIOU. RANDOM SELECTION

CHOICES ARE P (PSEUDO-LABEL ONLY) OR L (HUMAN-LABEL ONLY).
THERE ARE A TOTAL OF NINE REFINEMENT STAGES ORDERED

SEQUENTIALLY FROM LEFT TO RIGHT.

Table II examines the stability of performance for RIST on
the PASCAL VOC 2012 1/50 subset. We use the same sub-
set for training and generate fifteen different permutations
of binary α values uniformly at random. The degenerate
solutions occur in row 5 and 6, where we have more than
four consecutive numbers of the same α choice during
training. If we were to perform a random search once, the
standard deviation of mIoU is 0.93. If we were to remove
the obvious degenerate solutions (row 5 and 6) using some
heuristics, the standard deviation of mIoU is reduced to 0.52.
Nevertheless, we can reduce this standard deviation further
by selecting the best solution out of five different random
solutions yielding a standard deviation of 0.23. Figure 7
shows that as we increase the number of random solutions,



the spread decreases.
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Figure 7. The effect of increasing stability of RIST when we increase the
number of random solution. The best results of the random solutions are
selected based on best development mIoU. The shaded area represent one
standard deviation of uncertainty.

Sample Size mIoU (RIST) mIoU (GIST)
10 66.04 66.23
25 65.63 62.76
50 66.71 66.33
100 66.71 66.67
200 66.71 66.69
500 66.71 67.00

Table III
SEMANTIC SEGMENTATION RESULTS ON THE PASCAL VOC 2012

VALIDATION SET FOR RIST AND GIST BASED ON BEST EPOCH
SELECTED WHILE VARYING THE NUMBER OF EXAMPLES IN THE

DEVELOPMENT SET.

Beam
Size

Search
Cost

mIoU
(devel)

mIoU
(val)

Solution

1 2 55.17 66.33 LPLLPLLPL
2 4 55.46 64.95 LLPLLPLLP
3 6 55.46 64.95 LLPLLPLLP

Table IV
SEMANTIC SEGMENTATION RESULTS ON THE PASCAL VOC 2012
VALIDATION SET FOR GIST ON DIFFERENT BEAM SIZE. SELECTION

CHOICES AT EACH STAGE ARE P (PSEUDO-LABEL ONLY) OR L
(HUMAN-LABEL ONLY).

Table III explores the sensitivity of RIST and GIST’s
performance on the PASCAL VOC 2012 1/50 subset with
respect to the size of the development set. In general, RIST
and GIST are relatively stable. RIST performance remains
the same for 50 to 500 sample sizes. GIST performance
improves slightly as we increase the sample size from 50
to 500. On the Pascal VOC 2012 dataset, we show that
our supervised+GIST and supervised+RIST trained with
211 human-labels (1/50 subset) outperform the supervised
model that is trained with 529 human-labels (1/20 subset).
This result shows that GIST and RIST improve the model,

not just because they got more supervised signals from the
development set (see Table I).

Table IV explores GIST at various beam sizes. GIST
can find a better solution for the development set; however,
since there is a mismatch between the distribution of the
development set and the original validation set due to the
small sample size, the best solution of the development set
is not the best solution for the original validation set. This
study shows that GIST has a higher chance to overfit the
development set when compared to RIST.

Method RIST GIST
no add-on 60.80 58.23
+CL 61.72 62.37
+CL +LE 64.69 64.56
+CL +LE +TS 66.71 66.33

Table V
ABLATION STUDY OF THE ADD-ONS FOR BOTH RIST AND GIST FOR
MODELS TRAINED ON THE PASCAL VOC 1/50 SUBSET. RESULTS ARE

REPORTED IN MIOU ON THE VALIDATION SET.

V. CONCLUSION

We show that iterative self-training with a fixed human-
labels to pseudo-labels ratio (FIST) leads to performance
degradation. This degradation can be overcome by alternat-
ing training on only human-labels or only pseudo-labels in a
greedy (GIST) or random (RIST) fashion. A clear benefit of
self-training is that it can easily extend existing architectures.
We show that both GIST and RIST can further refine models
trained with other semi-supervised techniques resulting in a
performance boost.
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