
Contrastive Learning for Self-Supervised Pre-Training
of Point Cloud Segmentation Networks With Image Data

Andrej Janda, Brandon Wagstaff, Edwin G. Ng, and Jonathan Kelly
Space & Terrestrial Autonomous Robotic Systems Laboratory, University of Toronto, Canada

<first_name>.<last_name>@robotics.utias.utoronto.ca

Abstract—Reducing the quantity of annotations required
for supervised training is vital when labels are scarce and
costly. This reduction is particularly important for semantic
segmentation tasks involving 3D datasets, which are often
significantly smaller and more challenging to annotate than
their image-based counterparts. Self-supervised pre-training on
unlabelled data is one way to reduce the amount of manual
annotations needed. Previous work has focused on pre-training
with point clouds exclusively. While useful, this approach often
requires two or more registered views. In the present work,
we combine image and point cloud modalities by first learning
self-supervised image features and then using these features to
train a 3D model. By incorporating image data, which is often
included in many 3D datasets, our pre-training method only
requires a single scan of a scene and can be applied to cases
where localization information is unavailable. We demonstrate
that our pre-training approach, despite using single scans,
achieves comparable performance to other multi-scan, point
cloud-only methods.

I. INTRODUCTION

The two most common representations used for robotic
scene understanding tasks are images and point clouds.
Images are dense and feature-rich, but their lack of depth
information limits how well they are able to model 3D
environments when used alone. Although point clouds cir-
cumvent many of the limitations inherent to images, they
are notoriously hard to annotate. This annotation difficulty
is a key limiting factor for many state-of-the-art data-
driven scene understanding algorithms that require large,
annotated datasets [1]–[4]. Generating labels requires human
annotators to manipulate the clouds by zooming, panning,
and rotating to select points of interest. Annotators then have
to separate points that belong to a particular object from the
background and other occluded points.

The difficulty of annotating point clouds has resulted in
considerable effort and labelling times for existing datasets.
For example, the SemanticKITTI dataset [5], which has
518 square tiles of 100 metres length each, required 1,700
hours to label. ScanNet [6], which has 1,600 reconstructed
scenes of indoor rooms, took about 600 hours to label [7].
Despite the substantial labelling time, 3D datasets are still
significantly smaller than comparable image-only datasets.

The labelling effort required for 3D data is the reason
we seek, herein, to reduce the volume of annotations nec-
essary. Previous work has demonstrated that self-supervised

S
tag

e 1

S
tag

e 2

T2

2D UNet

Sparse 3D UNet

T3

Input

T1

Augmentation Model Features

Point Cloud

Image

Query Point

Corresponding Point

Non-Corresponding Point

+

-

-

+

Point Cloud

Image

Query Point

Corresponding Point

Non-Corresponding Point

Forward Pass

Backward Pass

Shared Weights

Feature Mapping

Figure 1: Overview of our multimodal contrastive learning
framework. The first stage pre-trains a 2D model from image
pixel data. The second stage uses the features from the 2D
model as targets to pre-train a 3D model.

contrastive pre-training is an effective approach for improv-
ing performance on scene understanding tasks with raw,
unlabelled point cloud data [7]–[9]. A key limitation of
existing 3D pre-training methods is that they neglect the
information-rich images that are often available as part of
3D datasets. We propose a pre-training method that leverages
images as an additional modality, by learning self-supervised
image features that can be used to pre-train a 3D model.
Our learning method is split into two stages. The first
stage (Stage 1) learns image features via a self-supervised
contrastive learning framework. The second stage (Stage 2)
applies the same contrastive learning framework to pre-train
a 3D model, making use of the 2D features learned in Stage
1. By incorporating visual data into the pre-training pipeline,
we obtain a notable advantage: only a single point cloud
scan and the corresponding image are required during pre-
training. The use of a single scan obviates the need for
two or more overlapping 3D views, which are required by
many point cloud-only approaches. Notably, the use of a
single scan improves the scalability of our approach, since
we require raw 3D data only, as opposed to multiple scans
that have been aggregated using a robust mapping pipeline
for data association.

ar
X

iv
:2

30
1.

07
28

3v
3 

 [
cs

.C
V

] 
 4

 S
ep

 2
02

3



Through extensive experimentation, we compare our pre-
training approach with existing point cloud-only approaches
on several downstream tasks and across several datasets. We
find that our method performs competitively with methods
that use multiple overlapping point cloud scans, despite
having access to single scans and images only. In short, we
make the following contributions:

• we describe a self-supervised method for extracting
visual features from images and using them as labels
to pre-train 3D models via a contrastive loss;

• we provide visualizations demonstrating that the fea-
tures learned capture structure, such as lines and surface
patches, in the input image and point cloud;

• we demonstrate that a model trained using features
learned from raw images improves performance on 3D
segmentation and object detection tasks.

II. RELATED WORK

Our approach builds upon existing work on self-
supervised contrastive learning with images and point
clouds. These techniques typically produce two augmented
versions of each input sample by applying a series of
transformations with different sets of parameters. Any two
augmented samples derived from the same initial input are
referred to as a positive pair, while those not derived from the
same input are referred to as a negative pair. Subsequently, a
contrastive loss minimizes the (Euclidean) distance between
model outputs for positive pairs, while maximizing the
distance between model outputs for negative pairs. Here, we
provide a brief summary of algorithms that use this approach
to pre-train image and point cloud networks.

A. Contrastive Learning in 2D

Self-supervised pre-training using image features has
proven to be a successful approach for downstream image-
classification tasks, achieving comparable performance to
supervised pre-training, as demonstrated by SimCLR [10].
Self-supervised approaches require large batches of negative
samples, however, which are not always feasible to obtain.
An alternative is to store previous feature encodings in a
memory bank so that they do not have to be recomputed
[11]. Momentum Encoders (MoCo) [12] extends memory
banks with negative samples computed from a separate
encoder that is updated according to a moving average of
the current model parameters. BYOL [13] uses the same
dual-encoder architecture as MoCo, but does not include
a memory bank or use any negative samples. SimSiam
[14] modifies BYOL by sharing weights between the two
encoders instead of using a moving average. Clustering
methods have also proven effective at selecting negative
samples that are the most informative [15], [16]. Similarly,
SupCon [17] uses pseudo-labels, generated from a partially
trained model, to prevent a negative sample of the same class

as the query point from being drawn. Negative mining tech-
niques [18]–[20] also seek to improve performance through
negative sample selection. Notably, for segmentation tasks,
self-supervised pre-training of pixel-level features [21]–[23]
offers improved downstream performance when compared
to image-level features.

B. Contrastive Learning in 3D

The architectures used for pre-training of image net-
works can be adapted to work with point cloud networks.
PointContrast [8] is an early example that augments two
overlapping 3D scans with random rotations and colour
transformations. Known, corresponding points between the
two transformed scans form a positive pair, while all other
points are considered as negative samples in the contrastive
loss function. Contrastive Scene Contexts (CSC) [9] ex-
tends PointContrast with an additional partitioning scheme.
DepthContrast [7] augments a single scan and learns feature
vectors at the scan-level instead of at the point-level. Jiang et
al. extend SupCon to point clouds in [24]. SegContrast [25]
uses a hand-engineered (i.e., non-learning-based) clustering
algorithm to segment a scene prior to positive and negative
sample selection.

C. Multimodal Contrastive Learning

By projecting 3D points into images, algorithms such as
Pri3D [26] and SimIPU [27] leverage 3D data when pre-
training models for downstream 2D scene understanding
tasks. In [26] and [27], the pixel-point pairs that map to
the same physical 3D location are used as positive pairs
in a (pixel-only) contrastive loss. Alternatively, pre-training
with image data can improve downstream performance on
3D scene understanding tasks. CrossPoint [28] applies a con-
trastive learning objective to global scene features generated
from synthetic point clouds of computer-modelled objects
and the corresponding rendered images. A major limitation
of CrossPoint is that it operates on synthetic object-centric
datasets and has not been shown to scale effectively to real-
world 3D scans. P4Contrast [29] performs sensor fusion
and self-supervised pre-training on combined 2D-3D inputs,
both at training time and runtime. Pixel-to-Point Knowledge
Transfer [30] learns point-level features from pre-trained
pixel-level features. This approach is most similar to our
method, with the differences being the specific architecture
and the use of images from the desired, target dataset.

III. METHODOLOGY

In this section, we provide an overview of the formulation
of our contrastive learning framework. We describe the two
distinct and sequential stages of our framework, shown in
Figure 1. The first stage applies a 2D CNN to generate image
features at the pixel level, based on a contrastive loss on the
individual pixels. The second stage then uses these image
features to train a 3D model.



A. Self-Supervised Contrastive learning

Contrastive learning aims to produce features that are
distinguishable between unique inputs. Following the for-
mulation in [31], a query point xi ∈ RN is first sampled
from the dataset. The query point is then augmented by
sequentially applying one or more individual transformations
t : RN → RN , forming a composite function, T (xi) =
(t1 ◦ · · · ◦ tS)(xi), where all transformation parameters are
sampled randomly. Applying two separate transformations to
the query point results in the positive pair (T (xi), T

+(xi)).
Negative samples are selected as those data points or aug-
mentations not derived from the query point.

All points (positive and negative) are subsequently fed
through an encoder fθ to obtain a feature v = fθ(x), where
v ∈ RD. This encoder forms the backbone of the model
that we are trying to initialize. The feature is then passed
through a decoder z = hϕ(v), where z ∈ RM and M ≤
D. If the features are desired directly then the decoder can
simply apply the identity transform. The decoder outputs are
normalized such that ∥z∥2= 1 to improve the stability of the
gradient updates during training. Once pre-trained, only the
encoder parameters θ are retained as part of the initialized
backbone; the decoder parameters ϕ are discarded.

The most common and successful contrastive objective
function is the InfoNCE (Info Noise Contrastive Estimation)
loss function [32]. The loss is defined over the set of query
points as

L = −
N∑
i=1

log
exp(zi · z+i /τ)

exp(zi · z+i /τ) +
∑K

j exp(zi · z−j /τ)
, (1)

where τ ∈ (0, 1] is a temperature parameter that controls the
smoothness of the latent (encoded) representations and K is
a hyperparameter that determines the number of negative
features to sample. For simplicity, it is common to set K =
N and to take all negative samples as query points. The
similarity between features is computed as the dot product,
although other suitable distance functions exist.

B. Stage 1 – Image Features

We utilize the ResUNet architecture from Godard at
al. [33] to extract 2D pixel-level features and modify the
decoder to compute a 16-dimensional feature vector for each
pixel in the input image. We pre-load the weights of the
encoder from a model trained on the large ImageNet corpus
[34]. To pre-train the full model, images are selected from
a desired pre-training dataset. We follow roughly the same
data augmentation strategy and use the same InfoNCE loss
function as SimCLR [10], except that we compare pixel-
level features instead of image-level features. Pixels that
map back to the same coordinates in the original image are
considered as positive samples, while all others (including
those from other images in a batch) are considered as
negative samples.

C. Stage 2 – Point Features

In this stage, we pre-train a 3D point-level feature ex-
traction model using the pixel-level features from Stage 1.
We apply the 3D model from [8] and treat the final 1 × 1
convolution as the decoder, which we initialize from scratch
for training on downstream tasks. Each point cloud is also
augmented so that the model learns to be invariant to differ-
ences in orientation, point density, and colour fluctuations.
The 2D network is held frozen and the fixed 2D features
act as a target for the 3D model to learn. Mapping between
3D points and 2D features is done via perspective projection.
Each pixel-point match forms a positive pair (zi, z+i ), where
zi and z+i represent the feature vectors of a 3D point and the
corresponding pixel, respectively. The feature vector of any
other point is considered a negative sample and represented
as z−j . We use the InfoNCE loss (see Equation (1)) to train
the 3D model. The final parameters of the 3D model are
then used on downstream 3D scene understanding tasks.

D. Training and Evaluation Details

The pre-training pipeline requires that the image-to-point
cloud mapping is known and that the camera intrinsic
parameters are available. The extrinsic pose of the camera
can be found using a variety of localization techniques or
may be determined directly (if stereo or an RGB-D sensor
is used). When an entire scene is viewed by a monocular
camera from multiple poses, there is a risk of incorrect
mappings due to occlusions (i.e., points being mapped to
pixels even if the points would not actually be visible). We
use datasets without occlusions only, avoiding this issue.
Also, notably, occlusions can be removed using methods
such as [35]. The removal of occlusions allows training to
leverage several views of the same point cloud, which further
increases the training set size.

Once pre-training has been completed, downstream train-
ing only requires point clouds to fine-tune the 3D model.
Evaluation is then performed on that model itself.

IV. EXPERIMENTS

In this section, we benchmark the performance of our
pre-trained model on a variety of popular datasets and
tasks. We compare to state-of-the-art baselines on three
different downstream tasks: semantic segmentation, instance
segmentation, and object detection. Table I provides an
overview of our results, across different datasets and tasks.

A. Datasets

We utilize three indoor stereo datasets that are com-
mon benchmarks for 3D contrastive learning [7]–[9], [24],
together with an extra outdoor lidar dataset [5]. We use
ScanNet to pre-train our backbone network as it is the largest
indoor dataset available. ScanNet shares many of the same
classes and types of indoor scenes as S3DIS and SUNRBGD
and therefore is a good candidate for demonstrating the



(a) (b) (c)

Figure 2: Visualization of 2D and 3D feature vectors. The columns in each figure, from left to right, are: (a) input images
and corresponding pre-trained 2D features; (b) pre-trained point (cloud) features and corresponding pre-trained 2D features;
and (c) point features before and after pre-training using our method.

impact of pre-training on a large unlabelled dataset. We
also use ScanNet to pre-train our SemanticKITTI model,
in order to evaluate how learned 3D features can generalize
to substantially different environments and sensor types.

ScanNet [6] is comprised of roughly 1,600 reconstructed
scenes of indoor environments. The raw data include individ-
ual RGB-D images. ScanNet scenes are mostly of individual
rooms that range in size from 2 metres to 10 metres on a
side, with a standard ceiling height of about 3 metres. The
rooms contain 20 different classes of labelled objects. We
use the dataset-defined training and validation splits, and use
the validation set as our test set.

S3DIS [36] is a much smaller dataset and is comprised
of only 300 reconstructed scenes. However, the size of these
scenes varies quite drastically; some are of rooms and others
are of entire auditoriums. The scenes are mainly of indoor
office environments and each scan is an RGB-D image.
There are 13 different semantic classes. All scenes contain
point-level semantic and instance labels. Following [8], [9],
we use the Area 5 split for validation and testing.

SunRGBD [37]–[40] is a 3D dataset of indoor office
environments. SunRGBD contains roughly 10,000 RGB-
D scans and corresponding 3D bounding box annotations
for 10 different classes, with labels similar to those of
ScanNet and S3DIS. There is no scene reconstruction avail-
able, unfortunately. We use the dataset-defined training and
validation split.

SemanticKITTI [5], [41] contains roughly 25,000 laser
scans of outdoor driving environments. It has 20 different
classes with 3D semantic and instance labels. The scans
cover 360◦ around the vehicle, going out to a range of
about 20 metres, with the spatial resolution decreasing with
distance. We use sequences 1–7 and 9–10 as our training set
and sequence 8 as our validation set.

B. Baselines
To verify the effectiveness of our method, we compare

against three state-of-the-art baseline algorithms: PointCon-

trast [8], Contrastive Scene Contexts (CSC) [9], and Depth-
Contrast [7]. Both PointContrast and Contrastive Scene
Contexts require pairs of scans with known poses and at least
30% overlap, while DepthContrast and our method operate
on single scans only.

Due to our own resource limitations, we run DepthCon-
trast with a batch size of 32 on a single graphics processing
unit (GPU), instead of with a batch size of 1,024 split
across 32 GPUs. We run DepthContrast for 40 epochs
instead of 400, which still takes twice as long as any
other method. This should serve as a more fair comparison
between algorithms when access to large compute clusters
is not possible. Where applicable, we also compare against
a fully-supervised backbone to give an idea of a reasonable
upper-bound on performance improvement.

C. Implementation Details
The backbone network we use is the same as that in

[8], [9], with the sparse convolutional library developed
by Choi et al. [4]. The backbone has a Res16UNet34
structure with non-bottleneck blocks and a maximum feature
embedding size of 256. The outputs of the model are directly
used for semantic segmentation. Instance segmentation is
performed with the same backbone to extract features, which
are subsequently fed into PointGroup [3]. Object detection
is performed with VoteNet [42], using the sparse voxel
backbone instead of PointNet++.

For pre-training of the 2D backbone on images, we use a
batch size of 64 image pairs. For each pair, we sample 4,092
pixels to contrast in our loss function. The total loss for each
training iteration is the sum of the loss for each image pair.
The loss function uses a τ of 0.4, a learning rate of 0.01, an
SGD optimizer with a momentum of 0.9, dampening of 0.1,
and a weight decay of 0.004. We decrease the learning rate
according to an exponential scheduler with an exponential
rate of 0.99. Positive samples are generated using the image
transformations from [10]. We pre-train the image network
for 20,000 iterations.



Pre-Training Method S3DIS ScanNet KITTI SUNRGBD
Semantic Instance Semantic Instance Object Semantic Object

Scratch 65.1 53.0 67.4 49.0 35.2 41.0 32.0
Supervised 70.2 (+5.1) 56.2 (+3.2) – – – – –

Multi-Scan PointContrast 66.2 (+1.1) 54.8 (+1.8) 66.9 (-0.5) 49.1 (+0.1) 36.7 (+1.5) 42.1 (+1.1) 34.2 (+2.2)
CSC 69.0 (+3.9) 57.8 (+4.8) 67.6 (+0.2) 49.3 (+0.3) 36.1 (+0.9) 43.0 (+2.0) 35.1 (+3.1)

Single-Scan DepthContrast 64.9 (-0.2) 52.3 (-0.7) 67.4 (+0.0) 48.7 (-0.3) 33.9 (-1.3) 42.0 (+1.0) 32.9 (+0.9)
Ours 66.5 (+1.4) 55.8 (+2.8) 67.7 (+0.3) 48.5 (-0.5) 37.7 (+2.5) 42.0 (+1.0) 33.1 (+1.1)

Table I: Downstream performance comparison of pre-training methods. Semantic segmentation uses the mIOU metric, while
both instance segmentation and object detection tasks use the mAP@0.5 metric with a minimum correct overlap ratio of
0.5. The best performance on each task and dataset for the single- and multi-view categories are highlighted in bold.

Pre-training of the 3D backbone is carried out on the
ScanNet dataset. We use a batch size of eight scan-image
pairs and select 2,000 point-pixel correspondences per pair.
This is a significantly smaller number than for 2D pre-
training because of the increased compute and memory
usage required by point cloud data (compared to image-
data). The images are centre-cropped to 224 × 224 pixels
to conform to the expected input size of the 2D model. We
voxelize the points, with a voxel size of 5 cm per side.
The hyper-parameters are the same as those for 2D training
except that the learning rate is set to 0.1. The 3D model is
pre-trained for 20,000 iterations.

All downstream tasks use the pipeline and parameters
from CSC [9]. Note that we obtain slightly different numbers
from those reported in [9], possibly due to a required update
to the core sparse convolution library for our newer GPU.
We also use a single GPU instead of eight. In this case, all
pre-training is run from scratch.

D. Feature Visualization

We first verify that the 2D features learned using our 2D
pre-training scheme have some connection to the original
image by following the approach from [43]. We bring each
pixel feature into a 1D color space using the t-SNE [44]
algorithm. A heatmap is then applied and the features are
composited to yield an image using each pixel’s original
coordinates. Figure 2a shows a comparison between our
visualizations and the original image. These visualizations
indicate a clear relationship between input image and output
features. The heatmaps tend to highlight structures such
as lines and surface patches that are present in the input
image. Key parts of the image share similar feature vectors
(e.g., individual shelves, tables and chairs). The similarity of
features within classes and their parts should make extracting
the class label of a point easier for the decoder.

Figure 2b shows the relationship between the 2D and 3D
features. There is a clear mapping between the image and
the corresponding point cloud heatmaps. This correlation
qualitatively verifies that the 3D model has indeed learned to
‘mimic’ the features of the 2D model without relying on the
image. Parts of the scene, such as walls and shelves, have

consistent features that are present across both modalities.
Figure 2c shows the difference between randomly initialized
and pre-trained features. Features that are pre-trained follow
visible object boundaries.

E. Semantic Segmentation

The effects of several pre-training methods (including our
own) on downstream tasks are detailed in Table I. Fully-
supervised pre-training on ScanNet has a drastic impact on
final, downstream performance (+5.1 mIOU) and is used as
a rough upper bound on expected performance. Almost all
pre-training algorithms improve downstream results, except
DepthContrast. Our algorithm’s performance is comparable
to PointContrast: both methods achieve an mIOU increase
of more than 1% but perform worse than CSC.

When ScanNet is used for both pre-training and su-
pervised learning, all methods fail to improve semantic
segmentation. Although we see no improvement on ScanNet,
we find that pre-training methods do improve performance
when the number of annotations during supervised training
on downstream tasks is reduced, as seen in Figure 3a. Using
varying proportions of labels simulates the use case where
only a portion of the data collected are annotated.

Pre-training on ScanNet shows performance improve-
ments on SemanticKITTI as well, even though the datasets
are quite different. In Figure 3c, we test the effect of varying
the amount of labelled data on SemanticKITTI. We find
that in almost all scenarios, pre-training methods help. The
performance improvements on S3DIS and SemanticKITTI
suggest that exposing models to different environments and
sensor setups assists in learning features that are better able
to generalize.

F. Instance Segmentation

As in the previous section, we evaluate the performance of
pre-training on ScanNet and training on S3DIS for instance
segmentation. Results are shown in Table I. Almost all
pre-training methods are able to come close to or even to
surpass supervised results, with the exception (again) being
DepthContrast. The best-performing method is CSC, which
achieves a performance boost of 4.8 mAP@0.5. Our own



5 10 15 20 25 30 35 40
Labelled Data Ratio (%)

1

0

1

2

3

4

5

6

7

Di
ffe

re
nc

e 
fro

m
 S

cr
at

ch
 (m

IO
U)

ScanNet: Semantic Segmentation
Ours
PointContrast
CSC
DepthContrast

(a)

5 10 15 20 25 30 35 40
Labelled Data Ratio (%)

4

3

2

1

0

1

2

3

Di
ffe

re
nc

e 
fro

m
 S

cr
at

ch
 (m

AP
) ScanNet: Instance Segmentation

Ours
PointContrast
CSC
DepthContrast

(b)

5 10 15 20 25 30 35 40
Labelled Data Ratio (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Di
ffe

re
nc

e 
fro

m
 S

cr
at

ch
 (m

IO
U)

KITTI: Semantic Segmentation
Ours
PointContrast
CSC
DepthContrast

(c)

Figure 3: Effects of varying training data proportion on the performance boost of pre-trained models.

method performs similarly to supervised pre-training, with
a boost of 2.8.

As with semantic segmentation, all methods struggle
to improve on ScanNet instance segmentation, even when
access to labelled data is limited as shown in Figure 3b.
In most cases, the algorithms perform substantially worse
than training from scratch. This is in spite of the boost to
semantic segmentation with the same data ratios.

G. Object Detection

Our last test case is the downstream task of object
detection. Results for the ScanNet and SunRBGD datasets
are found in Table I. This task is interesting because, unlike
segmentation, it operates at an object level instead of at
the point level (which is our pre-training objective). All
methods besides DepthContrast show a strong improvement
on both datasets. CSC exhibits the best performance with
a boost on SunRGBD of 3.1 mAP, while our method
attains the largest boost on ScanNet with an increase of
2.5 mAP. For the segmentation task, using the same dataset
for both pre-training and the downstream task yields no
performance gain. However, object detection on ScanNet
shows strong improvements even when the full dataset is
available. This outcome suggests that pre-trained point-level
features generalize well to object-level tasks when using the
same raw data for both.

V. ANALYSIS

A. Pre-Training on Out-of-Distribution Data

We find that using a pre-training dataset that is out-of-
distribution relative to the downstream dataset leads to more
consistent and greater performance gains than using the
same dataset for both pre-training and fine-tuning. Table I
shows that using model weights pre-trained on ScanNet
offers very little performance improvement when fine-tuned
on ScanNet. However, those same weights result in much
larger gains when applied to a different dataset such as
S3DIS or SemanticKITTI. A similar discrepancy is found
when varying the proportion of labelled data available.

Using weights pre-trained and fine-tuned on ScanNet, we
find that the biggest performance gain occurs when the
proportion of labelled data available during fine-tuning is
the most restricted (shown in Figures 3a and 3b). The
same weights have the opposite effect when fine-tuning on
SemanticKITTI, which sees the largest performance boost
as the proportion of labelled data increases, (shown in
Figure 3c). The discrepancy suggests that the relationship
between the data available during pre-training and the data
available during fine-tuning is a key contributing factor to
the effectiveness of pre-training.

B. Inconsistencies in Performance Boost

In this section, we investigate the relationship between
unlabelled and labelled data proportions on downstream
performance, by limiting the available label amounts (details
shown in Figures 3a to 3c). While we expect the benefits
of pre-training to increase during downstream supervised
training in situations when fewer labels are available, we
find that the actual performance gains are inconsistent. To
demonstrate this inconsistency, we plot the distribution of
semantic segmentation accuracy with varying amounts of
labelled ScanNet data in Figure 4. The mean improvement
of our method is higher than that of both PointContrast
and DepthContrast. Our method also has a much smaller
variance and greater lower bound on the performance gain.
Therefore, given a dataset with a limited amount of labelled
data, our method is more likely to offer a consistent perfor-
mance boost than other pre-training approaches.

Our results give no definitive answer regarding which
algorithm works best for a specific task or dataset. Since
there is no way (at present) to accurately measure the quality
of features produced from a pre-training algorithm, the only
way to quantitatively evaluate features is to compare down-
stream performance. Downstream performance is highly
variable and without knowing what makes a ‘good feature’
for these tasks, we are forced to proceed with development
following a mostly trial-and-error methodology. Therefore,
during algorithm design for a new dataset, experimentation



Ours PointContrast CSC DepthContrast
1

0

1

2

3

4

5

6

7

Di
ffe

re
nc

e 
fro

m
 S

cr
at

ch
 (m

IO
U)

ScanNet: Performance Distribution

Figure 4: Distribution of performance differences with re-
spect to scratch performance on ScanNet semantic segmen-
tation across labelled data ratios used in Figure 3a.

may be required to determine which method can improve
downstream performance the most. However, our method
may be a good first candidate, given its relatively large
performance gain, consistency across dataset sizes, and the
simplicity gained by requiring individual scans only.

C. Training Speed-up

Figure 5 shows the validation curves versus number
of training steps and compares training from scratch to
other training methods. All techniques show an immediate
improvement early on in the training cycle. This result is po-
tentially valuable during development for downstream tasks:
the final performance can be determined roughly within the
first 2,000 cycles, instead of 20,000. For S3DIS, for example,
algorithms like PointContrast can reach a performance level
that is within 1 mIOU of the final from-scratch performance
within just 1,000 cycles. The early improvement observation
should drastically reduce training and development time.

VI. CONCLUSION

In this paper, we presented a method for transferring self-
supervised features derived from dense images to models
that operate on sparse point clouds. We showed how pre-
training affects performance on three different downstream
tasks and three different datasets. Our experiments yielded
several key findings. First, we found that the performance
of existing methods was inconsistent relative to our own;
specifically, our approach had a smaller variance in accuracy
when training on different amounts of labelled data for a
given dataset. Second, we found, for all methods we evalu-
ated, that using the same data for pre-training and training
yields no performance improvement. Instead, larger amounts
of data (or a different dataset entirely) are required for pre-
training to improve downstream performance. Finally, we
showed that incorporating visual data into the pre-training
procedure is a viable strategy to reduce or eliminate the need

0 2000 4000 6000 8000 10000
Steps

40

50

60

70

Va
lid

at
io

n 
(m

IO
U)

S3DIS Semantic Segmentation

CSC
Supervised
Scratch
Ours
PointContrast

Figure 5: Comparison of validation performance over train-
ing steps for models pre-trained on ScanNet and fine-tuned
for semantic segmentation on S3DIS.

for registered point clouds during pre-training, improving the
scalability of our method (compared with others that require
multiple, registered scans). Given this improved scalability
and more consistent performance improvement across a
number of downstream tasks, we believe that our method is
a reasonable starting point when deciding on a pre-training
strategy for 3D data.

REFERENCES

[1] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-
CNN,” in Intl. Conf. Computer Vision (ICCV), 2017, pp.
2980–2988.

[2] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep
learning on point sets for 3D classification and segmentation,”
in IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 77–85.

[3] L. Jiang, H. Zhao, S. Shi, S. Liu, C.-W. Fu, and J. Jia,
“PointGroup: Dual-set point grouping for 3D instance seg-
mentation,” in IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 4866–4875.

[4] C. Choy, J. Gwak, and S. Savarese, “4D spatio-temporal Con-
vNets: Minkowski convolutional neural networks,” in IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
2019, pp. 3070–3079.

[5] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,
C. Stachniss, and J. Gall, “SemanticKITTI: A dataset for
semantic scene understanding of lidar sequences,” in Intl.
Conf. Computer Vision (ICCV), 2019, pp. 9296–9306.

[6] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,
and M. Nießner, “ScanNet: Richly-annotated 3D reconstruc-
tions of indoor scenes,” in IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 2432–2443.

[7] Z. Zhang, R. Girdhar, A. Joulin, and I. Misra, “Self-
supervised pretraining of 3D features on any point-cloud,” in
Intl. Conf. Computer Vision (ICCV), 2021, pp. 10 232–10 243.

[8] S. Xie, J. Gu, D. Guo, C. R. Qi, L. J. Guibas, and O. Litany,
“PointContrast: Unsupervised pre-training for 3D point cloud
understanding,” in European Conf. Computer Vision (ECCV).
Cham: Springer International Publishing, 2020, pp. 574–591.

[9] J. Hou, B. Graham, M. Nießner, and S. Xie, “Exploring
data-efficient 3D scene understanding with contrastive scene
contexts,” in IEEE Conf. Computer Vision and Pattern Recog-
nition (CVPR), 2021, pp. 15 582–15 592.

[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,”
in Intl. Conf. Machine Learning (ICML), ser. Proceedings of
Machine Learning Research, vol. 119, 2020, pp. 1597–1607.



[11] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature
learning via non-parametric instance discrimination,” in IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
2018, pp. 3733–3742.

[12] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momen-
tum contrast for unsupervised visual representation learning,”
in IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 9726–9735.

[13] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond,
E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo,
M. Gheshlaghi Azar, B. Piot, k. kavukcuoglu, R. Munos, and
M. Valko, “Bootstrap your own latent - A new approach to
self-supervised learning,” in Adv. Neural Information Process-
ing Systems (NeurIPS), vol. 33, 2020, pp. 21 271–21 284.

[14] X. Chen and K. He, “Exploring simple Siamese representa-
tion learning,” in IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 15 745–15 753.

[15] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski,
and A. Joulin, “Unsupervised learning of visual features by
contrasting cluster assignments,” in Adv. Neural Information
Processing Systems (NeurIPS), vol. 33, 2020, pp. 9912–9924.

[16] J. Li, P. Zhou, C. Xiong, and S. C. H. Hoi, “Prototypical
contrastive learning of unsupervised representations,” in Intl.
Conf. Learning Representations (ICLR), 2021.

[17] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised con-
trastive learning,” in Adv. Neural Information Processing
Systems (NeurIPS), vol. 33, 2020, pp. 18 661–18 673.

[18] C.-Y. Chuang, J. D. Robinson, Y.-C. Lin, A. Torralba, and
S. Jegelka, “Debiased contrastive learning,” in Adv. Neural
Information Processing Systems (NeurIPS), vol. 33, 2020, pp.
8765–8775.

[19] J. D. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka, “Con-
trastive learning with hard negative samples,” in Intl. Conf.
Learning Representations (ICLR), 2021.

[20] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and
D. Larlus, “Hard negative mixing for contrastive learning,”
in Adv. Neural Information Processing Systems (NeurIPS),
vol. 33. Curran Associates, Inc., 2020, pp. 21 798–21 809.

[21] X. Wang, R. Zhang, C. Shen, T. Kong, and L. Li, “Dense
contrastive learning for self-supervised visual pre-training,”
in IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 3023–3032.

[22] Z. Xie, Y. Lin, Z. Zhang, Y. Cao, S. Lin, and H. Hu,
“Propagate yourself: Exploring pixel-level consistency for
unsupervised visual representation learning,” in IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), 2021, pp.
16 679–16 688.

[23] W. Wang, T. Zhou, F. Yu, J. Dai, E. Konukoglu, and L. V.
Gool, “Exploring cross-image pixel contrast for semantic
segmentation,” in Intl. Conf. Computer Vision (ICCV), 2021,
pp. 7283–7293.

[24] L. Jiang, S. Shi, Z. Tian, X. Lai, S. Liu, C.-W. Fu, and J. Jia,
“Guided point contrastive learning for semi-supervised point
cloud semantic segmentation,” in Intl. Conf. Computer Vision
(ICCV), 2021, pp. 6403–6412.

[25] L. Nunes, R. Marcuzzi, X. Chen, J. Behley, and C. Stachniss,
“SegContrast: 3D point cloud feature representation learning
through self-supervised segment discrimination,” IEEE Robot.
Autom. Lett., vol. 7, no. 2, pp. 2116–2123, 2022.

[26] J. Hou, S. Xie, B. Graham, A. Dai, and M. Nießner, “Pri3D:
Can 3D priors help 2D representation learning?” in Intl. Conf.
Computer Vision (ICCV), 2021, pp. 5673–5682.

[27] Z. Li, Z. Chen, A. Li, L. Fang, Q. Jiang, X. Liu, J. Jiang,

B. Zhou, and H. Zhao, “SimIPU: Simple 2D image and 3D
point cloud unsupervised pre-training for spatial-aware visual
representations,” Assoc. Advancement of Artificial Intelligence
Conf. (AAAI), vol. 36, no. 2, pp. 1500–1508, 2022.

[28] M. Afham, I. Dissanayake, D. Dissanayake, A. Dhar-
masiri, K. Thilakarathna, and R. Rodrigo, “CrossPoint: Self-
supervised cross-modal contrastive learning for 3D point
cloud understanding,” in IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 9902–9912.

[29] Y. Liu, L. Yi, S. Zhang, Q. Fan, T. Funkhouser, and H. Dong,
“P4Contrast: Contrastive learning with pairs of point-pixel
pairs for RGB-D scene understanding,” arXiv:2012.13089v1
[cs.CV], 2020.

[30] Y.-C. Liu, Y.-K. Huang, H.-Y. Chiang, H.-T. Su, Z.-Y. Liu,
C.-T. Chen, C.-Y. Tseng, and W. H. Hsu, “Learning from
2D: Contrastive pixel-to-point knowledge transfer for 3D
pretraining,” arXiv:2104.04687v3 [cs.CV], 2021.

[31] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive
representation learning: A framework and review,” IEEE
Access, vol. 8, pp. 193 907–193 934, 2020.

[32] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learn-
ing with contrastive predictive coding,” arXiv:1807.03748v2
[cs.LG], 2018.

[33] C. Godard, O. M. Aodha, M. Firman, and G. Brostow,
“Digging into self-supervised monocular depth estimation,”
in Intl. Conf. Computer Vision (ICCV), 2019, pp. 3827–3837.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “ImageNet: A large-scale hierarchical image database,”
in IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2009, pp. 248–255.

[35] S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,”
ACM Trans. Graphics, vol. 26, no. 3, pp. 24–es, 2007.

[36] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis,
M. Fischer, and S. Savarese, “3D semantic parsing of large-
scale indoor spaces,” in IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 1534–1543.

[37] S. Song, S. P. Lichtenberg, and J. Xiao, “SUNRGBD: A
RGB-D scene understanding benchmark suite,” in IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), 2015, pp.
567–576.

[38] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz,
K. Saenko, and T. Darrell, “A category-level 3-D object
dataset: Putting the Kinect to work,” in Intl. Conf. Computer
Vision (ICCV), 2011, pp. 1168–1174.

[39] J. Xiao, A. Owens, and A. Torralba, “SUN3D: A database
of big spaces reconstructed using SfM and object labels,” in
Intl. Conf. Computer Vision (ICCV), 2013, pp. 1625–1632.

[40] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor
segmentation and support inference from RGBD images,” in
European Conf. Computer Vision (ECCV). Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 746–760.

[41] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
autonomous driving? The KITTI vision benchmark suite,”
in IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 3354–3361.

[42] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough
voting for 3D object detection in point clouds,” in Intl. Conf.
Computer Vision (ICCV), 2019, pp. 9276–9285.

[43] C. Choy, J. Park, and V. Koltun, “Fully convolutional geomet-
ric features,” in Intl. Conf. Computer Vision (ICCV), 2019, pp.
8957–8965.

[44] L. van der Maaten and G. Hinton, “Visualizing data using
t-SNE,” J. Machine Learning Research, vol. 9, no. 86, pp.
2579–2605, 2008.


