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Abstract—Multiple object tracking (MOT) is a task
in computer vision that aims to detect the position
of various objects in videos and to associate them to
a unique identity. We propose an approach based on
Constraint Programming (CP) whose goal is to be
grafted to any existing tracker in order to improve
its object association results.We developed amodular
algorithm divided into three independent phases. The
first phase consists in recovering the tracklets pro-
vided by a base tracker and to cut them at the places
where uncertain associations are spotted, for exam-
ple, when tracklets overlap, which may cause identity
switches. In the second phase, we associate the previ-
ously constructed tracklets using a Belief Propagation
Constraint Programming algorithm, where we pro-
pose various constraints that assign scores to each of
the tracklets based on multiple characteristics, such
as their dynamics or the distance between them in
time and space. Finally, the third phase is a rudimen-
tary interpolation model to fill in the remaining holes
in the trajectories we built. Experiments show that
our model leads to improvements in the results for
all three of the state-of-the-art trackers on which we
tested it (3 to 4 points gained on HOTA and IDF1).

Keywords-Multiple Object Tracking; Constraint
Programming; Belief Propagation; Tracklets

I. Introduction
Multiple object tracking (MOT ) aims to detect and

affect a unique identity to various objects in video
sequences. It is in many cases solved by the tracking-
by-detection paradigm, which consists in separating the
problem into two distinct tasks, detection and associa-
tion (which we do in this work), but can also be solved
by tracking-by-regression, a method that performs these
two actions in parallel for short-term associations. While
recent advances in machine learning (ML) have led to a
huge performance gain for the detection phase in MOT,
the association phase remains a challenge, especially
because of its combinatorial complexity.

In this paper, to better deal with the combinatorial
complexity in the association phase, we propose a mod-
ule based on Constraint Programming (CP) whose goal
is to be grafted to any existing tracker in order to im-
prove its object association results. It can be applied to
methods that are from either the tracking-by-detection or
tracking-by-regression framework since our method ad-
dresses long-term data association at the tracklet level.

Our proposed model is divided into three independent
phases. The first phase, called TrackletCutter consists in
recovering the tracklets provided by a base tracker and
to cut them in places where uncertain associations are
spotted. In the second phase, called CP Associator, we
associate the previously constructed tracklets using a Be-
lief Propagation Constraint Programming model, where
we propose various novel constraints that assign scores
to each of the tracklets based on multiple characteristics,
such as their dynamics or the distance between them in
time and space. Finally, the last phase is a rudimentary
interpolation model to fill in the remaining holes in the
trajectories we built.

In the experiments, we show the benefit of our method
with improvements in the results for all three of the
state-of-the-art trackers on which we have tested it (3
to 4 points gained on the HOTA and IDF1 metrics).

II. Background and related work

MOT is a fast-growing field with many existing ap-
proaches whose performance has been greatly improved
by the recent advances in machine learning. It can
mostly be divided into two aspects (that are most often
phases of resolution) : the object detection and the
object association.

A. Object Detection
ML detection techniques have recently allowed great

advances in the field of object detection. This is the case,
for example, of the detectors of the R-CNN family [1]
whose principle consists in extracting regions of inter-
est (ROI ) and then, via convolutional neural networks
(CNNs), in inferring the main features of these ROI in
order to find the class of an object and its exact position
in the image. Improvements have been made to this
method, in particular with the Faster R-CNN detector
(FRCNN ) [2] for which the region proposal method is
itself a neural network called Region Proposal Network.
The typical output of a detector is usually provided in
a (x, y, w, h) format (where (x, y) represent the spatial
coordinates of the upper-left corner of the bounding box
and (w, h) its width and height). Such detections are
typically the inputs of trackers. Since detection is not
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Figure 1. Typical tracking result for a frame in the MO17-09
sequence : each of the pedestrians is enclosed by a bounding box
whose color corresponds to an identifier that should be kept by the
same pedestrian during the entire sequence.

the subject of this article, we can just remember here
that better detections lead to better tracking.

B. Object Association
Given a set of detections at each frame, a MOT

method typically builds tracks by associating detections
across frames. The tracker aims at affecting a single
identifier to each object of interest. To efficiently perform
the association phase, two questions arise:

1) How to represent the detections in such a way as to
be able to recognize and differentiate the different
objects of interest?

2) How to efficiently explore the set of solutions and
reach a satisfactory solution in a reasonable time?

1) Models to describe the detections: Regarding the
representation of detections, for an efficient association,
we generally seek to maximize one (or more) similarity
metric between associated detections, and these metrics
are computed from descriptors that are mainly divided
into motion and appearance models.
Motion models are generally based on the fact that the

objects of interest being tracked meet a certain number
of physical constraints concerning their speed of move-
ment and deformation in the image. Because videos are
often captured at more than 30 frames per second, the
displacement in pixels of the classes of objects of interest
is normally small between frames. We can consider what
we will call positional models which make the hypothesis
that at the scale of successive frames, the object of
interest followed is immobile, and of fixed size and shape.
This allows the design of very simple and therefore very
fast models such as the one on which much of our study
is based, IOU-Tracker [3], which consists in looking for
the best associations of detections frame by frame by
maximizing their IOU (quotient of their intersection and
union surfaces). This metric measures the superposition
of two detections, and penalizes the differences in size
and position. To increase the accuracy of this kind of
positional model, one can consider that the derivatives of
these position and size values are fixed and use these to

predict the position of the object in subsequent frames.
This is the principle of the Kalman filter [4] used for
example in SORT [5], one of the trackers on which we
test our model. The tracking task can be simplified by
keeping a model of the camera movement in parallel with
the movement models of the objects of interest [6].
Appearance models consist in the description of some

visual characteristics of the objects of interest (or rather
of their bounding boxes) and are based on the fact that
an object of interest generally keeps a similar appearance
through time (or changes only slightly and progressively
anyway), which will allow to associate the detections
with similar descriptors. These descriptors are gener-
ally based on the distribution of colors [7], gradients
of intensities [8] or more advanced methods such as
covariance matrices and multiple kind of filters [9]. CNNs
can also be used to model appearance [10], as well as
transformers [11] and Mixture Density Neural Networks
[12]. The method proposed by Tracktor [13], on which
we test our model, consists precisely in a regression of
bounding boxes from one frame to another to extend the
trajectories. CenterTrack [14] works in a similar way but
by working on the center of the detections, which allows
it to be more robust to occlusions. For all these methods
the regression is used for short-term association.
2) Resolving the association problem: Once the repre-

sentation models have been chosen, we try to associate
detections with one another to build our trajectories.
The goal is then to assign a trajectory identifier to each
detection to ensure that we can track every object of
interest from its entry into the camera field of view
(FOV ) to its exit of it. Trackers can be divided into
two categories regarding the way they process data.
Online trackers [3], [5] aim to build their trajecto-

ries in real-time and therefore work frame by frame in
chronological order. The method they use must thus be
incremental and build up tracks by adding detections to
existing tracks at each new frame. The tracker must have
a criterion to open a track (i.e. state that a new object
entered the FOV), to close one (i.e. state that it has
left the FOV) and to add a detection to a track. These
kinds of trackers can only be based on information from
past trajectories and current detections (that provide
only static information) and cannot return to modify
previously constructed trajectories.
Offline trackers remove the real-time constraint and

can thus be applied to the whole set of detections
at once, and our work fits into this paradigm as it
allows to consider the association problem as a global
optimization problem. Even if it allows access to many
new characteristics of the objects of interest and modes
of resolution, this shift to offline greatly increases the
complexity of the problem. Different avenues are taken
to resolve that difficulty. Some methods resolve it by



still working frame by frame, whether it is with dynamic
programming [15] or by going through time in both
directions [16] to make their results more robust than
they would be online. Some choose to go from a local to
a global scale, as in the H2T tracker [17], which divides
frames into small subsets, minimizes a sum of affinity
functions to associate detections within them, and then
resolves recursively the same problem on bigger and
bigger associated sets until whole tracks are finalized.

III. Approach and methodology

A. Motivation

We build on the work of [18] who was the first to apply
CP to multi-object tracking. The benefit of choosing CP
is that it is a very efficient method of formalizing and
solving optimization problems [19]. This is the reason
why we have decided to pursue in that direction. The
choice of working on the association of pairs of detections
was the main limitation of this previous work. Indeed
this made the search space extremely vast and there-
fore the computation time quite high. This forced the
decision to work in batches of frames and to strongly
restrict the spatial distances between bounding boxes
considered, which increases the sensitivity of the model
to occlusions.

To remedy this difficulty, our main idea is to work at
the level of tracklets (sequences of detections) instead
of individual detections. This greatly reduces the size of
the problem. Indeed there are simple trackers that are
extremely efficient in terms of execution time (notably
IOU-Tracker [3] that manages to process up to 100,000
frames per second, making it hundreds of times faster
than most of the other state-of-the-art trackers) and
they are good at making associations in simple cases. We
decided to start from them to capitalize on their speed
and try to correct their errors a posteriori, especially
those which intervene in the case of occlusions. This
choice also allows us to increase the refinement of the
association model, which can now be based on the
characteristics of the tracklets, which are dynamic, and
not only on those of the detections, which are static.

Our model is also applicable to all kinds of trackers
since we work from their outputs. Here we will speak
of tracklet for any association of detections provided
by an initial tracker, whether we have cut it or not,
and of trajectory to speak either of the associations of
tracklets that we constructed, or of the associations of
detections provided by the ground truth representing a
single object.

B. A three-phase model

Our model is divided into three modules :

• the TrackletCutter cuts the tracklets provided by
the initial tracker where they intersect each other
with a high degree of overlap;

• the CP Associator is the original association
model we propose here, based on a Belief Propa-
gation Constraint Programming algorithm [20];

• an interpolation model fills the gap in trajectories
by linearly interpolating these detections based on
the ones at the edges of the gaps.

While the CP Associator cannot be disabled (as it would
prevent association), the other two modules are optional.

C. TrackletCutter - Cutting tracklets on overlapping sec-
tions

While the sensitivity to occlusions of most trackers
often leads to fragmentation (i.e. tracks being cut into
multiple tracklets), we developed a module designed to
separate tracklets that are at risk of containing multiple
different objects of interest. As we know that this risk
is at its highest when multiple objects of interest cross
paths, it was decided to proceed as follows : as shown in
Figure 2, whenever in one frame two detections have an
overlap (IOU ) that reaches a fixed threshold TT C , the
tracklets to which they belong are cut at that frame.

D. Tracklet modeling

We define our set of tracklets as T and each tracklet
t ∈ T is, as shown in Figure 3, described by:
• a frame: fS (resp. fE) the frame in which the first

(resp. last) detection of the tracklet appears;
• a bounding box: (xS ,yS ,wS ,hS) (resp.

(xE ,yE ,wE ,hE)) the mean of the spatial coordinates
of the six bounding boxes following the first one
(resp. preceding the last one) of the tracklet;

• a speed: (vx
S ,v

y
S) (resp. (vx

E ,vy
E)) the mean speed of

the centers of the the six bounding boxes following
the first one (resp. preceding the last one) of the
tracklet.

If t is formed by fewer than ten detections, the av-
eraging of the six first and last bounding boxes is not
performed. The speed is then computed between the
first (resp. last) two bounding boxes and the spatial
coordinates are those of the first (resp. last) bounding
box. However, doing this for each tracklet would have
led us to put too much weight on the quality of these
first and last bounding boxes that are by essence the
least representative of the object of interest (as we
can infer that the track has been separated at them
because of some defect or occlusion), thus the choice of
averaging the few following (resp. preceding) detections.
The choice of working on six bounding boxes is however
arbitrary and could be refined in future works.



Figure 2. Workings of the T rackletCutter with TT C = 0.3: Exploration of each frame one by one; as soon as the overlap of two bounding
boxes reaches TT C their tracklets are cut.

Figure 3. Construction of the two representative bounding boxes
of a tracklet by averaging bounding boxes at its start and end.

E. Associating tracklets with Constraint Programming
Once the tracklets have been modeled, the goal is to

associate them using our CP Associator. To do so, we
need to model the problem following the CP paradigm,
to define our use of constraints (both filtering and
assigning marginals) and to define the methods we use
to explore the solution space.
1) Modeling the association problem in a CP

paradigm: A CP model is given by a finite set of
variables, each taking its value from a finite set called
its domain. Constraints are then specified on the com-
binations of values that these variables can take. This
model defines a Constraint Satisfaction Problem (CSP).
In our case, the tracklet association phase is modeled as:
• S our set of successor variables such that, for every

tracklet i, S(i) is its successor, meaning that S(i)
immediately follows i in the same trajectory.

• For every tracklet i, the domain D(i) contains every
tracklet that starts temporally after i ends, and a
stopping value (meaning that i is the last tracklet
of its trajectory).

• C is our set of constraints, which we use to filter
the domains of each successor and to affect a score
to each tracklet-successor pair.

2) Using constraints to filter: Constraints are most
often used to restrict the domains of variables. We use
them in that fashion to ensure the following character-

istics for our trajectories:
allDifferent: No detection should be found in mul-

tiple trajectories and therefore no tracklet should be
assigned to multiple trajectories. To accomplish that
goal, we used the allDifferent constraint. Applied to the
whole set of variables, it ensures that no two variables
are assigned the same value. It is given by:

∀(i, j) ∈ T 2 | i 6= j, S(i) 6= S(j) (1)

Temporal consistency: As we suppose in this part
of our model that our tracklets are perfect (namely that
each detection in a specific tracklet belongs to a single
object), there should be no overlap in time between
tracklets affected to a single trajectory. Therefore, we
define the temporal consistency constraint as follows:

∀(i, j) ∈ T 2, j ∈ D(i)⇒ fE(i) < fS(j) (2)

3) Score-based constraints: We also propose to use
constraints in a different manner, that is to assign a score
to each pair (t, s) (where t is a tracklet and s ∈ D(t)
is a successor) based on a given characteristic c. Each
constraint is based on a distance c(t, s) between t and
s. These different kinds of distances (that can be, as
we will see below, temporal or spatial for example) are
then transformed into scores Sc(t, s) ranging from 0 to
1 where:
• Sc(t, s) = 0 leads to the immediate removal of s

from D(t) the domain of the successors of t.
• Sc(t, s) = 1 leads to the immediate assignment of s

to S(t) i.e. s becomes the successor of t.
• Sc(t, s1) ≥ Sc(t, s2) means that according to char-

acteristic c, s1 is a more likely candidate than s2 to
be the successor of t.
Building scores: Each score-based constraint is as-

signed three thresholds that will help define their behav-
ior:
• T c

50: value of the distance for which we set the score
at 50% (i.e. 0.5).



Figure 4. Representation of the computation of a constraints score
: the thick black line represents S (gaussian of peak 1, mean 0
and standard deviation 1

2ln(2) T c
50), the red line represents the real

score: bounded above by U and below by L, falls to 0 when reaching
T c

0 . To enhance visibility we set U = 0.9 and L = 0.1. Typically
we set L = 10−6 and U = 1 − L.

• T c
end: value of the distance between the tracklet
t and the fictional tracklet which represents the
stopping of the trajectory at t. It is indeed essential
to compare the set of possible successors to the
possibility of associating with none of them (which
would mean that t is that last tracklet of its trajec-
tory).

• T c
0 : value of the distance beyond which the ex-

amined successor s is removed from D(t). This
threshold may or may not be activated, but if it
is and it is reached for a given pair (t, s), Sc(t, s) is
then equal to 0 and s is removed from D(t).

As shown in Figure 4, as long as c(t, s) ≤ T c
0 (where it

automatically falls down to 0), the score of the associa-
tion of t and s according to the characteristic c, Sc(t, s),
is calculated as follows. We compute

S = exp(−c(t, s)
2

2σ2
c

) (3)

where
σc = T c

50
2ln(2) (4)

so that S = 0.5 for a distance of T c
50. Finally the actual

score is bounded as follows

Sc(t, s) = max(L,min(S,U)) (5)

where L is the lower bound of the score and U the upper
bound (so that it does not reach 0 or 1).

Constraint on time spacing: The first kind of score-
based constraint we developed favors a small temporal
distance between a tracklet and its successor. For each
pair (t, s), we get the metric td(t, s) ( where td stands
for time distance) such that:

td(t, s) = fS(s)− fE(t) (6)

Figure 5. Computation of the characteristics evaluated by the
predicted IOU (P IOU) and predicted center distance (P CD) con-
straints : the ending bounding box of the tracklet is projected onto
the first frame of the successors candidates. The starting bounding
boxes of the successors are compared with the projection based on
their overlap and the distance between their centers.

Constraints on dynamics: We also decided to built
constraints that aim to maintain the trajectories as
smooth as possible by minimizing the discontinuities
in acceleration. For each pair (t, s) we then obtain the
metrics ad(t, s) and sd(t, s) (for angle difference and
speed norm difference) such that:

ad(t, s) = ̂(
−−−→
vE(t),

−−−→
vS(s)) (7)

sd(t, s) =
∣∣∣−−−→vS(s)

∣∣∣− ∣∣∣−−−→vE(t)
∣∣∣ (8)

Constraints on a predicted position: We can suppose
that with the help of the aforementioned time distance
constraint that the tracklets most likely to be associated
are those that are not too temporally distant. As the
shorter the time interval, the less the object of interest
can change its speed, direction and even position in the
image, we decided to add a constraint on a predicted
position. Following the example of a Kalman filter [4], we
consider that projecting a bounding box using its speed
onto subsequent frames not too far apart is a relatively
efficient prediction mechanism. Therefore we propose
two constraints, which are described in Figure 5 : they
compare the predicted position of the considered object
and the evaluated successor by IOU or by the distance
between their centers (which is largely considered to be
more robust to occlusions [14]).
4) Adaptation to video sequences properties: As the

video sequences we work with have different characteris-
tics regarding dimensions and capture speed (measured
in frames per second or FPS), we chose to adapt the
parameters of the score-based constraints. Indeed, af-
fecting a time distance score of 0.5 to a pair of tracklets
separated by six frames has a very different meaning for
a sequence of 12 FPS compared to one four times faster.



Therefore we decided to adapt the time distance con-
straint to the FPS of the sequence, the predicted center
distance constraint to the size of the image (represented
by proxy by the length of the diagonal of the image), and
the speed norm difference constraint to the FPS and the
diagonal.
5) Marginals: Once each of the successor domains

D(t) have been restricted by the activated relevant
constraints, the remaining (t, s) pairs (where t ∈ T and
s ∈ D(t)) get a score from each activated score-based
constraint (as explained before). That leaves us with up
to 5 scores per pair that we would like to use to guide
our solution exploration. To do so, we combine these into
marginals, following in a way the example set by [21]
where the authors try to minimize a sum of energies.
We compute these marginals M(t, s) as the product of
scores normalized over D(t) :

M(t, s) =

∏
c

Sc(t, s)∑
k∈D(t)

∏
c

Sc(t, k)
(9)

Usually when Belief Propagation (BP) is used in CP,
the marginals built represent the density of solutions
resulting from the branching of a constraint for the
considered variable-value pair. It is used here to convey
our marginals.
6) Exploration method: A branching heuristic called

MaxMarginal has been developed in MiniCPBP [20].
It consists in guiding the construction of the search
tree exploring the pairs tracklet-successor by descending
order of marginal. Regarding the exploration strategy, to
prioritize staying close to the model by promoting high
marginals association first, we use Depth First Search
(DFS) that consists in exploring the search tree by
taking deviations as low as possible in the search tree
if a valid is not found at first.

F. Interpolation model
Once the tracklets are associated with each other, it

is likely that the resulting trajectories will have gaps,
i.e. sequences of frames in which the object disappears
before reappearing. This is why we decided to integrate a
simple interpolation model in our method, which works
as follows:

As shown in Figure 6, we identify the holes in each
trajectory and if they are smaller than a threshold,
maxGapSize, we fill them by making a linear interpo-
lation from the detection preceding the hole to the one
following it. Simply put, we consider that the object has
moved (and changed shape or size) at a constant speed
from the detection that precedes the hole to the one that
follows it, and we add all the missing detections to the
trajectory.

Figure 6. Workings of the interpolation model for maxGapSize =
4 : two detections are being placed to fill a hole, by placing centers
regularly between the edges of the hole and then interpolating their
dimensions linearly.

IV. Experiments and results
A. Evaluation Dataset

We have chosen to evaluate our model on the training
set of the MOT17 [22] challenge based on the detections
of the best proposed detector, FRCNN [2]. This dataset
represents a reference in the field and presents many
difficulties that are particularly interesting to confront.
Whether it is the often high occlusion rates, turbulence,
moving cameras, strong variations in light exposure,
sometimes subjective POV and other times very elevated
POV, or the numerous reflections present in these videos,
we are dealing with extremely varied situations that
should allow us to evaluate our model in the majority
of situations that can happen in urban settings.

B. Evaluation metrics
We evaluate our method using three of the main

MOT metrics: MOTA (and MOTP) [23] that mainly
measure the quality of detections, and are used very
broadly in the literature, IDF1 [24] that refers more to
the quality of the association between detections, also
widely used in the literature, and HOTA [25] a more
recent metric that accounts for both the performance
in terms of association of detections and the quality of
these detections.

C. Parameters
We tested multiple combinations of parameters for

each of our modules (tried to activate or not each of
the constraints) to find interactions and select the best
configuration. Table I represents the best configuration



Table I
Final model configurations used in ablation testing

Module Best configuration

Association

TimeDistance td50 = 1
tdend = 3

PredictedCenterDistance pcd50 = 0.02
pcdend = 2

PredictedIOU piou50 = 0.75
piouend = 2

AngleDifference disabled
SpeedNormDifference disabled

TrackletCutter TT C = 0.5
Interpolation maxGapSize = 42

Table II
Results of the different model components in ablation on
three different trackers applied to the MOT17 training
sequences. TC: TrackletCutter, CP: CP Associator, Int:
Interpolation model. For all metrics, higher is better.

Method HOTA MOTA IDF1
IOU-Tracker 43.04% 49.74% 50.27%
IOU-Tracker + CP 45.34% 49.91% 53.78%
IOU-Tracker + TC + CP 45.47% 49.90% 54.11%
IOU-Tracker + CP + Int 46.04% 50.62% 54.38%
IOU-Tracker + TC + CP + Int 46.18% 50.49% 54.74%
SORT 42.80% 48.54% 50.63%
SORT + CP 45.40% 48.71% 54.34%
SORT + TC + CP 45.14% 48.70% 53.96%
SORT + CP + Int 46.35% 49.46% 54.92%
SORT + TC + CP + Int 46.06% 49.39% 54.58%
Tracktor 55.18% 61.81% 65.06%
Tracktor + CP 56.39% 61.87% 67.40%
Tracktor + TC + CP 55.89% 61.85% 66.77%
Tracktor + CP + Int 56.98% 62.99% 67.88%
Tracktor + TC + CP + Int 56.49% 62.96% 67.29%

we found by applying our model to the MOT17 training
data. We found during these calibration sessions that
the vast majority of high scoring configurations were
those that did not give the ability to filter successors
(i.e. reduce their score to 0) to score-based constraints.
We therefore disabled this ability of constraints that only
guide the search in the configuration presented below.

Concerning the exploration of the solutions, it turned
out that by pushing this one even up to the 10, 000th

valid solution explored for multiple configurations of
parameters and constraints, we did not obtain better
results than by stopping at the first one found by branch-
ing on the maximal marginals (except for the very bad
models, which obtained in all cases worst solutions than
the initial tracker), so we decided to stop at the first valid
solution in our exploration.The code for our method can
be found at github.com/reminahon/tracklet_associator.

D. Results and Discussion
Results are given in Table II. It can be noted that

whatever the tracker we apply it to, our model allows
to obtain improvements of several percents on the three
scores that interest us: HOTA, MOTA and IDF1. Con-
cerning the HOTA, the main metric of our evaluation,

we obtain an improvement of 3.14% for IOU-Tracker,
3.55% for SORT and 1.8% for Tracktor which already
had a rather high score (13% more than the two others
originally) which shows that our module is likely effective
on any type of tracker independently of their initial level
of performance or their tracking paradigm.

Our goal was mainly to improve data association with
our CP Associator, but we also addressed the detection
phase with the interpolation module. HOTA and IDF1
are the two metrics that are the most sensitive to the
quality of the associations, as opposed to MOTA that
is not very sensitive to the data association quality, but
more sensitive to the detections quality. We observe that
the CP association model is the module that allows the
most improvements in terms of HOTA and IDF1 (70%
of the improvements on average) to the results of the
three trackers. The rest of the improvements are mainly
brought by the interpolation model which allows to
improve the MOTA by more than one point for Tracktor,
in particular, by adding missing detections.

However, the IOU-Tracker is the only tracker for
which the TrackletCutter really allows an improvement
of the results. This may be due to the fact that this
tracker has more errors due to occlusions detected by
our method. Still, it seems that our model performs
adequately without the TrackletCutter. It turns out that
this is the part of the model that requires the most com-
putation time, for little to no improvement. We would
therefore advise not to use it for any other tracker than
IOU-Tracker. Moreover, on the whole MOT17 training
set, applying our model to get the improved trajectories
takes between 30 to 60 seconds without the TrackletCut-
ter and up to 5 minutes with it. Even without the use
of the TrackletCutter, our model retains interest insofar
as trackers tend to suffer from fragmentation which we
correct by our association. One could even postulate that
the more a tracker suffers from fragmentation, the better
our post-processing can help its tracking performance.

V. Conclusion
We presented a method that can be used as a post-

processing step for any state-of-the-art multi-object
tracker to improve its association performance as we
have been able to show by testing it on the trackers IOU-
Tracker, SORT and Tracktor on the MOT17 dataset.
This demonstrates its competitiveness in the field of
pedestrian tracking. In addition we propose here the
first association model based on Constraint Program-
ming with Belief Propagation. Furthermore, a strength
of our method for future improvements relies on our
modularity: each module we propose (whether it is the
TrackletCutter, the association model or the interpola-
tion one) can be substituted with another one that would
accomplish the same function. New constraints based on

https://github.com/reminahon/tracklet_associator


other characteristics (such as appearance for example)
can also be added without any major changes in the
architecture of the model.
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