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Abstract—We investigate how high-resolution tactile sensors
can be utilized in combination with vision and depth sensing, to
improve grasp stability prediction. Recent advances in simulating
high-resolution tactile sensing, in particular the TACTO simula-
tor, enabled us to evaluate how neural networks can be trained
with a combination of sensing modalities. With the large amounts
of data needed to train large neural networks, robotic simulators
provide a fast way to automate the data collection process. We
expand on the existing work through an ablation study and an
increased set of objects taken from the YCB benchmark set.
Our results indicate that while the combination of vision, depth,
and tactile sensing provides the best prediction results on known
objects, the network fails to generalize to unknown objects. Our
work also addresses existing issues with robotic grasping in tactile
simulation and how to overcome them.

I. INTRODUCTION

Advancements in grasping and manipulation abilities are
one of the major factors that will allow robots to move
outside the world of manufacturing. Moving from structured
environments to dynamic, complex human environments will
allow robots to assist in homes, offices, and hospitals. This
transition to operate in these human-centered environments
will require high levels of dexterity, intelligence and versatility.
As such, robots will require human-like abilities in grasping
and manipulation.

Current approaches to robotic grasping often utilize a single
sensing modality, commonly RGB-D cameras [1]. It remains
uncommon to use tactile sensors for grasping, especially in
conjunction with another sensing modality such as vision. In
contrast, humans heavily rely on the sense of touch when they
are manipulating objects [2]. This discrepancy is due to the
difficulty in creating robotic end-effectors that are as capable
as human hands, owing to a lack of sensors and actuators
equivalent in size, precision, and efficiency to human skin and
muscles [3].

A major challenge with machine learning in robotics is
insufficient amounts of training data due to the limitation of
the data collection speed with real hardware [4]. To combat
this, simulated environments are often used to collect datasets
much larger and faster than previously obtained using a real
robot [5]–[7]. However, due to the difficulty of simulating
vision-based tactile sensing, it has been largely excluded from
these simulated grasping experiments. The recent development
of TACTO [8], an open-source simulator for high-resolution
vision-based tactile sensors, has bridged this gap and allowed

Fig. 1: Two examples of input to our approach for a successful
grasp. Each row of three images, shows the output of the
TACTO simulator, for both left (left image) and right gripper
fingers (middle image), with the image on the right showing
a camera view of the scene. Our network can successfully
predict grasp success using this data. The intensity of the pixel
roughly represents the depth of displacement for the gel inside
the DIGIT sensor, where the darker the pixel, the greater the
depth.

for the large-scale simulated grasp sampling required to train
a deep neural network. [8] demonstrates the feasibility of the
simulator with an example scenario where a network is trained
to predict the grasp success of a single, rectangular object
given visual tactile readings, however, to our knowledge,
extensive experiments with TACTO has not been conducted
in the literature.

We pose grasp stability prediction as a supervised learning
task and use Convolutional Neural Networks (CNN) for func-
tion approximation. The input to the network is a set of images
coming from multiple sensors and the output is a binary label
indicating whether the grasp would be successful if the object
is lifted. In this work, we use the TACTO simulator to train
a network for predicting grasp success for a given grasp from
tactile, visual and depth sensor data. Our grasping experiments
are conducted using a subset of the YCB object set [9], a
well-known benchmark object set in robotic grasping research,
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extending previous work using only a single object [8].
The primary contributions of this paper are:
1) Ablation studies with different combinations of sensing

modalities including RGB and depth images from a side
camera and tactile (DIGIT) sensor images.

2) An investigation into validating the TACTO simulation
of tactile sensors for robotic grasping.

3) A data filtering process for robotic grasping dataset
collection, particularly for handling tactile information.

II. RELATED WORK

A. Tactile Sensors

Developing robotic skins is an active research area [10],
however, these sensors remain niche, hence are not com-
monplace. An alternative to robotic skins are high-resolution
vision-based tactile sensors [11]–[17], which provide a high
spatial resolution by typically outputting an image that encodes
the deformation on the contact surface.

Data-driven methods alongside the development of sensors,
particularly depth sensors, have allowed deep learning train-
ing to be performed with multiple modalities, significantly
improving the robotic grasping capabilities [1]. Recently, the
development of high-resolution tactile sensors has allowed
for tactile information to be incorporated into the training,
improving performance in both grasping [18], [19] and ma-
nipulation [20]–[22].

Early work in tactile sensors largely focused on measuring
force and torque applied to the end-effector or the sensor’s
pressure distribution over the sensor [23].

There are at least eight main tactile sensor types, in-
cluding [24]; piezoresistive [25], capacitive [25], piezoelec-
tric [26], quantum tunnel effect [27], barometric measurements
based [28], multi-modal [29], structure-borne sound [30] and
vision based [11]–[16].

High-resolution vision-based tactile sensors such as Gel-
Sight [11], [12], Gelslim [13], [14], FingerVision [15], Om-
niTact [17] and DIGIT [16] have been applied to robotic
manipulation [20]–[22], [31], [32] and slip detection [12],
[33] with some success. The vision-based sensors have a high
spatial resolution and ability to provide a better generalization
to objects of different geometry compared to Force/Torque
sensors [22]. These sensors observe the topography of the
contact surface, which is often a deformable elastomer material
to measure contact forces. They also allow for the use of
standard visual sensing convolutional neural network architec-
tures since they typically output standard 2D images, making
them significantly easier to incorporate into a multi-modal
model [18]. We explore the ability of the DIGIT [16] sensor to
improve robotic grasping ability in a simulation environment.

B. Grasping with Tactile sensing

Tactile information in robotics research has been used in a
variety of tactile-relevant applications, which include: tactile
exploration, grasping, in-hand manipulation, locomotion, tool
manipulation, human-robot interaction, and non-prehensile
manipulation [34]. Although, recent work has shown the strong

abilities of analytical approaches to use tactile information,
with tasks such as manipulation [32]. However, these ap-
proaches often rely on assumptions of the geometry of the
objects, robot, and environment. On the other hand, learning-
based grasping methods do not rely on these assumptions and
have gained prominence in recent years for these tasks.

Tactile information has been used in various learning-
based approaches, most commonly in supervised learning [18],
[19], [35]–[37]. Tactile data has also been integrated into
reinforcement learning approaches for tasks such as in-hand
manipulation [38] and object manipulation [22]. Tactile data
has also been used in other learning-based approaches such as
unsupervised learning [20], [39], self-supervised learning [31],
transfer-learning [40], and active learning [41]. Our work
extends previous research [8] by introducing a variety of
real-world object models for predicting simulated grasping
outcomes.

III. METHODOLOGY

A. Problem Definition

Both simulation [8] and real-world experiments [18], [19]
have shown that high-resolution tactile sensing improves the
grasp stability estimation for singulated objects compared
to more traditional sensing modalities. Our work extends
previous simulation studies by using a more complex and
standardized benchmark object set designed specifically for
robotic grasping.

We assume that a singulated, rigid object is sitting stably
on a flat table surface in front of the robot manipulator with a
parallel gripper. Further, we assume that a top-down grasp pose
is given, either manually or by a grasp detection algorithm,
and the robot moves to that grasp pose before closing the
gripper. We are interested in solving the problem of estimating
whether the grasp would be successful if the object was lifted
up without changing the end-effector orientation, given the
vision, depth and tactile sensor readings before the lift. The
success of a grasp is measured by whether or not the object
is above a threshold height after lifting the gripper vertically
upwards for a fixed distance and time.

B. Object Models

The YCB object set [9] is prominently used as a benchmark
in robotic grasping and consists of 77 standard household
items such as food, toys, and tools with different shapes,
sizes, textures, weight, and rigidity. We use 20 objects from
this set for training (shown in Fig. 2) and another 4 objects
for validation (shown in Fig. 6). These objects were selected
based on their ability to be grasped successfully by the robotic
manipulator, which will be detailed in Sec. III-C. The YCB
dataset provides scanned 3D models of each object obtained
from a scanning rig. During preliminary experiments, we
observed that grasping physics with these scanned 3D models
is often unstable as the gripper moves through the objects
during grasp attempts. To improve robustness post-processed
watertight 3D models [42] of the YCB objects are used.
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Fig. 2: 20 YCB object models used in training and testing.
Watertight mesh equivalents of the object were used to help
with the simulation accuracy.

However, no visual textures are available and therefore they
were rendered in grey.

Fig. 3 shows the complexity and grasp difficulty of the
objects used in our study, as defined by the EGAD! object
set [43]. The grasp difficulty is quantified by the 75th per-
centile grasp of all sampled grasps, originally proposed by
Wang et al. [44], Dex-Net [5] is used for grasp sampling,
and the Ferrari-Canny metric is used for robustness. Mor-
phological complexity is used to measure the complexity of
the shape [45], [46]. Objects used for evaluation are shown
with the black border, and the color represents the likelihood
of collecting good tactile data on a grasp attempt for an
object (red is low at approximately. 3%, green is high at
approximately 88%).

C. Object Selection

We selected 24 objects among the 77 original YCB objects
for our experiments. Object selection occurred in two stages.
The first stage involved performing 100 grasp attempts on each
watertight object model, scaled by 0.6 to 0.9 in increments of
0.1. This produced a total of 400 grasps per object. We then
chose any object with a grasping success greater than 25% for

any individual scaling and selected the scaling with the highest
success rate. This is done to eliminate any object models that
are inherently too difficult to grasp. This reduced the number
of objects to 28. The second stage involved an initial stage
of data collection, where any objects which did not produce
tactile information on both fingers from 150 sampled grasps
were removed. This reduced the number of objects to 24.

D. Data Collection

We use PyBullet and TACTO [8] for the simulation. We
collected 10,000 data points to make the data comparable to
the real-world experiment by Calandra et al. [18].

A single object is placed on the table at a uniformly random
position in the workspace and yaw rotation at each iteration.
To collect a data point, we complete three stages of grasping,
detailed below.

1) Select grasp pose: GGCNN [47] is used to calculate a
top-down grasping pose. GGCNN uses a depth image to
calculate the quality of grasp at each pixel. We choose
the grasp with the highest quality to maximize the grasp
success.

2) Move and close gripper: Once the grasp pose is chosen,
the robot moves its end-effector to the grasp pose, and
the gripper is closed at a constant velocity until at least
2N of force is read on both fingers. Data is only saved
if tactile readings on both fingers are detected. This is
determined by having at least 100 depth pixels with data
greater than 0.0001m. This is because we are interested
in both gripper fingers are touching the object, rather
than cases where the object has already slipped from
the gripper during closing. Furthermore, it would only
make sense to try to lift an object in the real-world if
both fingers are touching the object.

3) Lift object: Once the gripper fingers are closed, de-
termined using force feedback, the robot attempts to lift
the object vertically upwards. The robot moves at a fixed
speed for a fixed amount of time, if the object moves at
least 80% of the vertical distance, the attempt is labeled
as successful.

E. Dataset Filtering

Simulation of contact is not perfect. For example, the
tactile sensors would often not provide information, as fingers
were simulated to go through an object. The success rate of
obtaining tactile input from both fingers differed per object,
causing the dataset to have an uneven distribution of data-
points per object. The data is filtered to reduce the effect of
unbalanced data on the training results. We limit the number
of grasp attempts per object to 500 and filtered to create a
success/failure split that is as even as possible given collected
data. For example, if an object had 700 grasp attempts, 200
successful and 500 unsuccessful, only 300 unsuccessful would
be used for the dataset together with the 200 successful ones.
Overall, this filtering provided a dataset with 66.7% successful
grasp labels.



Fig. 3: The objects selected to validate grasp predictions plotted by grasp difficulty against shape complexity. The background
colour per object indicates the proportion of grasps that contain tactile information on both sensors. From red (low, ∼ 3%) to
green (high, ∼ 88%).

Four of the selected objects presented less than 500 grasps
attempts with tactile information. These objects were reserved
for the evaluation set.

Fig. 4: The basic architecture of the networks used to pre-
dict grasp success. The inputs to the network were various
combinations of sensor modalities.

F. Training

Convolutional neural networks with the ResNet-18 back-
bone [48] were trained using a combination of various modali-
ties, the network architecture is illustrated in Fig. 4. A ResNet-
18 backbone was chosen to directly compare it to the real-
world experiment by Calandra et al. [18].

Test Accuracy (%)
Vision + Depth + Touch (Both) 82.7±0.6
Vision + Touch (Left only) 81.9±1.5
Vision + Touch (Both) 81.6±0.1
Vision 81.5±0.8
Vision + Depth 80.8±0.4
Depth + Touch (Both) 80.8±1.2
Depth 80±2.1
Touch (Both) 78.9±1.2
Touch (Left only) 76±1.5

TABLE I: Ablation study for input sensor modalities. All
networks are trained with 10,000 data samples.

In addition to the modalities originally presented [8], we
added the modalities that included depth (see Table I). In
accordance to the original TACTO paper, we trained the
networks on 1, 000, 2500, 5000 and 10, 000 samples in total
(split 80%/20% into training and testing). The networks were
trained for ten epochs using Binary Cross-Entropy loss, and
three-fold cross validation.

IV. RESULTS

A. Grasp Stability Prediction (Known Objects)

1) Input Sensor Modalities: We perform an ablation study
for a combination of input modalities, results are shown in
Fig. 5 and Tab. I. Our results suggest that using all sensors
(vision, depth, and touch) led to the highest accuracy (Fig. 5),



Fig. 5: Test accuracy of trained networks on 1, 000, 2, 500,
5, 000 and 10, 000 for various input modalities. The high-
lighted area bounds the training results from all five cross
validation trials.

Vision+
Depth+
Touch
(Both)

Vision+
Touch

(Left only)
Vision

Flat Screwdriver 68.6±2 67.1±4.1 68.1±7.7
Large Clamp 57.4±10.8 59.9±4.4 57.4±5
Spoon 57.6±5.9 56.5±6.3 64.1±4.2
Phillips Screwdriver 62.8±2.1 66.9±9.3 60.4±8.8
Softball 87.5±1.7 85.4±6.9 81.2±7.4
Scissors 53.1±4.4 67.2±6 59.2±2.1
Tomato Soup Can 90.3±3.7 89.5±6.3 85.1±6.7
Windex Bottle 81.6±1.6 83.8±2 83.6±4
Mini Soccer Ball 92.6±2.7 93.6±0.6 92.3±2.7
Potted Meat Can 97.7±0.8 97.9±0.8 98.8±0.5
Masterchef Can 93.1±5.1 83.7±2.5 80.8±1.5
Power Drill 86±3.6 90.8±4.7 90.1±2.1
Pitcher Base 91.1±0.7 88.3±8.4 87.3±5
Plate 69.7±1.6 79.3±5.7 74.8±2.6
Pudding Box 98.2±2.7 98.6±0.9 97.7±1.1
Nine Hole Peg Test 84±1.8 75.4±5.1 78±1.9
Mustard Bottle 83.8±5.3 82.9±3.7 80.5±5.4
Bleach 86.7±4.4 82.5±1.8 84.6±5
Sugar Box 96.8±1.5 96±1.9 97.1±0.7
Wood Block 92.3±1.4 90±5.7 95±2.1
Average 82.7±0.6 81.9±1.5 81.5±0.8

TABLE II: Grasp stability prediction accuracy of the 20
“known objects”. The networks are trained on 10,000 data
samples. The table is sorted by the shape complexity of the
objects (high to low, top to bottom).

albeit with a narrow margin with larger number of samples,
as there was only 6.7 percentage points between the best- and
worst-performing models for 10,000 samples. We note that
the accuracy didn’t necessarily increase with the number of
samples for lower sample sizes. However this can likely be
explained by the higher variance present for lower sample sizes
as the test set size scaled with the training set.

The prediction accuracy for each modality increases with
the number of training samples provided. Moreover, this
convergence, particularly of vision, appears to happen signif-
icantly faster than previous grasping work using the TACTO
simulator [8].
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TABLE III: Vision + Depth + Touch (Both) model predicted
grasp success against the ground truth for four samples on the
mustard bottle object.

While the different modalities converge when 10,000 sam-
ples are used (Table I), integrating touch with visual and
depth sensing provides significant improvement when the
data availability is limited (83.5% when trained with 1,000
samples).

Another interesting observation was that the networks that
utilized input from the left tactile sensor alone performed just
as well as the corresponding networks which used input from
both tactile sensors. This result is likely a byproduct of the
filtering process during data collection (see Sec. III-E), which
ensured tactile readings from both sensors. Another possible
factor is that fewer input images were easier to train as there
are fewer network weights to learn. This observation suggests
that a single high-resolution vision-based tactile sensor could
be sufficient when combined with a potentially cheaper tactile
sensor that only detects whether the gripper finger has made
contact with the object.

2) Performance on individual objects: The grasp stability
prediction accuracy of the top-performing networks on the
objects used in training are detailed in Table II. The objects are
ordered in descending levels of complexity. We notice a large
variation among objects in terms the grasp stability accuracy:
for the highest performing modality (all sensors combined), the
Pudding Box object had 98% accuracy, whereas the Scissors
object had only 53% accuracy.

Our results show that, overall, the inclusion of tactile
information marginally increases overall network performance
on known objects. Additionally, networks that include the
touch modality tend to perform better on objects of higher
complexity. Furthermore, there tends to be an advantage of
using tactile information for thinner objects, such as the
two Screwdriver objects and the Scissors object. However,
this is not always true, as evident by the vision-only model
performing best on the Spoon, Potted Meat Can, Sugar Box
and Wood Block objects. We notice a trend that larger box
shaped objects tended to have higher accuracy for the vision-
only network, but we have no explicit explanation for why this
is the case. A further trend was for thin objects (e.g Spoon,



Rubik’s Cube Cracker Box Large Marker Gelatin Box Average
Vision + Depth + Touch (Both) 49.1±0.6 87.8±4.7 50.4±4.7 47.8±4.0 58.0±3.5
Vision + Touch (Left only) 49.9±1.4 79.8±10.8 47.0±6.0 41.1±7.8 53.9±1.9
Vision + Touch (Both) 48.6±6.4 88.9±7.5 48.9±7.8 51.9±12.1 58.5±3.8
Vision 48.9±0.5 81.2±3.7 42.9±5.4 32.9±4.1 51.1±2.7
Vision + Depth 52.8±2.0 69.6±7.4 39.8±2.5 34.1±3.1 48.5±1
Depth + Touch (Both) 45.3±2.8 93.5±0.9 56.4±2.0 52.9±10.6 61.3±2.8
Depth 44.6±1.2 79.5±13.4 41.3±5.9 42.1±1.0 51.6±4.9
Touch (Both) 44.2±1.7 93.3±1.9 55.8±4.2 53.5±5.5 60.9±3.1
Touch (Left only) 47.7±6.2 86.2±5.5 58.2±5.5 51±11.1 60.3±4.4

TABLE IV: Grasp stability prediction accuracy on unknown objects for networks trained on 10,000 samples. The overall
performance is much lower than for known objects.

Screwdrivers, Large Clamp, Scissors) to have relatively low
accuracy. This could be because there was greater difficulty in
predicting the outcome, resulting in inconsistent results over
different modalities.

3) Qualitative Analysis: Table III illustrates four examples
of successful and unsuccessful predictions of the network for
the Vision + Depth + Touch (Both) model.

The top left image illustrates a correctly predicted successful
grasp which is likely due to its clear vision of the object and
centered grasp.

A common failure of the network is due to partial occlusion
of the object caused by the gripper. An example of this can be
seen in the top right image resulting in an unsuccessful grasp
being incorrectly predicted.

The bottom left image depicts the network incorrectly
predicting that the grasp would be unsuccessful. Likely, this
example could also be suffering from vision occlusion of the
point contacts by the gripper.

The bottom right image of a correctly predicted unsuccess-
ful grasp illustrates the network’s potential ability to recognize
a falling object and identify the low chance of a successful
grasp.

These examples support our previous finding that the vision
modality is heavily relied on for grasp prediction accuracy.
This observation indicates perhaps more work is needed to
rely more on tactile information in poor visual situations.

Rubik’s Cube Cracker Box Large Marker Gelatin Box

Fig. 6: The four YCB object models used as unknown objects
in our experiments

B. Grasp Stability Prediction (Unknown Objects)

The results on unknown objects in Table IV reveal that the
best performing networks on the known objects did not align
with the highest performing networks on unknown objects.
This illustrates an overall issue around generalization and the
potential the networks over-fitted to the training data. This is
particularly evident by the poor results on the ”Gelatin Box”
(48%) compared to the very similarly shaped ”Pudding Box”

(98%). However, the networks that utilized tactile information
did generalize better – the three worst-performing networks
did not incorporate tactile information.

V. DISCUSSION

Best sensing modalities: Combining Vision + Depth +
Touch (Both) modalities created the most successful predic-
tions for known objects. It also provided high levels with
only limited data (1,000 samples instead of 10,000). The same
modality showed third-best performance for unknown objects.
This result indicates that there is no clear winner in terms of
which sensor modality should be utilized for grasp stability
prediction. Additionally, this result may be subject to over-
fitting of the networks to the training objects as suggested in
Table IV. This could be a result of a lack of data augmentation
to allow the network to generalise.

For known objects, the three worst-performing modalities
do not include vision illustrating the criticality of vision for
predicting grasp success. There is further evidence on this
observation, as we noticed that in many cases where the
network was not able to predict grasp success, the object was
occluded by the gripper. This problem could be alleviated with
a multi-camera or an eye-in-hand setup.

Comparison to existing literature: Our best performing
modality on known objects, Vision + Depth + Touch (Both),
was actually not tested by Calandra et al. [18], who did
not explore depth sensing in detail. [18]’s best performing
modality was Touch + Vision, however our work suggests that
adding depth could further improve their results.

We observe that the performance of different modalities in
our work was much closer to each other compared to previous
work on real robots [18] and in the TACTO simulator [8].
However, we did observe a similar trend of performance
increasing with the number of modalities utilized, confirming
this previous work that the addition of sensing modalities can
improve grasp prediction performance.

Problems with the simulator: We encountered several
difficulties during the data collection phase. When attempting
to grasp the object, the gripper would often pass through
the object. This occurred very frequently when we used the
original 3D scans from the YCB dataset. This was significantly
reduced after switching to the watertight models, however,
these cases still happened, therefore, faulty data needed to
be filtered out. Furthermore, we often encountered successful



grasps with no tactile information on one or both DIGIT
sensors and no force feedback information. As such, we
needed to perform significant filtering of our data to remove
such cases. This extensive filtering left approximately 20% of
the original data collected, notably increasing the time required
for data collection. As well, due to this extensive filtering,
there is a possibility that this may bias results as certain grasp
types may be more likely to be included.

Object diversity: As depicted in Fig. 3, we observe that
shapes of higher complexity tended to be more difficult to ob-
tain grasping data with valid tactile information. However, this
was not true for grasp difficulty, which did not significantly
affect on the amount of data that could be collected. This
illustrates a barrier in the simulator of dealing with objects of
higher complexity, but not grasp difficulty.

VI. CONCLUSION AND FUTURE WORK

The movement towards learning-based approaches in
robotic grasping has increased the need for efficient large-
scale data collection and subsequently, the ability to accurately
simulate sensors during robotic grasping. In this paper, we
investigate the use of high-resolution tactile sensor information
in a data-driven approach to estimate the success of robotic
grasping.

Building on previous work [18] in a simulation setting,
we used a subset of objects from the YCB benchmark. We
found evidence that using multiple modalities helped with
predicting whether a grasp would be successful. Our attempt at
training and performing robotic grasping of benchmark objects
in the TACTO simulator revealed several points of difficulty,
particularly in data collection. For example, the simulator
requires watertight object models and filtering to remove
data inconsistencies, especially to ensure tactile information
is present.

Our results suggest that a combination of visual, depth, and
tactile sensing provides good predictions for known objects,
especially in data limited scenarios. We also see, in our
findings, the possibility of using a single vision-based tactile
sensor with a force/torque sensor could provide the sufficient
tactile information needed to predict grasp success on par
with using two vision-based tactile sensors. This could be
an interesting direction for future work. Additionally, we
observed many failure cases occurred in visually occluded
settings, and as such future work could pursue the ability to
rely on tactile information more heavily in these situations.
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