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Abstract—Semi-supervised video anomaly detection (VAD)
methods formulate the task of anomaly detection as detection
of deviations from the learned normal patterns. Previous works
in the field (reconstruction or prediction-based methods) suffer
from two drawbacks: 1) They focus on low-level features,
and they (especially holistic approaches) do not effectively
consider the object classes. 2) Object-centric approaches ne-
glect some of the context information (such as location). To
tackle these challenges, this paper proposes a novel two-stream
object-aware VAD method that learns the normal appearance
and motion patterns through image translation tasks. The
appearance branch translates the input image to the target
semantic segmentation map produced by Mask-RCNN, and
the motion branch associates each frame with its expected
optical flow magnitude. Any deviation from the expected
appearance or motion in the inference stage shows the degree
of potential abnormality. We evaluated our proposed method
on the ShanghaiTech, UCSD-Ped1, and UCSD-Ped2 datasets
and the results show competitive performance compared with
state-of-the-art works. Most importantly, the results show that,
as significant improvements to previous methods, detections
by our method are completely explainable and anomalies are
localized accurately in the frames.

Keywords-video anomaly detection; deep learning; semantic
segmentation; semi-supervised learning

I. INTRODUCTION

Constant monitoring of the outputs of surveillance cam-
eras by human operators is not practically effective and
reasonable. Hence, there is a demand for an intelligent sys-
tem to automatically analyze the content of videos, localize
the suspicious cases, and detect the events of interest for
further analysis. Among all massive volumes of video data,
abnormal video events are of greater importance for potential
security measures. Video anomaly detection (VAD) is about
identifying events that do not conform to regular events, or in
other words, deviate significantly from the expectations [1].
Anomalies happen rarely, and they can appear in unlimited
types [2]. Hence, enough labelled abnormal data is not prac-
tically available for supervised training. On the other hand,
normal data can be collected quickly and in a considerable
amount, which can be used for semi-supervised training.
Moreover, addressing the problem as a semi-supervised
learning task is more compatible with the definition of
anomaly detection since, generally, the definition of the

anomaly is tied with the concept of normality.

Figure 1. The pipeline of our method. Best viewed in color.

Deep learning (DL) based video anomaly detection meth-
ods have achieved significant improvements with respect
to their classic counterparts. Previous DL-based holistic
approaches [3], [4], [5], [2] generally, concentrate on low-
level features to represent normal frames and consequently
to identify anomalies. Hence the class of the objects is
not considered for the final decision, while the objects’
class practically plays the most critical role in defining
the anomalies in surveillance cameras from an appearance
viewpoint. On the other hand, object-centric approaches [6],
[7] devote their concentration just to detected objects, to
consider the objects better. However, they still learn nor-
mality by focusing on low-level features (by reconstructing
or predicting the cropped images of the detected objects).
Moreover, they neglect important context information (such
as the location of the object in the scene) as they crop the
object out of the frame. A major drawback of the previous

ar
X

iv
:2

20
5.

01
70

6v
1 

 [
cs

.C
V

] 
 3

 M
ay

 2
02

2



methods is the poor explainability of their detections [8].
Even if a frame is accurately identified as an anomaly, it
is imperative to make sure that the decision has been made
based on an anomaly-related reason (e.g., abnormal object
or motion), not an unrelated factor (such as the noise, num-
ber of objects, illumination changes, etc.). Importantly, the
explainability of a method facilitates the localization of the
anomaly. Previous methods have not discussed their method
from this point of view. Moreover, re-implementations of
different methods show that either they have a considerable
number of unexplainable detections or do not have precise
attention on anomalous regions.

To address the mentioned issues, we propose a two-stream
approach to detect anomalies in video. One branch learns
the normal appearances while the second one considers
the motion. Unlike previous methods, our proposed method
considers the class of the object for anomaly detection
instead of low-level features (such as intensity, colour, etc.).
Low-level features can not effectively represent anomalies in
surveillance videos, and they are more vulnerable to noise
and illumination changes. In this branch, we train a U-net
(with a resnet34, pre-trained on ImageNet, as encoder) to
translate the input frame to its target semantic segmentation
map. This formulation helps the network learn normal ob-
jects in the frame, considering their classes. In parallel, in
the motion branch, an identical network translates the input
frame to its optical flow magnitude map. In this way, the
network learns to make an association between objects and
their regular motions. In summary, our contributions in this
paper are as follows:

• We propose a novel two-stream video anomaly de-
tection method that concentrates on the class of the
objects instead of focusing on low-level features. This
goal is achieved by reformulating the problem as an
image translation from the input frame to its pre-
calculated semantic segmentation map. To the best of
our knowledge, this is the first study to consider the
class of the objects for VAD.

• We formulate the task of learning normal motion as
an image translation from the input frame to its target
optical flow magnitude map.

• Our method is explainable, and it identifies a frame as
an anomaly based on only anomaly-related activations.
Moreover, anomalies are accurately localized in the
frames considering the anomaly map activations.

• Our proposed method outperforms state-of-the-art
methods on the Shanghaitech dataset and shows a
competitive results on the UCSD datasets.

The remainder of this paper is organized as follows: In
Section II, we review the related literature in video anomaly
detection. Section III describes our proposed method in
detail. Experiments and results are described in Section IV,
and some conclusions are drawn in Section V.

II. RELATED WORKS

Video anomaly detection is generally addressed in a semi-
supervised manner. Researchers have addressed the problem
mainly by formulating the task as a reconstruction task [3],
[4], [5], [9], [10], [11] or a prediction task [2], [12], [13],
[14]. In reconstruction-based approaches, an unsupervised
network (usually an Autoencoder, U-net, etc.) is trained
to reconstruct the normal frame(s), assuming that abnor-
mal frames would result in a higher reconstruction error.
Prediction-based approaches on the other hand get several
consecutive frames of a normal clip and are trained to predict
the future frame(s), expecting a higher prediction error for
an abnormal frame. These methods inherently consider the
evolution of the frames to predict the future frame and hence
capture motion patterns. To benefit the advantages of both
reconstruction and prediction frameworks, [15], [16] propose
a hybrid approach, having both approaches in different
branches.

Reconstruction-based and prediction-based approaches
have drawbacks: 1) They generally consider low-level fea-
tures for prediction and are not aware of the class of the
objects effectively [17], [14]. 2) The methods that simulta-
neously model appearance and motion in a single stream fail
in considering motion as effectively as appearance.

Unlike mentioned holistic approaches, object-centric ap-
proaches [6] only focus on detected objects. These methods
crop the objects out of the frame and learn their appearance
and motion individually. Object-centric approaches apply
their focus on objects, and hence they can be generalized
to different scenes. Moreover, they do not have to deal with
computational complexity due to background [13]. However,
they still have two main drawbacks: 1) They crop objects out
of the frame, process them individually, and do not consider
the location information. 2) Reconstructing or predicting
the cropped objects’ images helps the network focus on
the objects but does not necessarily guarantee to learn the
objects’ classes.

Recently, Krzysztof et al. [18] proposed a method to detect
the novelties in images by reconstructing the frame from its
semantic segmentation map. Through this framework, the
network considers the class of the object. Inspired by this
method and [19], we benefit from semantic segmentation
in a different way and we formulate the problem as image
translation from the original frame to its semantic segmen-
tation map. Moreover, unlike the previous work, which only
considers appearance, we add a second branch to capture
motion patterns.

Although different strategies have been applied to formu-
late and consider motion for the VAD, the correspondence
between the motion and the object has not been considered
effectively. For this purpose, Nguyen et al. [20] formulate the
problem of learning normal motion as an image translation
task. They train a network to translate from a raw frame to its



corresponding optical flow map. However, it is confusing for
the network to identify the direction of motion for the objects
from a single frame. We implemented a similar approach;
however, we trained our network to translate the raw frame
to the corresponding optical flow magnitude map. Hence,
the network only considers the magnitude of the motion and
does not get confused by the direction.

III. PROPOSED METHOD

We propose a deep learning-based semi-supervised video
anomaly detection method that takes advantage of two
parallel branches to model normal appearance and mo-
tion individually and, consequently, to detect anomalies,
leveraging image translation. The pipeline of the proposed
method is shown in Fig. 1, which illustrates the training
and the inference (testing) phases in detail. The details of
the proposed method are described in the following sub-
sections.

A. The two-stream method

Our method models normal appearance and motion sep-
arately in two different but similar branches. Experiments
in [17] suggest that modelling motion and appearance sep-
arately would maintain the effect of each factor on the final
decision, unlike the single branch methods, in which one
feature may be dominated by the other.

B. The appearance branch

In the appearance branch, we train a U-net with a pre-
trained resnet34 (trained on the ImageNet) as an encoder.
The network is trained to learn the translation from the input
frame to its target semantic segmentation map. The target
semantic segmentation maps of the frames are acquired us-
ing a state-of-the-art object segmentation method: the Mask-
RCNN. It is assumed that the network learns to identify the
objects inside the frame and recognize their object classes
through this formulation. In this way, the networks learn to
focus on the objects without needing to crop them out of the
frame (as is done in object-centric approaches) and identify
their classes.

C. The motion branch

In the motion branch, the same formulation, as we had
for the appearance, has been applied, and an identical U-
net is trained to learn translation from the input image to
its corresponding optical flow magnitude map. The optical
flow magnitude map is a grayscale image that keeps only the
magnitude information of the optical flow and removes the
direction information (i.e., colours in the optical flow map).
Through this formulation, the network learns to associate
the objects and their normal motions at different locations.
It is worth mentioning that the translation is from a single
image to another single image. In other words, we do not use
two consecutive frames as an input for the U-net to learn

Figure 2. Comparing the results of motion learning for optical flow (Left)
and optical flow magnitude (Right). OF and OFM stand for the optical flow
and optical flow magnitude, respectively. Best viewed in color.

the optical flow calculation. However, consecutive frames
are used to create target images, and the network learns
the correspondence between each object in the input frame
and its pre-calculated motion magnitude. Our experiments
showed that the network gets confused about the direction
when it tries to learn the translation to the raw optical
flow map and does not produce useful results. However,
it properly learns the normal motion magnitudes for each
object. Fig. 2 illustrates this challenge and its solution.

We developed our holistic approach such that location
information is not neglected. This plays a crucial role in
scene anomaly detection since, from an appearance view-
point, generally, each object type is expected to appear
in particular regions in the frame (for example, cars are
expected to appear on the street, not on the sidewalk). The
same rule is applicable to motion as well. Most particularly,
our approach is expected to learn different normal motions
(even for the same object type) at different locations. For
example, pedestrians at a distance produce a lower motion
magnitude (regarding their optical flow results) than near the
camera. Our experiments show that our proposed networks
learns normal motions for each object, considering their
locations.

D. Masking

To focus on the motion of the objects, we apply the
calculated semantic segmentation mask (produced by the
Mask-RCNN) on the calculated target optical flow map.
In this way, the background motion is suppressed which
helps the network focus and learn the motion of the detected
objects. Fig. 3 shows samples of noisy raw optical flow map,
the corresponding segmentation mask and the final masked
optical flow map, which contains only the motion of the
objects.

E. Training

We train networks of the appearance and motion branches
to minimize the difference between their target images (T)
and their outputs (FW (It)). Hence, the optimization follows



Figure 3. Optical flow masking step. Up: Extracted optical flow. Middle:
Segmentation map. Bottom: Masked optical flow map.

the following target function (1):

Argminw(diff(T (It), Fw(It)) (1)

Where diff denotes the function that calculates the difference
between T and Fw. T and Fw represent the target image
for the input I (at time t) and function of the network (U-
net), respectively. It is worth mentioning that, inspired by
[20], we leverage the L1 loss for the optical flow since it
does not magnify the effect of the noise. For the appearance
network we leveraged the L2 loss, to calculate the difference
between the output and the target image. Moreover, Yang
et al. [21] believe that using patch-level losses for training
forces the network to focus on different regions equally
and not prioritize background. Hence, we benefit from the
patch-level loss which computes the MSE or MAE losses
for imagined patches in the frame (Fig. 4) and select the
maximum patch loss as the final loss of the frame. The patch-
based loss is calculated as below (2), (3) for the appearance
and motion branches:

Lss = Max(Lss1, Lss2, ..Lssk) (2)

Lof = Max(Lof1, Lof2, ..Lofk) (3)

Where:

Lssi = ‖Pi(f1w(It))− Pi(SM(It))‖2 (4)

Lofi = ‖Pi(f2w(It))− Pi(OFM(It−1, It))‖ (5)

Pi selects the ith patch in the frame (as shown in Fig.
4). Lssi and Lofi show the loss of ith patch (out of the
k produced patches) for appearance and the motion, while
Lss and Lof stand for the final loss for the appearance
and the motion branches, respectively. In the equations
above, w refers to the weights of the networks, f1w and
f2w denote the networks of the appearance and motion
branches, respectively. Moreover, SM stands for the function
of producing Segmentation Mask (SM) by the Mask-RCNN,
and OFM refers to the function that produces Optical Flow
Magnitude Map (OFM).

Figure 4. Image patches for the patch-level loss.

F. Inference

Fig. 1 illustrates the inference phase. In this stage, sep-
arately for each branch, we compare the outputs of the
trained networks with their expectations (target images) and
compute their differences (i.e., the sum of the pixel-wise
differences for all corresponding pixels) as the anomaly
score. To this end, we calculate the MSE loss between the
output and the target image and use it as the anomaly score.
For an input frame, if the anomaly score of any branch
passes its set threshold, the frame is labelled as an anomaly
from an appearance or motion viewpoint. In all, we label a
frame as an anomaly if any of the branch anomaly scores
pass its threshold.

G. Refinement

As studied in [17] one of the drawbacks of the existing
methods is that their anomaly scores are affected by the
number of foreground objects. In other words, more objects
in a frame produce a higher anomaly score. Although normal
objects produce a lower reconstruction/prediction error, a
high number of normal foreground objects may result in a
higher total anomaly score and have the same effect as an
abnormal object. Analyzing the anomaly maps produced by
our method and also the other methods, we found out that the
anomaly activations of normal objects are non-condensing,
and few steps of erosion and dilation morphological opera-
tions alleviate the problem without affecting the activations
of the anomalies considerably. For this purpose, we applied
few steps of the erosion and dilation operations respectively
on the anomaly map to tackle the mentioned problem of
non-invariance to the number of objects.

H. Temporal denoising

Methods based on object detection or segmentation may
fail in detecting some objects in some frames which can lead
to a sudden change in the anomaly score. On the other hand,
considering the frame rates of the videos, adjacent frames are
quite similar and are expected to produce similar anomaly
scores. Hence, based on this assumption, we apply the
Savitzky–Golay filter on the anomaly scores of the frames
[8], in order to smooth the anomaly scores and remove the
noise.



IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our pro-
posed method on three benchmarks (the ShanghaiTech [2],
the UCSD-Ped1, and the UCSD-Ped2 [22]). The notions of
normality and anomaly are the same in these datasets, and
they are all suitable for semi-supervised training, as they
contain normal frames in their training sub-sets. In addition
to quantitative results, we provide numerous qualitative
results to illustrate the activations in the anomaly maps
which supports the explainability of our method. The details
of the datasets and the experiments are provided in the
following sub-sections.

A. Datasets

As mentioned, we evaluate the effectiveness of the pro-
posed method on three benchmarks (ShanghaiTech, Ped1
and Ped2). These datasets are independently used both for
training and testing. The ShanghaiTech dataset is captured
in a university campus where walking pedestrians is normal.
It contains different types of anomalies, such as abnormal
objects (e.g., car, motorcycle, etc.) and abnormal motions
(e.g., running, chasing, etc.). This dataset comes along
with both pixel-level and frame-level annotations. The most
distinctive features of this dataset are: 1) multiple scenes
and view angles. 2) complex lighting conditions. In the
UCSD-Ped1 and Ped2 datasets, the normal scenes include
people walking in the walkways, while anomalies are due
to the presence of unexpected objects in the scene (such as
carts, bicycles, skateboards, etc.) or different motion patterns
(skateboard riding, etc.). Most noticeable challenges of these
datasets are: 1) comparatively low resolution and grayscale,
which leads to difficulty recognizing the objects. 2) size of
the people may change considerably regarding their distance
from the camera. 3) considerable camera shakes in some
frames. It is worth mentioning that in the ground-truth
annotations of the mentioned datasets, a frame is annotated
as an anomaly if it contains an anomalous object or motion.

B. Evaluation metric

We use the frame-level Area Under Curve (AUC) score
as the accuracy metric in our experiments. By applying dif-
ferent thresholds on the anomaly score and gaining different
True Positive Rates (TPR) and False Positive Rates (FPR),
the Receiver Operation Characteristic (ROC) is plotted, and
the Area Under the Curve is calculated to evaluate the
performance of the method and consequently to compare it
with state-of-the-art methods. A higher AUC shows a better
performance.

C. Implementation details

In our experiments all frames are resized to 224 ∗ 224
for both the appearance and motion branches. Besides,
two consecutive frames(∆t = 1) are utilized to generate
the optical flow target maps simply using the Farneback

algorithm in the OpenCV library. To train the networks,
we use the Adam optimizer to optimize the parameters.
The learning rate of the training starts at 0.005; however,
it is halved every 10 epochs. We have also set the K
(number of the patches in the patch-level training) to 9 in
our implementation. We also got the best performance for
the refinement step, by applying one step of each erosion
and dilation operations, respectively, and with the filter size
set to 3.

D. Qualitative analysis

In this sub-section, we provide anomaly maps to visu-
ally validate the effectiveness of the contributions, and to
demonstrate that our method focuses on the right aspect
(class or the motion of the object) and the right place
(object’s position) to make its decision. As can be noticed
in the anomaly maps, the major and higher activations are
generated by anomalies which supports the explainability of
the detections by our VAD method.

Fig. 5 and Fig. 6 show some qualitative results of the
method on the Shanghai-Tech and the Ped2 datasets. These
figures illustrate the performances of both the appearance (in
colour images) and motion branches (in gray-scale images).
For each sample frame, the following data are presented: the
original input frame, the target map (expected output), the
estimated output (output of the network), the anomaly map
(difference between the expected and estimated outputs),
and finally, the post-processed anomaly map. As shown in
the figures, the networks of each branch which are trained
on the normal frames, have learned normal appearances
and motions so that for the normals, the networks produce
outputs quite similar to their expected outputs (Semantic seg-
mentation map and optical flow magnitude map of the frame,
respectively for the appearance and the motion branches).
However, the networks do not show the same behavior for
anomalous objects. For the abnormal classes of objects, the
appearance network either recognizes them as one of the
previously seen objects (mostly as pedestrians) or detects
them (or some parts of them) as background. Hence, the
difference between the estimated and expected appearance
generates a significant anomaly score in that position, in both
cases. The motion network also estimates a motion quite
close to its target motion map for a normal object, leading
to a low anomaly score. However, for abnormal motions
(usually faster motions), the estimation is close to the normal
motions (i.e., different from their actual motions) and thus
produce a big difference (i.e., higher anomaly score).

The calculated anomaly maps mainly consist of larger and
dense activations at the position of the abnormal objects,
and also some non-condensing activations (with a weak
certainty) in some points of the normal objects. Even though
the anomaly score is mainly affected by the anomalies in
the raw anomaly map, the morphological post-processing
operations decrease the effect of normals by eliminating



Figure 5. Qualitative results for the ShanghaiTech dataset. First two
rows show the results for the appearance branch and the last row for
the motion branch. Starting from left, columns show: input frame, target
output, estimated output, anomaly map (difference of target and estimated
images) and post-processed anomaly map. Red boxes indicate the ground-
truth anomalies. Best viewed in color.

Figure 6. Qualitative results for the UCSD-Ped2 dataset. First two rows
show the results for the appearance branch and the last three rows for the
motion branch. Starting from left, columns show: input frame, target output,
estimated output, anomaly map (difference of target and estimated images)
and post-processed anomaly map. Best viewed in color.

non-condensing pixels. Our experimental results show that
morphological refinement is more effective in the Shanghai
dataset. By qualitatively analyzing the results, it is assumed
that the difference in the performance is mainly due to the
low resolution and the small size of the objects in UCSD
datasets.

We also qualitatively evaluated the performance of the
method in making association between normal objects and
their motions. Fig. 7 shows how our model effectively learns
to make a correspondence between an object’s location and
its motion. Besides, it learns the association between object
parts and their motion. For example, the output results show
that the network has learned to estimate a larger motion
for the legs compared to other body parts. Moreover, the
network predicts a larger motion for the objects near the
camera.

Our experiments also show that most of the false positive

Figure 7. Normal motions estimated by the motion network for different
locations or different object parts.

Table I
COMPARISON BETWEEN VAD METHODS. BEST-PERFORMING METHOD

IS DENOTED IN BOLDFACE.

Method Ped1 Ped2 ShanghaiTech

Mahdyar et al. [10] 97.4 93.5 N/A
Hasan et al. [3] 75.0 85.0 60.9
Chong et al. [4] 89.9 87.4 N/A
Liu et al. [2] 83.1 95.4 72.8
Park et al. [11] N/A 97.0 70.5
Nguyen et al. [20] N/A 96.2 N/A
Hui et al. [23] 85.1 96.9 73.8
Yu et al. [14] N/A 95.0 73.0
Ionescu et al. [6] N/A 97.8 84.9
Our’s 88.61 97.76 86.18

detections are due to the detection of a normal object by one
network (either the image translator or Mask-RCNN) and
the misdetection by the other one. This produces a higher
difference between the estimated and the expected outputs
for that object (i.e., a large activation in the anomaly map).
Our experiments show that the mentioned misdetection is
mainly because of few factors such as: low resolution of
the input frame, very small size of the objects, reflection of
the objects in mirror, and camouflage with the background.
Moreover, by analyzing the results we found that the appear-
ance network (the image translator) outperforms the Mask-
RCNN in segmenting the normal objects, and mostly the pre-
mentioned failure (i.e., failure of one network in detecting
normal objects) occurs in the Mask-RCNN.

Our method assumes that the appearance-based anomalies
are due to the unseen object classes. Hence we do not expect
good performance on the cases in which anomalies are due
to the low-level image features (e.g., defect detection on the
surface). Moreover, in order to increase the performance of
the motion branch in making the correspondence between
objects and their motion, we concentrate on the magnitude
of motion which may decrease the performance for cases in
which anomalies are due to the direction.

E. Comparison with the state-of-the-art methods and abla-
tion study

In Table I, the effectiveness of our proposed method
is compared with state-of-the-art works. The results show
that our proposed method outperforms the other methods
(considering AUC), for the ShanghaiTech, and it shows
competitive results with others, for the UCSD datasets.

Table II provides results for an ablation study we per-
formed on ShanghaiTech to analyze the contribution of
individual components in the proposed method. The results



Table II
ABLATION STUDY: COMPARING 6 CASES.

Item C1 C2 C3 C4 C5 C6

Pre-trained encoder X - X X X X
Masking X X - X X X
Refinement step X X X - X X
Appearance branch X X X X - X
Motion branch X X X X X -

AUC 85.52 84.32 80.12 85.10 69.99 76.33

Table III
PERFORMANCE (AUC) IMPROVEMENT BY TEMPORAL DENOISING.

Dataset ShanghaiTech UCSD-Ped2 UCSD-Ped1

W/O denoising 85.52 96.19 86.81
W denoising 86.18 97.76 88.61

show that using a pre-trained U-net and the masking stage
have the most positive impact on the performance. The
higher effect of the masking stage is likely because of
camera shakes in numerous frames which produces back-
ground noise in motion maps and consequently generating
a high false activations in the anomaly map. Moreover, the
results demonstrate that the appearance and motion branches
act as complementary to each other and their combination
considerably improves the performance (15.53% compared
to only using the motion branch and 9.19% compared to
only using the appearance branch).

Table III shows the improvements of the performance
(AUC) by the temporal denoising step. Based on numerous
experiment on the datasets we got the best results with
window-length and the poly-order (hyper-parameters of the
filter) equal to 41, 1, respectively. We assume that these
numbers are achieved in connection with the frame rate of
the video clips. As expected, temporal denoising step is more
effective on UCSD datasets, since the Mask-RCNN shows
comparatively more detection failures in them because of
their lower resolutions.

F. Visualizing frame anomaly score

Fig. 8 shows the anomaly scores produced by the appear-
ance network for two test clips. The figure shows that the
anomaly score experiences a big rise for the frames contain-
ing an abnormal object class. Fig. 9 on the other hand, shows
the performance of both appearance and motion streams in
detecting anomalies by their corresponding anomaly scores.
During the frames in which a bicycle passes, the anomaly
scores of both streams observe a significant rise. Finally, Fig.
10 shows the generalization capability of the trained method
(the appearance branch here as a sample) to the other scenes.
This figure consists of the produced anomaly scores for a
test clip (Ped2-test004) that is produced by networks trained
on the Ped2, Ped1, and Shanghai-Tech, respectively.

V. CONCLUSION

We propose a novel object class aware VAD detection
method which combines two complementary branches to

Figure 8. Anomaly score of frames, produced by the appearance branch,
for two different clips. The pink highlight shows anomaly intervals.

Figure 9. Anomaly score of frames from a sample clip. Red curve:
anomaly score calculated by appearance branch. Blue curve: anomaly score
calculated by motion branch. The pink highlight shows anomaly intervals.

detect anomalies in video. Both branches leverage the image
translation task, to make an association between an input
frame and its corresponding target images and consequently
to learn normal patterns. The networks of the branches
(U-Net) trained on normal frames, fail to make a correct
correspondence between an abnormal input frame and its
target images, in the inference stage which results in a
larger activation in the anomaly map. Competitive quanti-
tative results with state-of-the-art methods on benchmark
datasets show good performance, and the qualitative results
demonstrate the high explainability of our proposed method.
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