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Abstract—Range-only (RO) localization involves determining
the position of a mobile robot by measuring the distance
to specific anchors. RO localization is challenging since the
measurements are low-dimensional and a single range sensor
does not have enough information to estimate the full pose of
the robot. As such, range sensors are typically coupled with
other sensing modalities such as wheel encoders or inertial
measurement units (IMUs) to estimate the full pose. In this
work, we propose a continuous-time Gaussian process (GP)-
based trajectory estimation method to estimate the full pose of
a robot using only range measurements from multiple range
sensors. Results from simulation and real experiments show
that our proposed method, using off-the-shelf range sensors,
is able to achieve comparable performance and in some cases
outperform alternative state-of-the-art sensor-fusion methods
that use additional sensing modalities.

Keywords-localization; sensor fusion; range-only; continuous
time estimation;

I. INTRODUCTION

Accurate localization is essential for the reliable operation
of any autonomous system. Generally, different sensing
modalities are used for localization in different environ-
ments. In outdoor environments, the Global Positioning
System (GPS) [1] is one of the preferred methods of
localization. In recent years, localization against a map using
lidars and cameras has also been widely adopted in self-
driving cars. For indoor environments, the sensing modalities
include vision, laser, magnetic tapes, and radio wave-based
sensors such as WiFi and ultrawideband (UWB) [2].

The underlying principle of radio wave-based positioning
technologies such as GPS and UWB is point-to-point range
measurements between a transmitter and a receiver. In range-
only (RO) localization, a robot with a range sensor such
as a radio measures its distance to other radios known as
anchors. The distance measurements are then combined to
determine the position of the robot [1]. RO localization is
challenging since range measurements are sparse and hence
are typically used only for position estimation. In the case
where the full pose of the robot is needed, range sensors
are typically used in combination with additional sensors
as wheel encoders [3] or inertial measurement units (IMUs)
[4]. A common drawback of such sensor-fusion methods
is that sufficient excitation or movement is required before

Figure 1. Our test platform for 2D trajectory estimation is a custom-
built wheeled holonomic robot. It is equipped with two ultrawideband
(UWB) radios to estimate the full 2D pose using continuous-time trajectory
estimation. The robot also has 3 mecanum wheels with encoders, which are
used for comparison with the baseline algorithm.

the full pose can be determined unambiguously [5], [6]. For
example, in tightly-coupled UWB-IMU systems, excitation
of the accelerometer and gyroscope axes is necessary for
full-state observability [6]. This can be a limiting factor
for autonomous robots that frequently encounter stop-and-go
motion patterns in settings such as warehouses and factories.
Additionally, sensors such as wheel encoders are susceptible
to wheel slippage, which can result in poor performance,
especially in slippery and off-road conditions.

In this work, we propose a continuous-time trajectory
estimation method that is able to estimate the full pose
of a robot using only range measurements from multiple
range sensors. Unlike conventional multimodal sensor-fusion
algorithms, the proposed method does not require excitation
or motion for full pose estimation, although it may still
benefit from it. Additionally, the proposed method is not
affected by naturally occurring conditions such as wheel
slippage and lack of adequate motion.

In summary, the main contributions of this work are (i)
a continuous-time approach to 2D and 3D pose estimation
using only range measurements from multiple range sensors,
and (ii) demonstration of the proposed approach in simula-
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tion and real experiments.
The paper is organized as follows. We review the related

work in Section II. We formulate our problem in Section III
and describe our proposed method in Section IV. We present
results from evaluation of our approach in simulation and
real experiments in Section V. We include a discussion of
the results and challenges of our approach in Section VI and
conclude the paper in Section VII.

II. RELATED WORK

Range-only (RO) localization has a rich history since it is
widely used in positioning technologies such as Global Po-
sition System (GPS) [1], and more recently in other wireless
positioning technologies such as ultrawideband (UWB) [7].

As alluded to previously, the sparse nature of range
measurements does not afford full pose estimation. As such,
range sensors are typically combined with wheel odometry
[8], [3], [9] for the localization of ground robots. Another
common approach to pose estimation is to combine range
sensors with inertial measurement units (IMUs) [4], [10],
[6]. More recently, other sources of pose such as fiducial
markers [11] and visual-inertial-odometry have been used
as well [12], [13]. Common estimation frameworks used for
positioning include parametric filtering methods, [4], [10],
[6], nonparametric filtering methods [3], and more recently,
optimization-based methods [12] have gained traction. Most
of the previous works use a discrete-time formulation for
trajectory estimation.

In recent years, there has been an interest in continuous-
time approach to RO localization. A spline-based approach
to the fusion of UWB and IMU data for continuous-time
trajectory estimation is proposed in [14]. In [15], polynomial
basis functions are used to parameterize the robot trajectory
and to derive the conditions necessary for recovering the
trajectory. More recently, continuous-time trajectory estima-
tion based on Gaussian process (GP) regression [16] was
applied to RO localization [17]. Unlike the previous works,
[15], [17] use only range measurements to estimate the robot
position over time. The application of range measurements
for 2D relative pose estimation between multiple agents
using multiple range sensors was recently shown in [18].

An alternative approach to pose estimation using range
measurements from multiple range sensors is to combine
multilateration [1] with 3D point set registration [19]. A
limitation of this approach is that it requires synchronization
between the anchors and the range sensors.

In this work, we take the GP regression approach to
continuous-time trajectory estimation of [16], [20] and per-
form full 2D and 3D pose estimation using only range
measurements from multiple range sensors. In contrast to
previous methods, our method does not require additional
sensing modalities nor does it require synchronization be-
tween the anchors and the range sensors. To the best of the
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Figure 2. Factor graph for a range-only (RO) localization setup. In RO
localization, a robot equipped with a range sensor, such as a wireless radio,
estimates its position by measuring the distance to other wireless radios,
known as anchors, installed in the environment. The trajectory consists of
a set of nodes representing the robot state, x(t). The anchor positions,
pa# , are known, as indicated by the filled circles. Motion prior factors are
denoted by o(t) and the range measurements by factors r#(t), where #
denotes the anchor id.

authors’ knowledge, continuous-time 2D and 3D pose esti-
mation using only asynchronous range measurements from
multiple range sensors has not appeared in the literature.

III. PROBLEM STATEMENT

The setup we consider is that of a robot navigating in
an environment where multiple anchors have been installed.
The objective of this work is to estimate the pose of the
robot using only range measurements made to the anchors.
We assume that
• multiple (≥ 3) non-collated anchors are installed in the

environment,
• the position of the anchors is known,
• each robot is equipped with at least 2 non-collocated

range sensors for 2D pose estimation and at least 3
range sensors for 3D pose estimation, and

• the position of the range sensors in the robot body
frame is known.

The proposed method does not require range measure-
ments between the anchors and the range sensors to arrive
simultaneously in a synchronized manner. Specifically, a
single range measurement between a range sensor on the
robot and an anchor is necessary at each time step.

IV. METHODOLOGY

A. Preliminaries

We introduce the frame convention and the notation that
will be used throughout the paper. We denote the world
frame by FW and the robot frame by Fi. We represent the
robot pose in the world frame using elements of the special
Euclidean Lie group Twi ∈ SE(n), where n = 2 for 2D
pose and n = 3 for 3D pose. We will use 3D poses for
exposition with the understanding that the proposed method
carries over to 2D poses. A generic pose element T is
parameterized as T = {p,R}, where p ∈ R3×1 represents
the position and R ∈ SO(3), a member of the special or-
thogonal group, represents the orientation. We use the right
perturbation convention of [21] to represent perturbations



around the nominal pose. Specifically, a generic pose is
decomposed into a nominal pose, T̄ ∈ SE(3), and a small
perturbation ξ ∈ R6×1 as

T = T̄ exp(ξ∧), (1)

where the operator, (·)∧, maps an element of R6×1 to an
element of the Lie algebra, se(3). The exp(·) operator is a
retraction operation for SE(3) and maps an element of the
Lie algebra se(3) back to the Lie group, SE(3).

As mentioned previously, the setup we consider is of a
robot with multiple range sensors navigating in an envi-
ronment with anchors. Range measurements between the
range sensors on the robot and the anchors arrive in an
asynchronous manner. Since a single range measurement is
not sufficient to constrain the full state, we use motion priors
as constraints between subsequent range measurements to
constrain the full state. The factor graph for such a setup is
shown in Figure 2. The motion priors are added as binary
factors, o(ti), between two consecutive robot states, x(ti)
and x(ti+1), and the range measurements are added as unary
factors, rj(ti). We perform inference on the factor graph
using maximum a posteriori (MAP) estimation. Under the
Gaussian noise assumption, this is equivalent to solving
a nonlinear least-squares problem. Next, we describe the
motion model used to generate the motion prior and the
range measurement model.

B. Motion model

We adopt the Gaussian process (GP) regression approach
to continuous-time trajectory estimation of [16] and use the
white-noise-on-acceleration (WNOA) motion model [20].
Since the pose variables are nonlinear, we use the local
pose variable formulation of [20] to define a linear time-
invariant (LTI) motion model on the local pose variables,
which are subsequently stitched together to generate the
whole trajectory. The motivation for choosing such a motion
prior is that the resulting system matrices are sparse and can
be solved very efficiently. For completeness, we present here
an overview of the motion prior generation for the right-
perturbation scheme. A more detailed description using the
left-perturbation scheme can be found in [21].

The robot state at any time t is given by x(t) =
{T(t),$(t)} ∈ SE(3) × R6×1, where, as before, T(t) is
the robot pose in frame FW and $ is the generalized body-
centric velocity of the robot. We drop subscripts denoting the
frames to reduce clutter. We define the local pose variables
as perturbations around the nominal pose as

T(t) = T(tk) exp(ξ∧k (t)), (2)

where ξk ∈ R6×1 is the local pose variable. We define a
motion model on the local pose variables using the following

LTI stochastic differential equation (SDE) [20], [21]:

d

dt

[
ξk(t)

ξ̇k(t)

]
=

[
0 I
0 0

] [
ξk(t)

ξ̇k(t)

]
︸ ︷︷ ︸
γk(t)

+

[
0
I

]
wk(t),

where I is the identity matrix of appropriate dimensions,
wk(t) ∼ GP(0,Q(t − t′)) is a zero-mean GP with power
spectral density matrix, Q. The local pose velocity, ξ̇k(t), is
related to the generalized body-centric velocity as ξ̇k(t) =
J −1r (ξk(t))$(t)∨, where J r is the right jacobian of SE(3)
[22], and the operator (·)∨ maps an element of the Lie
algebra se(3) to R6×1. The above SDE can be integrated
in closed form to obtain a sparse GP prior. The mean of the
prior between two time instants is

γk−1(tk) = Φ(tk, tk−1)γk−1(tk−1),

and the corresponding covariance is

P̌k(tk) = Φ(tk, tk−1)P̌k(tk−1)Φ(tk, tk−1)T +Q(tk−tk−1),

where the system transition matrix is

Φ(tk, tk−1) =

[
I I∆tk:k−1
0 I

]
,

and the noise between two time steps is

Q(tk − tk−1) =

[
1
3∆t3k:k−1Q

1
2∆t2k:k−1Q

1
2∆t2k:k−1Q ∆tk:k−1Q

]
,

with ∆tk:k−1 = tk − tk−1.
The error terms corresponding to the motion prior required

for MAP estimation are given by

ep =

[ (
$(tk−1)∆tk:k−1 − ln

(
T(tk−1)−1T(tk)

))∨
,

$(tk−1)∨ −J −1r (ln(T(tk−1)−1T(tk))∨)$(tk)∨

]
,

where ln(·) is the inverse retraction operation and converts
a member of the Lie group to its Lie algebra.

C. Range measurement model

The range measurement at any time t between the robot
and anchor j is given by

rj(t) = ‖paj
−R(t)pu − p(t)‖2 + ηrt, (3)

where ‖·‖2 is the `2 norm, T(t) = {p(t),R(t)} is the robot
pose at time t, paj

∈ R3×1 is the position of anchor j in
world frame, and pu is the position of the range sensor w.r.t
robot body frame Fi, a.k.a lever arm, and ηr(t) ∼ N (0, σ2

r)
is an additive white Gaussian noise of variance, σ2

r .
From the measurement model (3), we can see that the

only term influencing the orientation of the robot is the
lever arm: a larger lever arm provides better orientation
estimation. This is especially true in the presence of noisy
range measurements. Additionally, for 3D pose estimation,
multiple (≥ 3) noncollinear range sensors are needed in
order to excite all three axes of orientation. The error term
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Figure 3. Results from simulations demonstrating the effect of magnitude
of range measurement noise and lever arm length on orientation (top) and
position (bottom) root-mean-square error (RMSE). Lever arm lengths are
indicated by dashed vertical lines. For a given length of the lever arm,
the range measurements are corrupted with Gaussian noise of increasing
covariance (denoted by σ2

r ). The plots show that orientation estimation is
more susceptible to noise in range measurements for smaller lever arms,
whereas position estimation is relatively less sensitive.

for MAP estimation corresponding to the range measurement
model is

er = rj(t)− ‖paj −R(t)pu − p(t)‖2.

D. Inference

To keep the computational cost low, we use a fixed-lag
smoother (FLS) to combine a window of range measure-
ments and motion priors to estimate the robot trajectory.
The size of the window is parameterized by time duration,
δtfls. A complete description of MAP estimation done in
each fixed window can be found in [21]. States older than
δtfls are marginalized out. We use the GTSAM [23] library
to implement the FLS.

V. EXPERIMENTS

In this section, we present results from simulations and
real experiments to demonstrate RO pose estimation under
different settings. In simulation, we evaluate the effect of
the range measurement noise and the lever arm length on
estimation accuracy. We evaluate the proposed approach for
2D and 3D trajectory estimation in real experiments.

A. Simulations

In simulations, we evaluate the sensitivity of RO local-
ization to the magnitude of noise in range measurements
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Figure 4. Position and orientation RMSE box plots from real experiments
for our proposed method and the baseline (UWB+ODOM). The proposed
method uses only range measurements whereas the baseline uses a combina-
tion of wheel encoder data and range measurements. The proposed method
achieves better average position RMSE with lower deviation compared to
the baseline. A similar trend can be observed in the orientation RMSE.
Larger deviations of the baseline are due to wheel slippage.

and the length of the lever arm. Our simulation environment
consists of 8 anchors and a quadrotor with 3 noncollinear
range sensors. The quadrotor is controlled using ground truth
and is commanded a straight-line trajectory. The length of
the lever arm is equal for the three range sensors. The
lever arm lengths are varied from ‖pi

u‖2 = 0.014 m to
‖pi

u‖2 = 2.8 m. For a given length of the lever arm, the
range measurements are corrupted with Gaussian noise of
increasing variance (σ2

r = 0 m to σ2
r = 0.01 m). Position and

orientation root-mean-square error (RMSE) from multiple
simulations are shown in Figure 3. The plots show that
orientation estimation is more susceptible to noise in range
measurements, especially for smaller lever arms. This is
expected because the resolution of any angle relies on
the physical distance between the range sensors. However,
noise in range measurements can negate the effect of this
physical separation. In contrast, the estimation of position is
relatively more robust to the noise in range measurements as
it does not require range sensors to be physically separated.
However, increasing measurement noise results in a higher
position RMSE.

B. Real experiments

Setup: We use the DW1000-based [24] ultrawideband
(UWB) radios from Bitcraze as both anchors and range
sensors on the robot. The test space consists of an arena
of dimensions 7 m × 8 m × 3.5 m with 8 UWB anchors
installed in the corners of the space. The UWB radios are
operated in two-way-range (TWR) mode. The test space is
also equipped with a Vicon motion capture system, which
is used as a source of ground truth pose.

2D Localization: For 2D localization, we use a custom-
built wheeled holonomic robot, shown in Figure 1, as our
test platform. The robot is equipped with two UWB radios
and three wheel encoders. The length of the lever arm is
‖pi

u‖2 = 0.095 m. We compare our method with sensor
fusion of range measurements and wheel odometry data [25].
In this case, data from a single UWB radio is combined with



Table I
AVERAGE POSITION AND ORIENTATION RMSE OF 2D TRAJECTORY

ESTIMATION FROM REAL EXPERIMENTS.

Algorithm Average position
RMSE [m]

Average orientation
RMSE [rad]

UWB+ODOM 0.086 0.303

Ours 0.041 0.161
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Figure 5. Trajectory estimation results from real experiments for our
proposed method and the baseline (UWB+ODOM). The proposed method
achieves similar tracking performance in position (left) and yaw angle
(right) as the baseline without using wheel encoder data.

velocity measurements from the wheel encoders using the
same inference method as before. We refer to this baseline
algorithm as UWB+ODOM.

We performed multiple experiments where the robot was
driven manually along different trajectories in the test space
and the sensor data was recorded onboard for offline eval-
uation of the two methods. UWB range data was processed
to remove large outliers and constant biases for both algo-
rithms.

Box plots of the position and the orientation RMSE for the
two methods from 6 experiments are shown in Figure 4. The
proposed method achieves better average position RMSE
with lower deviation compared to the baseline. A similar
trend can be observed in the orientation RMSE. Larger
deviations of the baseline method are due to frequent wheel
slippage, which results in erroneous velocity measurements.
The average RMSE values for the two methods are provided
in Table I. Trajectory plots from one such experiment for the
two methods are shown in Figure 5. The corresponding error
plots with 3σ covariance bounds for our proposed method
are shown in Figure 6. The plots show that the estimated
uncertainty bounds the observed error reliably.

The baseline achieves better tracking performance for
trajectories involving rapid turns. This can be attributed to
the lower update rate and sparsity of range measurements.
Specifically, the wheel encoders provide linear and angular
velocities at 20 Hz. In contrast, range measurements provide
a single distance measurement at 17 Hz. With an increased
range update rate, the proposed method should be able to
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Figure 6. Error plots for position (x and y) and yaw angle with the
corresponding 3σ covariance envelopes for our proposed method from a
real experiment. The estimation is unbiased and the estimated uncertainty
bounds the observed error reliably.

Figure 7. Our setup for 3D trajectory estimation is a sensor wand equipped
with three ultrawideband (UWB) radios. The wand is also equipped with an
inertial measurement unit (IMU), which is used for the baseline algorithm.
The maximum length of the lever arm is ‖pi

u‖2 = 0.72m.

track more aggressive trajectories.

C. 3D Localization

Our test platform for 3D localization is a sensor wand
equipped with 3 UWB radios and an IMU. The UWB
radios are mounted in a noncollinear manner as shown in
Figure 7. We compare our method to the tightly-coupled
fusion of UWB and IMU data [6]. Specifically, we combine
measurements from a single UWB radio and an IMU using a
fixed-lag smoother. We refer to this baseline as UWB+IMU.

Dynamic trajectories: We performed multiple experi-
ments where the sensor wand was moved manually along
different trajectories to excite different axes of the IMU.
The sensor data was recorded for offline evaluation of the
two approaches.

Box plots for axes-wise and cumulative position and



x-pos. y-pos. z-pos. 3D-pos.
0.025

0.050

0.075

P
os

it
io

n
R

M
S

E
[m

]

roll pitch yaw 3D-ori.

0.05

0.10

0.15

R
ot

at
io

n
R

M
S

E
[r

ad
]

UWB+IMU Ours
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Figure 9. Error plots for the estimated position and orientation (with the corresponding 3σ covariance envelopes) for our proposed method from a real
experiment. The estimated uncertainty bounds the observed error.

orientation RMSE for the two methods from 5 experiments
are shown in Figure 8. The proposed method achieves a
better position RMSE compared to the baseline. However,
the baseline achieves a lower orientation RMSE compared
to our method. This is expected as (i) the IMU has angular
rate measurements along each body axis, and (ii) the gravity
vector is an accurate source of roll and pitch angle. However,
the yaw angle RMSE of our proposed method is better
compared to the baseline. This is because, in a tightly
coupled UWB-IMU system, excitation of all the IMU axes
is needed before the full pose becomes observable [6].
In contrast, the proposed method does not require explicit
excitation but does benefit from it. The average RMSE
values for the two methods are provided in Table II. Error
plots along with the corresponding 3σ covariance envelopes
from one of the experiments are shown in Figure 9. The plots
show that the observed error is bounded by the estimated
uncertainty reliably.

Sensor dropout: An advantage of the proposed
continuous-time trajectory estimation method is that it
can handle sensor dropouts. Specifically, in the absence of
any sensor data, the motion prior is able to constrain the
state. However, the baseline method is sensitive to IMU

Table II
AVERAGE POSITION AND ORIENTATION RMSE OF 3D TRAJECTORY

ESTIMATION FROM REAL EXPERIMENTS.

Algorithm Average position
RMSE [m]

Average orientation
RMSE [rad]

UWB+IMU 0.086 0.109
Ours 0.078 0.138

data dropout.
For this setup, we use batch trajectory estimation instead

of the FLS. We simulated sensor dropout by removing
5 seconds of measurements from the recorded data. The
proposed method estimates the trajectory reliably in this
scenario as shown by the error plots in Figure 10. The
effect of the sensor dropout is captured by the increased
uncertainty around the state during the dropout period.

VI. DISCUSSION

The results show that reliable 2D and 3D pose estimation
can be achieved with the proposed method, using only range
measurements from multiple range sensors. However, the
combination of UWB and IMU outperforms the proposed
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Figure 10. Error plots of the estimated trajectory (with the corresponding 3σ covariance envelopes) from real experiments with sensor dropout. Sensor
data between 25 s and 30 s (indicated by dashed lines) is dropped to simulate sensor dropout. The proposed continuous-time approach is still able to
estimate the trajectory reasonably well. The effect of sensor dropout is captured by the increased uncertainty about the state during the dropout period.

method for dynamic trajectories. There are several factors
that determine the efficacy of the proposed method in
different settings. One of the factors is the bias in the
measurements [26]. In this work, the data was preprocessed
to remove any constant biases. Any remnant biases can affect
the estimation accuracy and hence need to be estimated
online. Another factor that affects the estimation accuracy
at high speeds is the update rate of the range sensors, which
can be addressed using high-bandwidth high-rate sensors. A
third factor that influences the estimation performance is the
geometry of the installed anchors. Nonetheless, the results
are promising considering that the precision of the UWB
radios used in the experiment is ±0.10 m. With higher-
precision radio frequency technologies such as millimeter-
wave radar, we expect to achieve higher accuracy.

VII. CONCLUSION

In this work, we presented a continuous-time trajectory
estimation method for 2D and 3D pose estimation using only
range measurements from multiple range sensors. Through
simulation and real experiments, we showed that pose esti-
mation can be done reliably using only range measurements.
Additionally, the results show that the proposed method,
using off-the-shelf sensors, can achieve comparable perfor-
mance and in some cases outperform conventional sensor
fusion methods that require additional sensors.

There are many avenues for future work. One direction
is to use different range-based measurement models such
as time-difference-of-arrival [24], which is more scalable.
Another future direction is to evaluate different motion
models such as the white-noise-on-jerk [27] motion model.
Extension of the current method to continuous-time range-
only multi-agent relative localization is another prospective
future direction.
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