
Proxies for Anonymous Routing

Michael G. Reed, Paul F. Syverson, and David M. Goldschlag

Naval Research Laboratory

Center for High Assurance Computer Systems

Washington, DC 20375-5337

Phone: +1 202.767.2389 (voice)

Fax: +1 202.404.7942 (fax)

e-mail: {reed, syverson, goldschlag } @itd.nrl.navy.mil

Abstract
Using trafsic analysis, it is possible to infer who is
talking to whom over a public network. This m e r
describes a flexible communications infrastructure, onion
routing, which is resistant to trafsic analysis. Onion
routing lives just beneath the application layer, and is
designed to inte~ace with a wide variety of unmodified
Internet services by means of proxies. Onion routing has
been implemented on Sun Solaris 2.4; in addition, proxies
for World Wide Web browsing (HTTP), remote logins
(RLOGIN), e-mail (SMTP), and file transfers (FTP) have
been implemented.

Onion routing provides application independent, real-time,
and bi-directional anonymous connections that m
resistant to both eavesdropping and trafsic analysis.
Applications making use of onion routing’s anonymous
connections may (and usually should) identify their users
over the anonymous connection. User anonymity may be
layered on top of the anonymous connections by
removing identifying information from the data stream.
Our goal here is anonymous connections, not anonymous
communication. The use of a packet switched public
network should not automatically reveal who is talking to
whom. This is the trafsic analysis that onion routing
complicates.

1. Introduction

1.1 The Problem

Using traffic analysis, it is possible to infer who is
talking to whom over a public network (Figure 1). For
example, in a packet switched network [111, packets have
a header used for routing, and a payload that carries the
data. The header, which must be visible to the network
(and to observers of the network), reveals the source and
destination of the packet. Even if the header were
obscured in some way, the packet could still be tracked as
it moves through the network. Encrypting the payload is
similarly ineffective, because the goal of traffic analysis is
to identify who is talking to whom and not (to identify
directly) the content of that conversation.

Figure 1. Communication over a Public Network

The efficiencies of the public Internet are strong
motivation for companies to use it instead of private
intranets. However, these companies may want to protect
their interests. For example, a researcher using the World
Wide Web (Web) may expect his particular focus to
remain private, and inter-company collaborations should
be confidential. Individuals may wish to protect their

95
U.S. Government Work Not Protected by US . Copyright

mailto:itd.nrl.navy.mil

privacy as well. For example, the sending of e-mail
should keep the identities of the sender and recipient
hidden from observers. Also, a person shopping online
may not want his visits tracked. Certainly someone
spending anonymous e-cash would expect that the source
of the e-cash be untraceable.

The use of a packet switched public network should not
require revealing who is talking to whom. This paper
presents a flexible communications infrastructure, onion
routing, which is resistant to traffic analysis.

1.2 Objective

Onion routing is an infrastructure that

complicates traffic analysis,

0 separates identification from routing,

0 supports many different applications.

Without dedicated links between every node and full
utilization of each link, traffic analysis can, in principle,
always be effective. But traffic analysis can be made more
costly. Onion routing accomplishes this goal by
separating identification from routing. Onion routing
provides anonymous connections that are resistant to both
eavesdropping and traffc analysis. Instead of containing
source and destination information, packets moving along
an anonymous connection contain only next hop and
previous hop information. These anonymous connections
can replace socket connections. Since socket connections
are commonly used to support applications running over
the Internet (like Web browsers, remote login, and e-mail)
onion routing’s anonymous connections can support a
wide variety of unmodified applications using proxies that
interface between applications and the onion routing
network.

1.3 Overview of the Solution

Onion routing works in the following way: An
application, instead of making a (socket) connection
directly to a destination machine, makes a connection to
an onion routing proxy on some remote machine. That
onion routing proxy builds an anonymous connection
through several other onion routers to the destination.
Each onion router can only identify adjacent onion routers
along the route. When the connection is broken, even
this limited information about the connection is cleared at
each onion router. Data passed along the anonymous
connection appears different ut and to each onion router,
so data cannot be tracked en route and compromised onion
routers cannot cooperate. An onion routing network can

exist in several configurations that permit efficient usage
by both large institutions and individuals.

1.4 Traffic Analysis

Traffic analysis makes inferences from three sources of
information:

Routing information

e Coincidences

h a d

Routing information is available in many forms: packet
headers, phone touch-tones, and envelope addresses. This
is the most obvious source that needs protecting.
Coincidences, like similar traffic entering or leaving a
node, or connections opening or closing at roughly the
same time, are more difficult to hide. Finally, the very
presence of communication over some link may reveal
sensitive information. But load is very difficult to
obscure if one is unwilling to use a constant amount of
capacity all the time.

1.5 Organization of Paper

This paper is organized in the following way: Section 2
presents background information. Section 3 presents our
goals and threat model. Section 4 presents our solution,
and sections 5 and 6 provide more details. Section 7
describes the implemented prototype. Section 8 discusses
vulnerabilities, costs, and variants of onion routing.
Section 9 presents some concluding remarks.

2. Background
Chaum [1,2] defines a mechanism for routing data
through intermediate nodes, called mixes. These
intermediate nodes may reorder, delay, and pad traffic to
complicate traffic analysis. Our onion routers are based
upon mixes.

Anonymous Remailers [4,6] use mixes to provide
anonymous e-mail services and also invent an address
through which mail can be fonvarded back to the original
sender. Remailers work in a store-and-forward manner at
the mail application layer by stripping off headers at each
mix and forwarding the mail message to the next mix.
Some remailers provide confirmation of delivery.

In [8,9], mixes are used to provide untraceable
communication in an ISDN network. In the described
phone system, each telephone line is assigned to a
particular local switch (i.e., local exchange), and switches

96

are interconnected by a (long distance) network.
Anonymous calls in ISDN rely upon an anonymous
connection within each switch between the caller and the
long distance network, which is obtained by routing calls
through a predefined series of mixes. The long distance
endpoints of the connection are then mated to complete
the call. (Notice that observers can tell which local
switches are connected.) This approach relies upon two
unique features of ISDN switches. Since each phone line
has a subset of the switch‘s total capacity pre-allocated to
it, there is no (real) cost associated with keeping a phone
line active all the time, either by making calls to itself, to
other phone lines on the same switch, or to the long
distance network. Keeping phone lines active complicates
traffic analysis because an observer cannot track
coincidences.

Also, since each phone line has a control circuit
connection to the switch, the switch can broadcast
messages to each line using these control circuits. So,
within a switch a truly anonymous connection can be
established: a phone line makes an anonymous connection
to some mix. That mix broadcasts a token identifying
itself and the connection. A recipient of that token can
make another anonymous connection to the specified mix,
which mates the two connections to complete the call.

Our goal of anonymous connections over the Internet
differs from anonymous remailers and anonymous ISDN.
Unlike anonymous remailers, anonymous connections are
application independent and are meant to be used by a wide
variety of Internet applications. The dah carried by
anonymous connections is varied, with real-time
constraints often more severe than mail, but usually
somewhat looser than voice. Both Web and ISDN
connections are bi-directional, but, unlike ISDN, Web
connections are likely to be small requests followed by
short bursts of returned data. In a local switch, capacity is
pre-allocated to each phone line, and broadcasting is
efficient. But broadcasting over the Internet is not free,
and defining broadcast domains is not trivial. Most
importantly, the network topology of the Internet is more
akin to the network topology of the long distance network
between switches, where capacity is a shared resource. In
anonymous ISDN, the mixes hide communication within
the local switch, but connections between switches are not
hidden. This implies that all calls between two
businesses, each large enough to use an entire switch,
reveal which businesses are communicating. In onion
routing, because of the topology of the Internet, mixing
has to be dispersed throughout the Internet, so hiding is
greatly improved.

3. Objectives

3.1 Applications

Onion routing’s anonymous connections are designed to
replace TCPDP socket connections [3] and to be able to
work with unmodified applications. A socket connection
is a reliable bi-directional connection carrying a stream of
data between two machines. Socket connections provide
the abstraction that shields an application from the
unreliable and unordered communication that is provided
by lower levels of the IP stack.

Many applications use socket connections:

0 Web requests (HTTP)

0 Remote logins (FUOGIN)

0 e-mail (SMTP)

File transfer (FTP)

Internet Relay Chat (IRC)

Encrypted IP Tunnel

These applications can connect to onion routing’s
anonymous connections using proxies. A proxy [l 11 is
usually a relay between an initiating and responding
application. In onion routing, anonymous connections
are terminated by application specific proxies that relay
information between the connection and the unmodified
applications. Many applications are already proxy aware
because proxies are commonly used to communicate
through firewalls. For example, a Web browser on a
network with a firewall will reach sites outside the
firewall through an HTTP proxy on the firewall machine.
In that way, direct connections are never made between
internal and external machines.

3.2 Threat Model: Active and Passive Attacks

Onion routing’s design is very conservative since it
assumes that the public network is very vulnerable. In
particular, we assume that:

All traffic is visible.

0 All traffic can be modified.

0

In addition, a sophisticated adversary may be able to detect
timing coincidences such as the near simultaneous
opening of connections. Timing coincidences are very

Onion routers may be compromised.

Compromised onion routers may cooperate.

97

difficult to overcome, especially when real-time
communication is important. But, if connections are
routed over an unpredictable path in a busy network, this
sort of attack is also very expensive.

The first four vulnerabilities, however, directly motivate
certain design decisions in onion routing. Because traffk
is visible, the headers and payloads of all traffic are
essentially link encrypted between onion routers so the
same data looks different when traveling between routers.
Because traffic can be modified, stream ciphers [lo] are
used for encryption. Inserting, deleting, or modifying
traffic en route will disrupt the stream and produce random
bits downstream. Because onion routers may be
compromised, anonymous connections span several onion
routers, even though a single “perfect” mix is adequate to
provide privacy. Because compromised onion routers may
cooperate, data is encrypted in a layered fashion so it
appears different to each onion router, not only between
onion routers.

4. The Solution: Onion Routing
Onion routing has two parts: A network infrastructure
that carries anonymous connections, and a proxy interfaces
that mate these connections to unmodified applications.

4.1 Onion Routing: Network Infrastructure

The public network contains a set of onion routers. Each
onion router has a single (socket) connection to each of a
small set of neighboring onion routers. Onion routers
only talk to their neighbors. Neighboring onion routers
are neighbors for onion routing only. That is,
communication between two neighboring onion routers is
canied over a socket connection, and packets are routed
(perhaps dynamically) through many hops by the IP
protocol.

An anonymous connection is routed through a sequence
of neighboring onion routers. Common segments of
these routes are multiplexed over the single connection
between neighbors. An onion router’s obligation is to
pass data from one connection to another after applying
the appropriate cryptographic operations.

An anonymous connection from an initiator to a responder
through four onion routers is illustrated in Figure 2.

---Onion Rou
[nitiator Respond er

Figure 2. Onion Routing Network Infrastructure

4.2 Onion Routing: Proxy Interface

How are anonymous connections used? Proxies interface
between applications and the network infrastructure. When
a proxy is used on a firewall, it relays traffic between the
protected site and the rest of the world. In onion routing,
a proxy’s functions are split into two: one part links the
initiator to the anonymous connection and the other part
links the anonymous connection to the responder. In this
way, the initiating and responding applications need not
be modified (although they do have to be able to use
proxies).

Imagine an initiator sitting at her workstation using a
Web browser. When she “clicks” on a URL link, the
browser sends an HTTP request for that URL to some
onion routing proxy instead of directly to the responder.
In Figure 3, this is the onion routing proxy named W. W
looks at the request and chooses a route through several
other onion routers (e.g., W-X-Y-Z). W then sends an
onion (see section 5.1) along that route; the onion is an
instruction to those onion routers to construct an
anonymous connection.

The last onion router in the route (Z) also functions as an
onion routing proxy for the responder. Z passes data from
the anonymous connection to the responder, and passes
data from the responder back to the connection.

Figure 3: Onion Routing Proxy Interface

Instead of a single socket connection between an initiator
and a responder, onion routing requires a socket
connection between the initiator and his proxy, an
anonymous connection between the initiator’s proxy and
the responder’s proxy, and a socket connection between
the responder’s proxy and the responder. However, the
three connections function as if they were a single (bi-

98

directional and reaI-time) socket connection between the
initiator and responder.

There are many configurations of an onion routing
network. In one basic configuration, a site that is
concemed about traffic analysis should control an onion
routing proxy in order to protect communication between
that proxy and its users. That onion routing proxy must
also function as an intermediate onion router in other
anonymous connections. If it is not used in this way,
observers can monitor the load coming from onion
routing proxy and trace it back to the sensitive site.
However, if the onion routing proxy is also a busy
intermediate onion router, observers cannot tell whether
the sensitive site is consuming, producing, or relaying
traffic.

Individuals may access an onion router through their
Internet Services Provider (ISP), if the ISP controls an
onion routing proxy. An individual could also make an
encrypted connection to some public domain onion
routing proxy. Finally, a user could run an onion routing
proxy on his workstation, and route anonymous
connections through other onion routers.

5. Using Onion Routing
After the initiator contacts his proxy, onion routing
follows four stages:

1. Define the route.

2. Construct the anonymous connection.

3.

4. Destroy the anonymous connection.

The next four sections describe these stages in more detail.
(The extra details in each Details subsection are
independent of the rest of the paper.)

Move data through the anonymous connection.

5.1 Defining the Route

Consider Figure 3. The initiator’s proxy, W, chooses to
make an anonymous connection through (W-X-Y-Z).
Therefore, W constructs a layered data structure called an
onion (Figure 4):

Each layer of the onion is intended for a particular onion
router and contains the identity of the next onion router in
the anonymous connection, and the key that should be
used when communicating with the previous onion router
in the connection. The final layer of the onion is intended
for Z. Since Z is the last onion router in the connection,
its layer only contains a key.

Figure 4: An Onion

Using public key cryptography [lo], the onion is
constructed so only the intended recipient can peel off the
outermost layer, thereby revealing both his layer and the
onion embedded inside. No recipient knows who created
the onion. So, onion routers can identify only whom they
received an onion from and to whom they are obliged to
send the embedded onion. And, no recipient can determine
what the other onions embedded in an onion look like.

The onion routing proxy that creates an onion keeps a
copy of the keys in the onion until the anonymous
connection is destroyed. We will see how these keys are
used in sections 5.3 and 5.4.

5.1.1 Onion Details
The onion routing proxy routes the anonymous
connection through neighboring onion routers. Therefore,
it must know the topology of the onion routing network.

The size of an onion limits the length of a route. To
prevent observers from inferring the length of a route,
onions are padded to some fixed size. This padding
becomes part of and is indistinguishable from the already
embedded onion.

The key at each layer of the onion is used for bi-
directional communication between an onion router and
the previous onion router. Therefore, the key really
specifies two stream ciphers, one for forward
communication (in the direction the onion travels) and the
other for backward communication (in the opposite
direction).

Each layer of an onion also contains an expiration time.
An onion router is to ignore an expired onion and is to
ignore replayed onions. Therefore, onion routers must
keep track of onions during their lifetimes.

For efficiency, the entire onion is not encrypted using a
public key cryptosystem. Instead some prefix
(corresponding to the block size of the public key

99

cryptosystem) of the onion is encrypted using public key
cryptography, and the rest of the onion is encrypted using
an efficient stream cipher initialized with a key specified
in the prefix [5,7,10].

5.2 Constructing the Anonymous Connection

After constructing the onion, W sends the onion to the
first onion router in the anonymous connection. The
onion moves between onion routers (Figure 5):

Public Network ’0
Responder

Figure 5: Use of an Onion

Each layer of the onion is intended for a particular onion
router, and can be peeled off only by that onion router.
The first layer of this onion is intended for X. When X
peels off that layer, it obtains a key that it will use when
communicating with W (from whom X received the
onion), and notes that future traffic from that connection
should be forwarded to Y. X also forwards the embedded
onion to Y. In a similar way, Y peels off its layer of the
onion, revealing the key that it should use to
communicate with X (from whom Y received the onion),
and notes that future traffic from that connection should be
forwarded to Z. Z peels off its layer, revealing only the
key that it will use to communicate with Y, and notes
that it is the last onion router in the anonymous
connection. The first data that Z receives along that
anonymous connection will identify the intended
responder.

5.2.1 Anonymous Connection Construction
Details
To keep onion size constant, each onion router is obliged
to add padding to the onion corresponding to the fmed size
layer that was removed. Onion routers cannot distinguish
padding from embedded onions. If an onion router fails to
pad an onion, however, the next onion router will notice
that the onion it received is too small and will not process
the onion. Because of the padding, even onion routers
themselves cannot tell how much of an anonymous
connection has been constructed.

Remember that all communication between neighboring
onion routers is multiplexed in the data stream of a single
socket connection. Therefore, all data travels in a series of

fixed size cells. Each cell has a header that identifies the
anonymous connection it is assigned to, as well as the
type of payload it carries. For example, cells carrying
onions will be labeled as onion cells, and will also
contain the identifier of the new anonymous connection
that is to be multiplexed over that socket connection.
Nbtice that this identifier is chosen by the onion router
relaying the onion, and in each socket connection carrying
a segment of an anonymous connection, the anonymous
connection may have a different identifier. Each onion
router maintains a table that maps between the identifiers
of incoming connections and outgoing connections, and
the cryptographic keys that are to be applied to data
moving along an anonymous connection.

Cells traveling over a socket connection between onion
routers are link encrypted in a peculiar way: headers and
payloads are encrypted separately, for efficiency. For
example, headers are encrypted with some stream cipher
negotiated between the neighboring onion routers. The
payload of a cell of type onion need not be encrypted,
since the onion was already encrypted for the next onion
router by the onion routing proxy that created the onion.

Because of the link encryption, observers monitoring the
data stream between onion routers cannot read cell headers.
Therefore, observers cannot distinguish between onions
and other types of cells.

5.3 Moving Data Forward

The anonymous connection moves data from the
initiator’s proxy to the responder’s proxy and vice versa.
In the forward direction, the initiator sends plaintext to his
onion routing proxy. The onion routing proxy repeatedly
crypts’ the data using the inverse of the keys2 specified in
the onion, applying the keys innermost first. Each onion
router along the route removes one layer of cryption. The
responder’s proxy forwards the plaintext to the responder.

This is illustrated in Figure 6.

’ We define the verb crypt to mean the application of a
cryptographic operation, be it encryption or decryption,
where the two are logically interchangeable. For
example, in a stream cipher using Output Feedback
Mode (e.g., DES OFB), encryption and decryption are
the same operation.

Each key really specifies a stream cipher. The inverse
of a key, therefore, is the inverse of the corresponding
stream cipher.

100

text 57 text

w
Responder Public Network

Figure 6: Moving Data Forward

The purpose of the pre-cryptions is to make the data look
different as it travels through the anonymous connections,
both to outside observers and to the onion routers. Notice
that observers cannot match data along the route, and
onion routers cannot predict what data will look like later.

Notice that each onion router does one cryption, while the
initiator’s onion routing proxy does one pre-cryption for
each subsequent onion router in the connection.

5.3.1 Moving Data Forward Details
Data moving in the direction that the onion was sent is
defined to be moving in the forward direction. Data
moving in the reverse direction is defined to be moving
backward. This distinction is important when discussing
reply onions (section 6) .

As with onions, data is carried in cells through the
multiplexed socket connections. The cells have type
data and are labeled with the identifier of the associated
anonymous connection. Although the headers of data
cells are link encrypted between onion routers, the
payloads of data cells are not link encrypted, as the
cryption operation done at each onion router is sufficient.

When a data cell arrives, the onion router looks up the
cell’s identifier in its tables and finds the corresponding
outbound identifier. The appropriate cryptographic
operation is applied and the crypted payload is formed and
sent along the outbound connection.

As with the link encryption of the headers, the payloads of
data cells are encrypted using stream ciphers.

5.4 Moving Data Backward

Moving data backward is just the reverse of sending data
forward. The responder’s onion routing proxy receives
plaintext from the responder. It and each subsequent
onion router adds one layer of cryption and sends the data
to the next onion router. The initiator’s onion routing
proxy removes the layers of cryption by applying the
inverse of the keys in the onion outermost first. The
resulting plaintext is forwarded to the initiator.

This is illustrated in Figure 7.

a
Responder Public Network

Figure 7: Moving Data Backward

5.4.1 Moving Data Backward Details
As with forward data, the initiator’s onion routing proxy
handles the bulk of the cryption burden.

5.5 Destroying the Anonymous Connection

Just as socket connections are torn down, anonymous
connections need to be destroyed when the connection is
broken. An onion router that decides to tear down a
connection sends a destroy message forward and backward
along the anonymous connection. It also cleans up its
own tables. An onion router that receives a destroy
message is obliged to clean up its own table and relay the
message in the same direction.

This is illustrated in Figure 8.

-destroy destroy -C-

Public Network ‘0
Re s ponde r

Figure 8: Destroying an Anonymous Connection

Notice that the multiplexed socket connections between
neighboring onion routers remain active.

5.5.1 Destroy Details
Destroy messages are sent in cells of type destroy.
The header identifies the anonymous connection that is to
be destroyed. The payload is random and changes at each
onion router.

6. Reply Onions
The(forwat-d) onion described in section 5 is used by the
initiator’s onion routing proxy to construct an anonymous
connection to some responder’s onion routing proxy.
What happens if an initiator expects a later reply from the
responder? An obvious solution is to keep the
anonymous connection open. This may not always be
practical. Another solution is a reply onion.

101

An initiator’s onion routing proxy can create a reply can never distinguish between forward and reply onions.
onion that defines a route back to him. For example, In fact, the only difference between anonymous

connections formed by forward onions and those formed
Figure 9 illustrates a reply onion that will construct an by reply onions is that the sets of keys used to crYPt data
anonymous connection back to W from Z through onion in each direction are swapped: forward keys are used as

backward keys and vice versa. routers Y and X:

A reply onion may also be created by a third party to
define an anonymous connection back to some initiator.
Third party reply onions are unusual because both the
third party and the initiator know all the onion keys.

Figure 9: A Reply Onion

The reply onion is sent by the responder to onion routing
proxy 2, who peels off its first layer, and sends the
embedded reply onion on to onion router Y after extracting
the key that Z will use when communicating with Y.
Onion routers Y and X do the same operation. Onion
routing proxy W receives a reply onion with a sequence of
keys.

The anonymous connection established by this reply
onion is illustrated in Figure 6, and is identical to the
anonymous connection established by the (forward) onion
illustrated in Figure 4. Once the anonymous connection
is established, each onion router has the same role it has
in a forward connection from the initiator to the responder:
That is, the initiator’s onion routing proxy repeatedly pre-
crypts data and other onion routers crypt only once.

Reply onion’s can also be used to allow anonymous
replies back to some initiator. The initiator may publish
a reply onion, which can be picked up and used by any
responder. The responder forwards the onion to the
designated onion routing proxy and an anonymous
connection back to the initiator will be constructed.

6.1 Reply Onion Details

As with forward onions, reply onions contain expiration
times to prevent replays. This means that published reply
onions can only be used once. If an initiator expects
several replies, he should publish many reply onions.

During connection construction, both the responder’s and
initiator’s onion routing proxies know that they have a
reply onion. Once the connection is established, however,
this distinction is irrelevant. Intermediate onion routers

7. Implementation
Onion routing has been implemented on Sun Solaris 2.4.
Onion routing proxies for Web browsing (HTTP),
RLOGIN, e-mail (SMTP), and FTP have been
implemented also. Furthermore, versions of these proxies
that anonymize the data stream have been implemented.
These proxies allow anonymous communication that is
resistant to both eavesdropping and traffic analysis.

An extension to this prototype must handle changes to the
topology of the onion routing network. This includes, for
example, new onion routers, different neighbors, and
distribution of onion routers’ public keys.

8. Discussion
To be effective, onion routing must be widely deployed
and there must be significant use of all the onion routers.
Furthermore, onion routing proxies must also be
intermediate onion routers. Otherwise, it is easy to infer
that traffic to and from a particular onion routing proxy is
really to and from the sensitive site that controls the
proxy.

8.1 Vulnerabilities

Onion routing is not invulnerable to traffic analysis
attacks. With enough data, it is still possible to analyze
usage patterns and make educated guesses about the
routing of messages. Also, since our first application
(Web requests) requires real-time communication, it may
be possible to detect the near simultaneous opening of
socket connections on the initiator’s and responders’ onion
routing proxies, thereby revealing who is requesting what
information. (Of course, even this attack is impossible if
the initiator’s onion routing proxy is controlled by his
sensitive site.) However, these sorts of attacks require the
collection and analysis of huge amounts of data by
external observers.

102

One way to further complicate this sort of analysis is to 8.2 CrYPtograPhic Overhead
pass dummy traffic through the network to make the
traffic level fairly constant. There is an obvious tradeoff
here between security and cost: Adding dummy traffic
undermines the efficiencies of the Internet as a shared
resource. It is difficult to calculate the value of this
tradeoff. If traffic is very bursty and response time is
important, smoothing out network traffic requires wasting
capacity. If, however, traffic is relatively constant,
additional smoothing may not be necessary. From a
practical point of view, the Internet may not provide the
control necessary to smooth out traffic: unlike ATM,
users do not own capacity on shared connections. The
important observation, however, is that onion routing
provides an architecture within which these tradeoffs can
be made and explored.

Other attacks depend upon compromised onion routers. If
the initiator’s onion routing proxy is compromised, then
all information is revealed. In general, it is sufficient for
a single onion router to be uncompromised to complicate
traffic analysis.

Any compromised onion router can still destroy
connections or stop forwarding messages, resulting in
denial of service attacks. Although this appears to be akin
to the denial of service problem in 1P source routing,
where the unreachability of any part of the route causes
packet loss, the situation is closer to loose source routing
where packets may be routed arbitrarily between the
prespecified routers. Furthermore, in onion routing, if the
connection is broken, the rest of the onion routers are
informed via destroy messages.

Onion routing uses expiration times to prevent replay
attacks. It is curious that, unlike other services that
depend upon a common clock, the vulnerability due to
poor synchronization here is a denial of service attack,
instead of a replay attack. If an onion router’s clock is too
fast, otherwise timely onions will appear to have already
expired. Also, since expiration times define the window
during which onion routers must store used onions, an
onion router with a slow clock will end up storing more
information.

The data stream cannot be replayed, as stream ciphers are
used for encryption. If the data stream is changed in any
way, synchrony will be lost and the data stream will
become irreversibly corrupted. Since TCPAP socket
connections are used to carry the data stream, we expect
error free data delivery.

In onion routing, the cryptographic overhead on
intermediate onion routers is less than the burden of link
encryption on routers. In link encryption, each packet is
encrypted by each sender and decrypted by each recipient.
In onion routing, only one cryptographic operation is
applied between every two onion routers. This is because
the initiator’s onion routing proxy repeatedly pre-crypts
data.

The total number of encryptions remains the same,
however. It is interesting to note that shifting the
encryption burden provides (for free):

Link encryption.

End to end encryption.

0 Data hiding: the same data looks different to each
onion router.

8.3 Infrastructure Variations

An interesting application of onion routing is a variation
of IRC (Internet Relay Chat). Two sites can build
anonymous connections through onion routers they each
trust to meet at a designated onion routing proxy. That
proxy mates the two connections. Privacy is guaranteed,
and neither party needs to trust the other to hide his
participation from outside observers.

Since connection setup is relatively expensive, it may be
useful to delink sockets and anonymous connections. For
example, when using a Web browser to view a particular
Web page, several socket connections may be established
to retrieve various parts of the document. There is no
reason that those socket connections could not all use
(either serially or in parallel) the same anonymous
connection.

It is interesting to consider protocol encapsulation.
Onions can be carried over the anonymous connections.
This would enable extending connections and may enable
using parts of connections or linking together parts of
connections. This process allows the length of
anonymous connection routes to be extended indefinitely,
and permits the size of the onion routing network to grow
arbitrarily.

Since real-time connections are inherently more vulnerable
to traffic analysis than less time critical applications, it
makes sense to tag connections with various service
guarantees. A real-time connection will be less resistant
to traffic analysis than a slow connection because

103

intermediate onion routers have less flexibility with
buffering its data stream.

Onion routing networks can exist in many configurations
to accommodate the requirements of large institiitions,
ISPs, and individuals through a combination of institution
or ISP controlled onion routing proxies, public domain
onion routing proxies, and public domain onion routers.
The combination of many sources of @&IC enables the
network to further complicate traffic analysis.

8.4 Lower Levels of the Stack

Can onion routing be implemented at lower levels of the
communications stack? The obvious advantage is that
this would eliminate the need for application specific
onion routing proxies. The difficulty with pushing onion
routing beneath the sockzt layer of the IP stack is that
onion routing's connection setup is relatively expensive,
and is impractical to use each time a packet is sent over a
connectionless circuit.

Since ATM is connection based, however, it is peirfectly
reasonable to consider using onion routing's approach for
connection setup to make anonymous ATM Connections.
In fact, in our prototype, we are modeling our cells based
on ATM cells.

9. Conclusion
Onion routing provides real-time, bi-directional
communication through anonymous connections that are
resistant to both eavesdropping and traffk analysis.
These anonymous connections can substitute for socket
connections in a wide variety of unmodified Internet
applications using proxies. Our prototype of onion
routing includes proxies for Web browsers (HITP),
remote login, e-mail, and file transfer protocols as well as
anonymizing versions of these protocols The
anonymizing version of the e-mail proxy creates an
anonymous connection between two sendmail daemons
and removes identifying information from the headers of
the mail message. This approach contrasts with
Anonymous Remailers, where each remailer provides a
single hop in a chain of mail forwarding. This highlights
the difference between onion routing and other uses of
Chaum mixes: Privacy and anonymity are moved beneath
the application layer and made application independent.

Onion routing will only be effective in complicating
traffic analysis if its infrastructure is widely deployed and
widely used. This deployment is considerably simplified
because applications need not be modified.

Our motivation here is not to provide anonymous
communication, but to separate identification from
routing. Authenticating information must be carried in
the data stream. Applications can (and usually should)
identify themselves to each other. But, the use of a public
network should not automatically reveal the identities of
communicating parties. The goal here is anonymous
routing, not anonymity.

References

1. D. Chaum. Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms, Communications
of the ACM, v. 24, n. 2, Feb. 1981, pages 84-88.

2. D. Chaum, The Dining Cryptographers Problem:
Unconditional Sender and Recipient Untraceability,
Journal of Cryptology, 1/1, 1988, pages 65-75.

3. D. E. Comer. Internetworking with TCPIIP, Volume
I : Principles, Protocols, and Architecture, Rentice--
Hall, Engelwood Cliffs, New Jersey, 1995.

4. L. Cottrell. Mixmaster and Remailer Attacks,
http://obscura.obscura.com/-lokilremailer/remailer-
essay .html

5. D. Goldschlag, M. Reed, and P. Syverson. Hiding
Routing Information. Workshop on Information
Hiding, Cambridge, UK, May, 1996.

1996 Symposium on Network and Distributed System
Security, San Diego, February 1996.

7. A. Pfitzmann and B. Pfitzmann. How to Break the
Direct RSA-implementation of MIXes, Advances in
Cryptology--EUROCRYPT '89 Proceedings, Springer-
Verlag, Berlin, 1990, pages 373-381.

8. A. Pfitzmann, B. Pfitzmann, and M. Waidner. ZSDN-
Mixes: Untraceable Communication with Very Small
Bandwidth Overhead, GI/ITG Conference:
Communication in Distributed Systems, Mannheim
Feb, 1991, Informatik-Fachberichte 267, Springer-
Verlag, Heidelberg 1991, pages 45 1-463.

9. A. Pfitzmann and M. Waidner. Networks Without
User Observability, Computers & Security, 612 1987,
pages 158- 166.

Algorithms and Source Code in C, 2nd edition, John
Wiley and Sons, 1996, (the red one).

11. W. R. Stevens. TCP/IP Illustrated, Volume 3: TCP
for Transactions, HTTP, NNTP, and the UNIX Domain
Protocols, Addison--Wesley, Reading, Mass., 1996.

6 . C. Gulcu and G. Tsudik. Mixing Email with Babel,

10. B. Schneier. Applied Cryptography: Protocols,

104

http://obscura.obscura.com/-lokilremailer/remailer

