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Abstract—We introduce ProPanDL, a family of networks capa-
ble of uncertainty-aware panoptic segmentation. Unlike existing
segmentation methods, ProPanDL is capable of estimating full
probability distributions for both the semantic and spatial aspects
of panoptic segmentation. We implement and evaluate ProPanDL
variants capable of estimating both parametric (Variance Net-
work) and parameter-free (SampleNet) distributions quantify-
ing pixel-wise spatial uncertainty. We couple these approaches
with two methods (Temperature Scaling and Evidential Deep
Learning) for semantic uncertainty estimation. To evaluate the
uncertainty-aware panoptic segmentation task, we address limi-
tations with existing approaches by proposing new metrics that
enable separate evaluation of spatial and semantic uncertainty.
We additionally propose the use of the energy score, a proper
scoring rule, for more robust evaluation of spatial output distri-
butions. Using these metrics, we conduct an extensive evaluation
of ProPanDL variants. Our results demonstrate that ProPanDL
is capable of estimating well-calibrated and meaningful output
distributions while still retaining strong performance on the base
panoptic segmentation task.

Index Terms—panoptic segmentation; uncertainty; probabilis-
tic deep learning; evidential deep learning

I. INTRODUCTION

The desire for full scene explainability in computer vision
has spurred interest in panoptic segmentation [1]. This task,
requiring semantic segmentation of all pixels and instance
discrimination for foreground pixels, unifies semantic and
instance segmentation. Panoptic segmentation is appealing in
that it provides theoretically full scene explainability: every
pixel receives a predicted class, and every object is detected
with the finest possible representation (pixel-level masks).
However, at present, most panoptic and instance segmentation
methods are capable of producing only point estimates: a
single class and a single instance per pixel.

In parallel with research on panoptic segmentation, there has
been a growing interest in uncertainty-aware deep learning
[2]. An uncertainty-aware network outputs a full distribution
over its predictions that implicitly captures their uncertainty,
rather than a single point estimate. Applications for uncer-
tainty estimation are numerous: well-calibrated uncertainty
estimates can be used for anomaly detection [3], offline for
active learning [4], or passed directly to consumers such as
tracking or localization pipelines [5], which are often based
on classical, probabilistic algorithms that can easily leverage
predicted probability distributions.

Fig. 1. ProPanDL outputs on a sample frame from the Cityscapes dataset.
Clockwise from top left: input image, panoptic segmentation, semantic
uncertainty, offset vector samples, spatial uncertainty.

To date, there has been little research exploring the appli-
cation of uncertainty estimation to the panoptic segmentation
task. Uncertainty-aware panoptic segmentation was introduced
by Sirohi et al. [6], who introduce a network architecture
capable of producing pixel-wise uncertainties as well two
metrics, pECE and uECE, for evaluating the task. However,
their approach is not without limitations. First, while panoptic
segmentation has two aspects (semantic segmentation and
instance discrimination), their proposed metrics evaluate only
the total uncertainty rather than the two components inde-
pendently. Second, their EvPSNet segmentation network is
capable of only producing scalar uncertainty scores in the
range [0, 1], rather than full distributions. This limitation is
reflected in the uECE and pECE metrics, which evaluate only
real-valued uncertainty rather than full distributions.

To address these shortcomings, in this work, we intro-
duce Probabilistic Panoptic-DeepLab (ProPanDL), a family
of networks that extend the Panoptic-DeepLab architecture
[7] to produce pixel-wise predictive uncertainty in panoptic
segmentation. To our knowledge, this work is the first to
predict full output distributions for either instance or panoptic
segmentation. ProPanDL uses separate semantic and spatial
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branches to jointly estimate semantic segmentation, instance
discrimination, and their associated pixel-wise uncertainties.
Semantic segmentation uncertainty is represented as a cal-
ibrated categorical distribution, produced via Temperature
Scaling [8] or Evidential Deep Learning [9]. For instance
discrimination, we apply Variance Networks [10] and Sam-
pleNet [11] to estimate the distribution of pixels relative to
their corresponding instance center.

In addition, we propose to decouple the semantic and spatial
uncertainty evaluation in pECE. Our proposed new metrics,
pECEspa and pECEsem, are straightforward modifications of
the pECE metric adapted for separate spatial and semantic
uncertainty evaluation. We additionally propose the use of the
energy score [12], a proper scoring rule used for robust eval-
uation of regression predictive uncertainty [13], for evaluation
of the distributions produced by the ProPanDL spatial branch.

We conduct an extensive evaluation of ProPanDL variants,
evaluating on both the standard Panoptic Quality metric and
the uncertainty-aware metrics. We find that SampleNet + Ev-
idential Deep Learning is the strongest combination, capable
of estimating reliable spatial and semantic distributions while
still retaining strong segmentation perfomance.

In summary, our contributions are threefold:
1) We introduce Probabilistic Panoptic-DeepLab

(ProPanDL), a family of networks extending the
Panoptic-DeepLab architecture [7] for uncertainty-
aware segmentation.

2) We propose two metrics, pECEspa and pECEsem, for
separate evaluation of spatial and semantic uncertainty.

3) We conduct a thorough evaluation of ProPanDL and
analyze each proposed uncertainty estimation method,
demonstrating that our approach is capable of robust
panoptic uncertainty estimation.

II. RELATED WORK

A. Panoptic Segmentation

Panoptic segmentation methods can be categorized into one
of two approaches. Top-down methods merge the outputs of
semantic segmentation and proposal-based instance segmen-
tation branches. These methods require additional postpro-
cessing to resolve overlaps between individual instances and
semantic segmentation boundaries [14] [15] [16] [17]. Con-
versely, bottom-up methods predict non-overlapping segments
directly.

At the time of writing, Panoptic-DeepLab (PDL) [7] is the
state of the art panoptic segmentation method, ranking at the
top of the Cityscapes [18] leaderboard. PDL is a bottom-up
method that operates by predicting the centers of instance
masks, regressing every pixel to a corresponding center, and
classifying the resulting segments using a parallel semantic
segmentation branch.

B. Uncertainty Estimation

Uncertainty-aware deep learning is generally used to refer
to any methods which extend deep learning to estimation
of full probability distributions rather than point estimates.

Uncertainty is often classified into aleatoric and epistemic
uncertainty. Epistemic uncertainty refers to the uncertainty
present in the parameters of a neural network, and can be
reduced arbitrarily by training the network with additional
data. Conversely, aleatoric uncertainty is inherent in the data
(e.g. sensor noise, quantization) and cannot be reduced via
additional training.

1) Uncertainty in Semantic Segmentation: Due to the na-
ture of the segmentation task, which is structured as a pixel-
wise classification problem, many of the uncertainty estimation
methods developed for image classification can be extended
directly to segmentation. The first work to investigate this
application was performed by Kendall and Gal [19], who
applied Monte Carlo Dropout (MCD) [20] in conjunction with
direct variance estimation [2] to jointly estimate aleatoric and
epistemic uncertainty. MCD approximates Bayesian inference
over the network weights by sampling the same input through
a fully-trained network with Dropout enabled at inference
time.

Due to its simplicity and strong performance, MCD is
widely used [21] [22] [23] as a baseline uncertainty estimation
method. However, MCD requires multiple forward passes and
is therefore computationally intensive and generally cannot
meet latency requirements to run online in an autonomous
driving setting. For this reason, there has been increasing
interest in ”direct modelling” methods, which directly predict
the parameters of a probability distribution in one forward pass
of the network [24]. As the target output in classification is a
categorical distribution, the Maximum Softmax Probability has
been proposed as a simple baseline for confidence estimation
[25], with temperature scaling a common variant to improve
network calibration [8]. Other work investigates regressing a
distribution-over-distributions to quantify the network’s confi-
dence in the predicted class probabilities. Both [9] (Evidential
Deep Learning) and [26] (Dirichlet Prior Networks) adopt this
approach, drawing from Dempster-Shafer evidential reasoning
with the Dirichlet distribution as the target. The major dif-
ference between the methods is the use of out-of-distribution
data for regularization in [26].

2) Uncertainty in Instance Segmentation: Unlike semantic
segmentation, few published works explore uncertainty esti-
mation for instance segmentation. Morrison et al. [27] obtain
instance-level uncertainty estimates by applying Monte Carlo
Dropout sampling to Mask R-CNN. Their method is instance-
centric and is not capable of estimating pixel-wise uncertainty.
Rumberger et al. [28] use a similar dropout-based approach,
but employ a bottom-up metric learning approach to produce
overlap-free masks and pixel-wise uncertainties. Both of these
approaches rely on dropout sampling and are therefore ill-
suited to deployment in autonomous driving applications.

3) Panoptic Segmentation: Sirohi et al. introduce the
uncertainty-aware panoptic segmentation task in [6] which,
to the best of our knowledge, remains the only work on this
task. The authors introduce two new metrics: the uncertainty-
aware calibration error uECE and the panoptic calibration error
pECE. Using the EfficientPS network [14] as a base network,



the authors propose the new EvPSNet architecture, applying
evidential deep learning separately to the semantic segmenta-
tion and instance prediction branches. The predicted semantic
and instance segmentation map and masks and their associated
uncertainties are fused by a post-processing panoptic fusion
module to produce pixel-wise semantic class predictions,
instance IDs, and uncertainties. While this method estimates
semantic and instance uncertainty separately, it fuses them into
a total panoptic uncertainty map. We argue that separately
estimating and evaluating each component of uncertainty is
valuable; downstream tasks, such as tracking or localization,
may be able to benefit greatly from knowing that the location is
certain but the class is invalid, or vice versa. Moreover, while
EvPSNet estimates only a single real-valued uncertainty for
every pixel, our method is capable of estimating full posterior
distributions for both semantic and instance predictions, which
provide more information to downstream consumers.

4) Regression Tasks: The most common approaches to un-
certainty estimation in regression assume some parametric dis-
tribution for the output and modify the network to estimate the
parameters of this distribution. Gaussian (Variance Networks
[10]) or Mixture of Gaussians (Mixture Density Networks
[29]) are common assumptions and have been widely used for
bounding box uncertainty in probabilistic object detection [30]
[31] [24] and dense regression tasks such as depth prediction
[32].

More recently, Harakeh et al. [11] introduced SampleNet,
a network architecture for estimating parameter-free distribu-
tions. By modifying the last layer of a network to estimate M
samples rather than a single point estimate, the network can ac-
curately model distributions for which parametric assumptions,
such as Gaussian, may not hold. The network requires only
one forward pass during both training and inference to produce
all M samples, resulting in minimal additional overhead. The
authors successfully applied SampleNet to monocular depth
estimation; we adapt this approach for pixel offset regression
in Panoptic-DeepLab, a similar dense regression task.

5) Evaluation: The widely accepted standard metrics for
uncertainty evaluation are the Expected Calibration Error
(ECE) and Maximum Calibration Error (MCE) [8]. Sirohi
et al. [6] propose a modified form of the ECE which they
call the uECE, as well as an additional pECE metric used
specifically for panoptic segmentation. However, these metrics
evaluate only the total uncertainty and do not separately
evaluate semantic and spatial uncertainty. Moreover, they are
incapable of evaluating the full probability distributions that
many networks are capable of providing; calibration requires
uncertainty to be represented as a single real number in
the range [0, 1]. We propose a modified form of pECE that
addresses the first limitation and employ the alternative energy
score [12] to address the second.

For evaluation of probability distributions, proper scoring
rules are typically used. A scoring rule is proper if it reaches
its minimum when the evaluated distribution is identical to
the target distribution [13] and is called strictly proper if it
is greater for all other distributions. For classification, the

Brier score [33] and standard cross-entropy loss are common
proper scoring rules; for regression, the negative log-likelihood
(NLL) and energy score (ES) [12] are widely used [13]. We
use energy score both as a training loss for ProPanDL and as
an evaluation metric of the pixel-wise probability distributions
predicted by the offset regression branch.

III. METHODOLOGY

The task of panoptic segmentation involves two distinct
subtasks: pixel classification and instance discrimination. It
is logical and intuitive that any uncertainty method should be
capable of quantifying uncertainty separately for each aspect.
We call the uncertainty associated with semantic segmentation
the semantic uncertainty and the uncertainty associated with
instance discrimination the spatial uncertainty, mirroring the
parallel terms used in probabilistic object detection [34].

We select Panoptic-DeepLab (PDL) [7] as the meta-
architecture for our family of uncertainty estimation networks,
which we call Probabilistic Panoptic-DeepLab (ProPanDL).
With separate branches for semantic segmentation and in-
stance discrimination, PDL can be easily modified to produce
separate semantic and spatial uncertainty maps. The standard
semantic segmentation branch follows the DeepLabV3+ de-
coder architecture [35] and produces a C-dimensional vector
for each pixel indicating the predicted class probabilities.
The spatial branch of PDL produces two maps: the center
prediction map and the center offset regression map. The
center prediction map is a heatmap that predicts whether each
pixel is located at the centroid of an instance, while the center
offset regression map regresses the x, y offset from each pixel
to the center of the instance to which it belongs.

In order to produce the final panoptic segmentation map,
PDL employs a simple postprocessing stage. First, all pre-
dicted stuff pixels are copied directly from the semantic seg-
mentation map. Second, thresholding and non-max suppres-
sion are applied to the center prediction heatmap to produce
individual predicted instance centers. Third, all thing pixels
are associated to the instance center closest to their predicted
offset. All pixels associated to one center are considered to
be part of the same segment. Fourth, each segment is given a
semantic class based on simple majority vote of the pixels it
contains. This results in a single class assigned to each pixel
and a single instance ID to each thing pixel.

In order to enable uncertainty-aware panoptic segmentation,
our ProPanDL modifies the semantic head and pixel offset
head of PDL. The modular nature of this approach enables
us to test different spatial and semantic uncertainty methods
in different combinations. When equipped for both spatial and
semantic uncertainty, ProPanDL is capable of estimating pixel-
wise calibrated categorical distributions in the semantic branch
and pixel-wise multivariate distributions of offset vectors in the
spatial branch. An overview of the ProPanDL architecture can
be seen in Figure 2.

The following sections detail the uncertainty estimation
methods we apply to each branch. In all equations, we use
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Fig. 2. An overview of the ProPanDL network architecture. The shared encoder backbone, semantic decoder, spatial decoder, and center head are unchanged
from Panoptic-DeepLab [7]. We modify the semantic head to produce calibrated pixel-wise categorical distributions and uncertainty estimates. Similarly, we
modify the offset head to predict a distribution of pixel offset vectors rather than point estimates.

i to denote an individual pixel, N for the number of pixels in
an image, and C for the number of semantic classes.

A. Semantic Uncertainty Estimation

1) Temperature Scaling: While the maximum class prob-
ability (MCP) or maximum softmax probability (MSP) is a
widely used heuristic for classification confidence, modern
neural networks tend to be overconfident. Temperature Scaling
is a simple method proposed by Guo et al. [8] for improving
the calibration of a classifier that uses the softmax function
as its last operation. A single parameter T , known as the
temperature, is used to adjust the logits z before they are
passed through softmax:

softmax(z) =
ez/T∑C

c=1 e
zc/T

(1)

Since the same temperature is applied to all of the class logits,
the maximum element does not change; therefore, temperature
scaling only affects calibration and does not change the
predicted class. The temperature value is usually treated as
a learned parameter and is tuned by minimizing the cross
entropy loss on the validation set. During this procedure,
the pretrained weights of the network remain unchanged. We
perform temperature scaling by training over 25 epochs with
a learning rate of 0.001.

2) Evidential Deep Learning: Evidential Deep Learning [9]
is a sampling-free direct modeling method that can be easily
applied to any network architecture. This approach requires
modifications only to the last layer of the network. Rather than
estimating class probabilities directly, the network is modified
to instead regress the parameters α1...C of a C-dimensional
Dirichlet distribution. As these parameters have a lower bound
of 1, we append a final softplus nonlinearity to the classifier

output and add 1 to the resulting values. While in the original
image classification setting this estimation was performed once
per image, we estimate one Dirichlet distribution per pixel i in
the image. Three auxiliary quantities can then be computed:

Si =

C∑
c=1

αc
i (2)

ui = C/Si (3)
p̂ci = αc

i/Si (4)

The first quantity is known as the strength of the distribu-
tion. A higher strength indicates higher confidence in the
predicted per-class evidence. The corresponding uncertainty
ui is inversely proportional to the strength and always falls in
the range (0, 1]. The estimated class probabilities p̂ci can be
calculated by dividing the corresponding Dirichlet parameter
αc
i by the distribution strength. Although the evidential formu-

lation of this method provides a direct definition of uncertainty,
previous work has observed that this quantity often provides
worse estimates than using the maximum class probability or
entropy of the resulting categorical distribution [9] [36]. We
evaluate and compare both approaches.

Rather than training with the standard classification cross-
entropy loss, the authors of [9] propose several different loss
terms that can be used for EDL. In this work, we use the Type
II Maximum Likelihood form of the loss, shown below:

LEDL =

N∑
i=1

C∑
c=1

yci (log (Si)− log (αc
i )) (5)

We additionally apply the KL divergence regularization
term, which penalizes the Kullback-Liebler divergence be-
tween two Dirichlet distributions D. We first define α̃i as the
vector of predicted Dirichlet parameters αi with the true class



parameter αc
i replaced with 1. DA = D(pi | α̃i) is then the

Dirichlet distribution parameterized by α̃i. The loss term pe-
nalizes the KL divergence between DA and the Dirichlet dis-
tribution with uniform parameters, D1 = D (pi | 〈1, . . . , 1〉).

LKL = λt

N∑
i=1

KL [D (pi | α̃i) ‖D (pi | 〈1, . . . , 1〉)] (6)

The Kullback-Liebler divergence KL between the two Dirich-
let distributions can be computed as follows, where Γ : R→ R
is the gamma function and ψ : R → R is the digamma
function:

KL[D (pi | α̃i) ‖D (pi | 1)]

= log

 Γ
(∑C

c=1 α̃
c
i

)
Γ(C)

∏C
c=1 Γ (α̃ik)


+

C∑
c=1

(α̃c
i − 1)

[
ψ (α̃c

i )− ψ

(
C∑

c=1

α̃ic

)] (7)

Since a value of 1 indicates no evidence, this term incentivizes
the network to remove all evidence for every class besides the
true one. While the LEDL loss previously described rewards
this as well, the authors of [9] found that the KL divergence
term resulted in improved performance when the annealing
coefficient λt was scheduled correctly. For our experiments,
we found λt = min(0.1, t/60) to work effectively, similar to
the values proposed by [6].

B. Spatial Uncertainty Estimation

Unlike the semantic segmentation subtask, which is pixel-
wise classification, the offset estimation subtask is a pixel-
wise regression problem. We seek to estimate, for every pixel,
the distribution of offset vectors rather than a single point
estimate. In this section, we use vi to denote the ground truth
offset vector at pixel i and use v̂i to denote the predicted offset
vector for this pixel.

1) Variance Network: Our first approach is to augment
Panoptic-DeepLab with a Variance Network (VarNet) [10].
VarNets assume that the output is drawn from a multivariate
normal distribution and seek to estimate the mean and covari-
ance of this distribution. In applying VarNet to ProPanDL, we
assume a diagonal covariance matrix, a common assumption
in similar settings [30] [11]. We change the dimension of
the last layer from H × W × 2 to H × W × 4, estimating
both the mean offset vector and the diagonal elements of the
covariance matrix. We train VarNet with the standard negative
log-likelihood (NLL) loss [10]:

LNLL =

N∑
i=1

(LNLL,x(i) + LNLL,y(i))

LNLL,x(i) =
1

2
ln
[
σ2 (v̂i,x)

]
+

[vi,x − y (v̂i,x)]
2

2σ̂2
i,x (v̂i,x)

(8)

At inference time, we feed the estimated mean forward to the
Panoptic-DeepLab postprocessing stage. In order to produce

the real-valued uncertainty map for pECE evaluation, we
calculate the total variance for each pixel (sum of the variance
in x and y) and divide by the maximum variance across the
training set to scale the data between 0 and 1.

2) SampleNet: While normally distributed data is a com-
mon assumption in uncertainty-aware deep learning and is
likely reasonable for the offset vectors of most pixels, we
expect that it may not hold for certain difficult cases in offset
regression. In particular, a pixel on the boundary of two
instances will possess uncertainty not just about the precise
location of an instance center but also about which instance it
should be associated with. The true distribution in this case is
likely to be multimodal. In order to estimate cases for which
simple parametric distributions may be inadequate, we adapt
SampleNet [11]. Rather than predicting a single offset vector,
we modify the last layer of the offset head to predict M
different offset vectors v̂i,1...M , which we treat as samples
from the underlying distribution. We train SampleNet using
the pixel-wise energy score loss, defined below for a single
image with ground truth offset vectors vi:

LES =

N∑
i=1

 1

M

M∑
j=1

‖v̂i,j − vi‖

− 1

2M2

M∑
j=1

M∑
k=1

‖v̂i,k − v̂i,j‖

 (9)

Due to memory constraints, we cap the number of samples
at M = 10 for all experiments. In order to produce panoptic
segmentation results at inference time, we calculate predicted
centers for all sample vectors in the same way as Panoptic-
DeepLab, and assign centers to pixels via majority among all
samples. We reduce the set of samples to scalar uncertainties
with a similar approach to VarNet: we calculate the sample
variance for every pixel and divide by the maximum variance
seen for every pixel in the training set.

C. Evaluation Metrics

Sirohi et al. [6] introduce two metrics for evaluating
uncertainty-aware panoptic segmentation, defined as follows:

uECE =

R∑
r=1

|Br|
N
|acc(Br)− conf(Br)| (10)

pECE =
1

S

∑
(f,g)

uECE(f, g) +
∑
f̃

uECE(f̃)

 (11)

The uECE, a modification of the standard ECE, is calculated
by partitioning pixels into R equally-spaced bins based on
confidence, where conf(x) = 1−unc(x). Within each bin Br,
acc(Br) is the average pixel accuracy and conf(Br) is the
average pixel confidence.

While uECE is task-agnostic and can be applied to any
uncertainty-aware problem, pECE is specific to the panoptic
segmentation task and is calculated by averaging uECE over



all S predicted segments. For true positive segments f associ-
ated with ground-truth segments g, acc(i) = 1 if the semantic
class agrees with the ground truth and the pixel i lies in both f
and g. For false positive segments x̃, acc(i) = 0 for all pixels.

By averaging uECE over all segments, pECE ensures that
calibration of all pixels is evaluated. Moreover, averaging
over segments implicitly places a higher weight on segments
with fewer pixels. This emphasizes performance on small
thing instances such as pedestrians and distant vehicles, which
networks often struggle to properly segment.

While these metrics are useful for evaluating the total
uncertainty, they do not allow for independent evaluation of
spatial and semantic uncertainties. We argue that evaluating
each quantity separately provides much more insight into
the performance of the network, especially for modular ar-
chitectures like ProPanDL that support different uncertainty
estimation methods in each branch. Therefore, we propose the
following modified metrics:

uECEspa =
R∑

r=1

|Br|
N
|accspa(Br)− confspa(Br)| (12)

pECEspa =
1

S

(∑
(f,g)

uECEspa(f, g)

+
∑
f̃

uECEspa(f̃)
) (13)

uECEsem =

R∑
r=1

|Br|
N
|accsem(Br)− confsem(Br)| (14)

pECEsem =
1

S

(∑
(f,g)

uECEsem(f, g)

+
∑
f̃

uECEsem(f̃)
) (15)

As the equations suggest, we simply separate the uECE and
pECE metrics into separate spatial and semantic metrics.
Semantic accuracy accsem(i) = 1 if pixel i is given the correct
semantic label, regardless of its instance association. Likewise,
spatial accuracy accspa(i) = 1 if pixel i belongs to both a true
positive segment f and its associated ground truth segment g.

In order to evaluate against the pECE metric proposed by
Sirohi et al. [6], we are required to compute a total uncertainty
map for every pixel. We define the simple heuristic:

unc = max(uncspa, uncsem) (16)

for all methods. For methods which do not estimate spatial
uncertainty, we set uncspa = 0. We use the Maximum Class
Probability [25] as semantic uncertainty metric for all methods
except EDL, where we use the evidential uncertainty defined
in Eq. (3).

A notable shortcoming of both the original and modified
metrics is that they operate only on scalar-valued uncertainty
maps where uncertainty is represented by a single real number.
In contrast, ProPanDL seeks to model full distributions for

both semantic class and pixel offset. While evaluating a cate-
gorical distribution via Shannon entropy or maximum softmax
probability is a standard approach [2], reducing a sample-
modelled distribution to a single real number discards much of
the valuable information present in the samples. We therefore
use the energy score as an additional metric to directly evaluate
the quality of the predicted offset distributions.

IV. EXPERIMENTAL RESULTS

A. Training

We use the Detectron2 1 implementation of Panoptic-
DeepLab with a ResNet-50 backbone as the starting point for
our experiments. The energy score used to train SampleNet
is implemented using the GeomLoss library [37]. We initial-
ize all experiments from the Detectron2 weights trained on
Cityscapes with ImageNet pretraining on the backbone. We
leave the backbone frozen during training for all experiments.

We use a batch size of 10 and crop of 512 × 1024 for
all experiments due to memory constraints. We train using the
Adam optimizer [38] with a polynomial learning rate schedule
and no weight decay.

We independently train and evaluate all combinations of
{SampleNet [11], VarNet [10]} and {TS [8], EDL [9]}.

B. Quantitative Results

Table I shows the results of all methods evaluated on the
Cityscapes validation set.

In terms of panoptic segementation performance, we ob-
serve that all ProPanDL methods drop in PQ relative to the
PDL baseline. We note that the original Panoptic-DeepLab
paper finds a batch size of 32 and no crop to be optimal, which
may explain some of the performance drops that we observe.
While all methods fall short of the PQ achieved by EvPSNet in
[6], we reiterate that our goal was not to develop a state-of-the-
art panoptic segmentation network; rather, our objective was to
demonstrate that it is possible to estimate output distributions
while not overly compromising performance on the base task.

Performance on the uncertainty estimation task varies by
method and by metric. In terms of semantic uncertainty,
both TS and EDL outperform the PDL baseline, with EDL
outperforming TS in all settings. In terms of spatial uncer-
tainty, SampleNet consistently outperforms VarNet. We further
evaluate and analyze the spatial uncertainty methods in the
following section.

We note that none of our methods perform similarly to
EvPSNet on the pECE metric. We conjecture that this is due to
the simple maximum heuristic which we use to calculate the
pixelwise total uncertainty, in contrast to the panoptic fusion
postprocessing stage which they adopt. However, as described
earlier, we believe that scalar-valued uncertainty maps are
inadequate for capturing all of the relevant uncertainty infor-
mation, especially when semantic and scalar uncertainty are
conflated.



TABLE I
PANOPTIC SEGMENTATION PERFORMANCE ON CITYSCAPES

Uncertainty Performance

Method Spatial Semantic PQ ↑ pECE ↓ pECEspa ↓ pECEsem ↓
Panoptic-DeepLab [7] − − 60.7 32.5 32.7 22.1

EvPSNet [6] X X 63.7 19.3 − −
SampleNet Only X − 59.3 30.2 27.6 22.5

VarNet Only X − 54.2 38.4 33.3 22.5
EDL Only − X 56.1 25.2 33.0 18.0
TS Only − X 60.7 29.3 32.7 20.1

SampleNet + TS X X 59.3 30.4 27.4 20.3
VarNet + TS X X 54.2 38.0 33.3 20.3

SampleNet + EDL X X 58.8 29.2 29.2 19.5
VarNet + EDL X X 48.0 35.1 32.8 17.3

TABLE II
OFFSET HEAD CHARACTERISTICS

Method Avg. length RMSE ↓ ES ↓
Ground truth 79.04 − −

Panoptic-DeepLab [7] 74.22 18.95 17.84
SampleNet [11] 66.12 38.95 3.47

VarNet [10] 32.49 65.51 46.84

1) Offset distribution evaluation: In Table I, we can observe
that while SampleNet variants perform well in terms of PQ,
VarNet performance drops by over 10% in the worst case. We
believe that this is due to the tendency of variance networks to
produce high variance when trained with NLL, as described
in [13] and observed when training variance networks for
depth estimation [11]. In order to evaluate the predicted
offset probability distributions independently of the center and
semantic predictions, we calculate the energy score across all
pixels. We calculate ES for VarNet by sampling from each
pixelwise multivariate Gaussian distribution, similarly to [11].

Table II outlines the energy score for each model as well
as the average length and RMS error of the predicted offset
vectors. We observe that VarNet predicted sample vectors tend
to be much shorter and have a significantly higher RMSE. Due
to the postprocessing stage of Panoptic-DeepLab, pixels with
shorter offset vectors are far more likely to end up clustered
into an incorrect instance, which can result in significant PQ
drops. Figure 3 shows a representative example, where the
predicted offset variance is highest inside vehicle instances,
even in areas without overlap or ambiguity.

While SampleNet’s RMSE is also notably worse than vanilla
Panoptic-DeepLab, this is not unexpected; we calculate the
RMSE over all samples, and the ES loss used by SampleNet
gives it the freedom to predict samples that have high error in
attempt to model the underlying distribution (i.e. multimodal
predictions near instance boundaries).

In terms of energy score, we observe that SampleNet attains
the lowest value, followed by PDL and then by VarNet. The

1https://github.com/facebookresearch/detectron2

Fig. 3. An example figure produced by VarNet+EDL, demonstrating poor
instance discrimination performance. Clockwise from top left: input image,
panoptic segmentation, semantic uncertainty, predicted offset variance (spatial
uncertainty). Brighter colours in uncertainty maps indicate higher uncertainty.
While most ”car” pixels are given the correct semantic class, we observe that
the instance discrimination, as seen in the panoptic segmentation image, is
poor.

TABLE III
ORACLE STUDY ON PROPANDL PERFORMANCE

Offsets Centers Sem. seg PQ pECEspa pECEsem

SampleNet [11] GT EDL 59.0 29.1 19.6
SampleNet [11] PDL GT 79.4 20.3 −
SampleNet [11] GT GT 82.8 19.1 −

VarNet [10] GT EDL 48.6 33.2 17.5
VarNet [10] PDL GT 74.0 33.4 −
VarNet [10] GT GT 78.2 36.4 −

PDL PDL PDL 60.7 32.7 22.1
PDL GT GT 83.3 − −

high ES of VarNet is consistent with our observation that
the predicted distributions appear to have very high variance.
While NLL and ES are both proper scoring rules and thus
attain their global minimum at the same value, their behaviour
outside of the minimum is complementary; networks trained
with NLL have a tendency to overestimate rather than under-
estimate the variance, which is harshly penalized by ES [13].

2) Oracle test: We conduct an oracle study to investigate
the impact of each panoptic segmentation aspect on the

https://github.com/facebookresearch/detectron2


performance of ProPanDL. This is accomplished by providing
ground truth instance centers and/or semantic segmentation
during evaluation instead of the network predictions, and
allows us to determine the performance upper bound when
using different offset branches. The results can be seen in
Table III. We see that in all cases, using ground truth semantic
segmentation provides the biggest increase in performance,
a trend previously observed in [7] and [39]. We note that
while SampleNet remains competitive with PDL, VarNet per-
formance lags well behind, demonstrating the limitations of
this method when applied to panoptic segmentation.

V. CONCLUSION

In this work, we introduced Probabilistic Panoptic-DeepLab,
a family of networks capable of uncertainty-aware panoptic
segmentation. ProPanDL variants model spatial and semantic
uncertainty separately, producing calibrated distributions for
every pixel in the image. Possible extensions to this work
would leverage the rich information available in the predicted
distributions and could include extension to panoptic tracking
or uncertainty-guided domain adaptation. We hope this work
motivates further research in the estimation and application of
predictive uncertainty for panoptic segmentation.
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