
1

SecurSight: An Architecture for Secure Information
Access

John G. Brainard
RSA Laboratories

Abstract

This paper describes SecurSight, an
architecture that combines authentication,
authorization, and secure communications. The
primary goal of this architecture is to secure
access to network resources, while providing a
smooth migration path from legacy
authentication and authorization methods to a
public-key infrastructure. Authentication may
utilize either shared secrets or public/private key
pairs. Authorization is public-key based and
provides both direct support for PKI-aware
applications and indirect support for legacy
applications. Authorization credentials are
portable, and may be used in location-
independent fashion, without the need for
cumbersome export and import procedures.

1. Overview

The use of public-key technology for
authentication and authorization in enterprise
environments has been slow in deployment due
to a number of factors. The use of “soft” public-
key credentials in desktop applications such as
Web browsers is convenient, but the portability
of such credentials is limited. Truly portable
public-key devices, such as smartcards, require
infrastructure, in the form of smart card readers,
which is not yet widely available.

Access control in applications faces
something of a “chicken and egg” problem.
Users do not want to go to the trouble of
obtaining key pairs and certificates until their
applications require it. Major application
developers, on the other hand will not use
public-key technology in their products until a
critical mass of users has keys and certificates.
This makes the conversion to public-key an all-
or-nothing proposition, where all users and
applications must be upgraded at once.

In this paper we will discuss an architecture,
called SecurSight, that helps solve these
problems by using existing authentication
technology as a front end to public-key based
services. It provides authorization services
directly to public-key based applications. Older
applications that know nothing of PKI are
supported using public-key aware wrappers. This
wrapping, combined with the storage of legacy
credentials, such as passwords, inside public key
based containers, allows the public-key
infrastructure to exist without explicit awareness
of it on the part of either end users or
applications.

SecurSight’s novelty is less in the specifics of
its implementation than in the way it uses public-
key infrastructure to enhance, rather than
replace, existing security methods. This allows
users to begin experimenting with public-key
authentication and smartcards, without throwing
away old passwords and one-time password
generators. It allows new PKI-aware services to
be integrated seamlessly, without abandoning
existing applications.

1.1 SecurSight Design Principles

A primary goal of SecurSight is to provide
centrally administered authentication and
authorization for all users of a network,
regardless of the resource to be accessed. The
users log in to a trusted server and then obtain
credentials for the resources they are authorized
to use. The credentials have a short validity
period, to allow administrators to grant and
revoke privileges in a timely fashion.

SecurSight authentication is not restricted to a
single method. Public-key based authentication,
using both smartcards and keys stored in
software, is supported. In addition, both
traditional static passwords and various forms of
one-time password (OTP) are allowed. The
mechanism support is flexible enough that new
mechanisms, such as biometrics, may be added
without change to the basic design.

2

The authorization mechanism in SecurSight is
the same for all users, regardless of the method
used to authenticate. This gives all users
potential access to the same set of resources.
Administrators may require a particular type of
authentication for a particular resource, but the
choice is not dictated by the architecture.

With SecurSight, a user may log in and obtain
authorization credentials from any enabled client
system. Any additional credentials, beyond those
used for initial authentication, are maintained by
the authentication server and downloaded to the
user after successful authentication.

The SecurSight system maintains a list of
trusted authorities that is used to verify chains of
public-key certificates at authentication time.
This, in conjunction with the use of an external
certificate validation service, moves much of the
trust management problem away from the user’s
desktop where it may lead to both confusion and
security errors. All trust paths are processed as
part of a user’s initial authentication; subsequent
authorizations use only a trusted issuer, with no
certificate chaining required.

1.2 Components

A SecurSight installation consists of six main
components, desktops, managers, Privilege-
Attribute Certificate (PAC) issuers, agents,
certificate authorities, and a directory service.
Each component is described briefly below.

The desktop is an application that runs on a
user’s desktop or portable computer. It provides
the interface through which a user logs in and is
authorized. It also provides a repository for the
obtained authorization credentials. The desktop
software also provides local security services,
such as selective encryption of local files. The
desktop communicates with the manager using
the Cryptographic Security Services Protocol
[CSSP]. TCP connections from the desktop to
protected applications are redirected through an
SSL connection to an agent.

The manager acts as both the authentication
service and as the long-term repository for users’
access rights. Users authenticate, from the
desktop to the manager, then receive a privilege
attribute certificate containing their authorization
information

The manager must reside in a secure facility.
It maintains an internal database containing
authentication and authorization data for its
users. The manager may be replicated to improve
reliability and increase performance.

The manager is also referred to as the CSSP
server, after the protocol it uses in
communication with the desktop. CSSP provides
for user authentication, using a variety of
methods, and the subsequent delivery of
authorization credentials. CSSP requests and
responses are formatted as Lisp-style S-
expressions. CSSP requires an underlying secure
communications layer. This layer must
authenticate the server to the client and provide
confidentiality and integrity for the exchanged
information. In SecurSight, this layer is provided
by the Secure Sockets Layer [SSL] protocol,
with server-side authentication only.

The PAC issuer is responsible for creating the
short-term authorization credentials (PACs) for
users after the manager authenticates them. The
credentials are constructed using information
from the manager’s database and the directory
service. In most implementations, the PAC issuer
will be the manager, but it may be set up as a
distinct service.

Agents come in two varieties: remote access
agents and application connect agents. Remote
access agents act as proxies for users not directly
connected to the local network. These can be
considered simplified versions of the desktop,
with varying protocol requirements.

Application connect agents protect
application-based services on the network. The
applications may invoke SecurSight services
directly, using an API. Existing applications, not
modified to use SecurSight, may be protected
with wrappers. These wrappers add both public-
key based authorization and secure
communications to database servers and other
applications that normally provide no such
security.

The SecurSight certificate authority issues the
identity certificates used by the desktop and for
other applications. This is an optional service;
either an alternate CA or certificates from an
external certification service may be used.

The directory service is an optional
component in SecurSight that allows a subset of
the authentication and authorization data to be
maintained outside of the manager's internal
database. Any service that supports version 2 of
the Lightweight Directory Access Protocol
[LDAP] may be used. Long-term secrets, such as
passwords, symmetric keys, and private
asymmetric keys may not be exported to the
directory service.

3

2. Authentication: PSDs

The central concept of SecurSight
authentication is the Personal Security Device, or
PSD. A PSD is a unifying construct defined to
enclose a user’s authentication credentials,
independent of whether the user performs
authentication with a password, an OTP, or using
a smart card. The PSD may be instantiated either
in “hard” form, in a public-key based smart card,
or in “soft” form, as data temporarily resident on
the desktop. To allow for user mobility, the
“soft” PSD data is maintained by the manager
and downloaded to the user’s desktop after a
successful authentication.

PSD Field Description
Version An alphanumeric string

representing the version
number of the PSD format

PackageID An alphanumeric string
containing an identifier for
the PSD. The identifier
should be unique within the
domain of the manager
issuing the PSD.

Owner The Distinguished Name
of the PSD’s owner.

PublicKey
Info

An X.509
SubjectPublicKeyInfo
structure containing the
public key.

PrivateKey
Info

An
EncryptedPrivateKeyInfo
structure, as described in
PKCS #8 [PK8], containing
the encrypted value of the
private key corresponding to
the above public key.

Attributes A set of certificates and
encrypted private keys
belonging to the PSD’s
owner. This includes a
certificate containing the
key from the PublicKeyInfo
above.

Usage An integer value
indicating whether the PSD
may be used for encryption,
signatures, or both.

Trusted
Keys

A list of trusted public
keys and certificates.

Table 1: PSD Fields

2.1 PSD Definition

The PSD consists of a user’s private key, a
corresponding public-key certificate, and a set of
additional attributes. These attributes may be
passwords, asymmetric key pairs, symmetric
keys, or other user-specific information.

The individual fields of the PSD are described
in Table1.

2.2 PSD Generation and Distribution

The manager generates a Soft PSD when a
user is enrolled. PSDs may also be generated
externally and uploaded to the manager, after
authentication. The PSD may be downloaded to
the user’s desktop after a successful
authentication. The manager may also be
configured to download PSDs without
authentication, with authentication required only
to obtain the unlocking keys.

The desktop makes an authentication request
to the manager, by sending a CSSP request
message. The type of authentication may be
negotiated with the server, or a default method
may be used. A simplified exchange is
represented below, with D representing the
desktop and M representing the manager.

D->M: <UserID><Methods>
M->D: <Method><Challenge>
D->M: <Response>
M->D: <Result><Cookie>
D->M: <Acknowledge>

Figure 1: Authentication

The cookie value returned by the manager
contains information specific to the
authentication session, encrypted under a
symmetric key known only to the manager. The
cookie may be retained on the desktop and
presented to the manager, as proof of
authentication, in subsequent requests. Session
encryption, as provided by the secure
communications layer (SSL), protects the cookie
from interception and replay.

Once the authentication is successful, the
desktop may request the user’s PSD from the
manager. This is done using another CSSP
exchange.

4

D->M: <PSDRequest><Cookie>
M->D: <PSD>
D->M: <Acknowledge>

Figure 2: PSD Download

The private key in the soft PSD is protected
under a key-encrypting key (KEK). This key is
stored in the PSD, encrypted using any of several
methods, depending on the level of protection
desired. If the PSD is protected by a static
password, the KEK may be stored in the PSD
encrypted under a key derived from the
password. This option allows the PSD, once
retrieved, to be used off-line, without interacting
with the manager. The PSD may also be
protected by a one-time password, either
software generated or from a hardware token. In
this case, the KEK is stored in the PSD
encrypted under a symmetric key that is stored
on the manager. This key may be downloaded,
over the secure channel, from the manager after a
successful authentication.

D->M: <PSDKeyRequest><Cookie>
M->D: <PSD Key>
D->M: <Acknowledge>

Figure 3: PSD Key Request

As an optimization, the desktop may cache
the user’s PSD, with private fields encrypted. If
the PSD is cached, only the “unlocking” key
needs to be obtained from the manager. Since the
manager may modify the contents of the PSD,
the desktop must check if the cached PSD is up
to date.

If emergency access, in the case where a
user’s password is forgotten or token lost, is
desired, the KEK may also be stored in the PSD
encrypted under a PSD unlocking key or PUK.
The PUK is kept in a secure facility, under
control of the SecurSight administrator.

2.3 Soft PSD Usage

Once downloaded and decrypted, the private
key in the soft PSD may be used to create secure
connections to SecurSight protected resources.
The desktop initiates an SSL session with the
application connect agent at the protected
resource. The PSD key is used to provide client-
side authentication for the SSL session.

In addition to its role in SecurSight
authorization, the soft PSD may be used in other
applications. It may be used to sign or decrypt
electronic mail. It may be used to gain access to
SSL-protected web sites. Any application that is
PSD aware, or is built from PSD aware libraries,
may use the soft PSD as though it were a
physical smartcard. In particular, the SecurSight
soft PSD is designed to be used with standard
APIs such as PKCS #11 [PK11] and Microsoft’s
CryptoAPI [CAPI].

The Soft PSD may contain more than one
private key. If this is the case, the additional keys
are kept in the attributes field of the PSD. The
X.509 keyUsage extension is used to distinguish
between keys used for authentication,
encryption, or non-repudiation. The primary
private key, in the PrivateKeyInfo field, is used
for SSL client authentication with connect
agents.

2.4 Comparison with Other
Authenticators

Soft PSDs offer significant advantages over
other forms of authentication. Static passwords
are portable and may be cached to provide a
form of single sign-on. They are subject to a
number of attacks, and must be synchronized
with every application that requires them.
SecurSight soft PSDs provide secure
authentication and require no synchronization
with applications.

One-time passwords, from software or
hardware tokens, provide stronger authentication
than static passwords. To use one-time
passwords with multiple applications, however,
requires that each protected application either
stores token secrets or communicates with a
server that stores them. In addition, for hardware
tokens, the user must perform a new
authentication for each resource accessed, which
quickly becomes burdensome.

SecurSight soft PSDs are most similar to the
soft credentials used by web browsers. The
browser-based credentials, however, have
limited portability. Some browsers offer the
ability to export and import credentials in the
PKCS #12 interchange format [PK12]. This
requires explicit action on the part of the user,
and is not practical for a truly mobile user. The
Soft PSD user, on the other hand, may
authenticate from anywhere within the
enterprise, without any special procedures.

5

Smartcards using RSA and other asymmetric
algorithms, offer greater portability than
SoftPSDs, as well as better physical protection of
the private key. The smartcards require an
infrastructure, in the form of card readers, which
is not always present or easy to add.

3. Authorization: PACs

All the authorization information in
SecurSight is encapsulated in a form of public-
key certificate called a Privilege-Attribute
Certificate, or PAC.

3.1 PAC Definition

Privilege Attribute Certificates (PACs) are
used in SecurSight to convey information about
what privileges or authorizations exists for a
subject. PACs are short lived (with a lifetime on
the order of hours) and are generated on demand
by the PAC Issuer (PI) for access to user
applications. A PAC is an internal structure used
only by SecurSight components.

PACs are used to simplify the trust path
management between desktop users and the
application agents they are accessing. A user’s
identity certificate contained within the PSD may
be generated by a range of different CAs
interconnected in complex trust chains. These
trust chains are validated when the certificate in
the PSD is presented during desktop
authentication. The user’s identity and privileges
are then stored as part of the PAC. This allows
optimized trust processing when secure links are
established within SecurSight. The application
agent is required only to validate the PI and need
not be concerned with all possible CAs that may
have issued identity certificates.

PACs are exchanged and processed by several
SecurSight components:

Desktop — The local access agent can request
one or more PACs when an application that
might need a PAC is to be started. When the
local access agent sends a request for a PAC to
the PAC Issuer, it may specify which
applications it wishes to access.

PAC Issuer—The PAC Issuer receives
requests for PACs from desktops. The issuer
extracts the appropriate information from the
user’s Identity Certificate (DN, public key, etc.),

adds the privilege extensions, sets the Issuer field
to its own DN, and then signs the PAC.

Application — An application can be a
client/server system (such as a database) or local
to the desktop (for example, a local login). The
connect agent verifies the signature and validity
time of the PAC, extracts the access control
information, and initiates the access control
sequence for the application.

3.2 PAC Generation and Distribution

PACs are generated at the manager, in
response to a PAC request from the desktop.
PACs are provided only after a successful
authentication. After authentication, the desktop
may request a PAC for the user. The request may
be generic, in effect requesting all of the user’s
authorizations, or contain “hints” as to the
particular authorizations desired.

D->M: <PACRequest><Hints>
 <Cookie>
M->D: <PAC>
D->M: <Acknowledge>

Figure 4: PAC Request

3.3 Use of PACs by Connect Agents
Figure 5 illustrates the sequence of events

when a user logs in at the desktop, then uses an
application that requests access to a server. The
user’s PSD contains a certificate that has been
issued by a CA outside of the organization, but
one that is trusted.

Figure 5: PAC Usage

Application
Server

Manager

Desktop

5
4321

6

The numbered items below correspond to the
numbered transactions in Figure 5.

1. The user is authenticated at the desktop
using a password, a one-time password, or
hardware PSD.

2. For software PSDs only, if a current PSD is
not cached on the desktop, it may be
downloaded from the manager. This
transaction requires a cookie from a recent
successful authentication.

3. For OTP-protected soft PSDs, the key to
decrypt the key-encrypting key in the PSD is
then downloaded from the manager. This
transaction also requires a prior
authentication.

4. After authentication, when access to a
network resource is needed, the desktop
requests a PAC from the PAC Issuer, in this
case the manager.

The PAC request may be generic or it may
contain information regarding the specific
resource to be accessed. The PAC request
also contains the user’s identity certificate,
from the PSD, and a cookie, to demonstrate
prior authentication.

The PAC issuer creates a PAC, using the
public key and distinguished name from the
supplied identity certificate and the user’s
authorization rights, or the requested subset.
This PAC is signed by the issuer and
returned to the desktop.

5. The desktop establishes a secure,
authenticated channel to the Application
Access Agent at the Application Server
using the SSL protocol [SSL], with both
server and client authentication. The PAC
replaces the user’s identity certificate in the
client authentication portion of the SSL
handshake.

The Application Access Agent extracts the
users login credentials from the PAC and
communicates the users credentials to the
application server. This process is dependent
on the application server. The results of the
login attempt are communicated back to the
desktop.

Once the session is established, the SSL
channel is used to securely exchange data
between the desktop and the application
server.

3.4 PAC format

A PAC is a short-lived X.509 version 3
certificate [X509], with a defined extension
handling access rights. PACs may be thought of
as the public-key equivalent of the tickets used in
systems like Kerberos [KERB]. The PAC may
be used in place of an identity certificate in many
applications. Some special constraints on the
basic certificate fields are described below.

Serial Number – Unlike X.509 identity
certificates, SecurSight PACs are short-lived, do
not appear on revocation lists, and are not
searched for by serial number, so the serial
number is not required to be unique.

Validity – As specified in the Internet Public
Key Infrastructure [PKIX], UTCTime is used for
dates before 2050, and GeneralizedTime for
dates after 2050. The validity period for PACs
may be configured, at the issuer, but is typically
on the order of 24 hours.

Subject – The subject distinguished name
must match the subject name in the user’s
identity certificate.

Subject Public Key – Like the subject name,
the public key is copied from the user’s identity
certificate.

Note that the optional Subject Unique
Identifier and Issuer Unique Identifier attributes,
as defined by X.509, are not used in SecurSight
PACs.

3.5 PAC Extensions – EARs

The only extension vital to the PACs is the
entity access right or EAR. The PAC will
contain an EAR for each service for which the
PAC authorizes access. The EAR contains any
service-specific information for the user.
Sensitive attributes, such as passwords, are kept
in encrypted form.

7

EAR Field Description
Service The name of the service

for which the user is
authorized.

Method The access method. This
string is specific to the
application connect agent on
the target system.

Host The host name on which
the service resides. This
should match the host name
field of the distinguished
name in the host PSD for
the application connect
agent.

Application
Data

Application specific data,
including access rights and
passwords. The data is
UTF-8 encoded as set of
attribute value pairs, in the
form VAR=Value. The
values may be a mixture of
cleartext and encrypted
fields. The encrypted fields
are protected with a session
key that is, in turn,
encrypted under the connect
agent’s public key.

Table 2: Entity Access Right (EAR) Fields

3.6 Comparison with Other Authorization
Methods

SecurSight PACs play a similar role to the
tickets used in Kerberos. Both are obtained by
the user after an initial authentication, both are
short-lived, and both contain information
specific to a target service or resource. Unlike
Kerberos tickets, however, SecurSight PACs are
public-key based, so no shared secret needs to be
maintained between the protected resource and
the manager.

Both the privilege attribute certificate defined
in Sesame [SESM], and the attribute certificate
specified by X.509 provide a mechanism for
binding authorization information to a user’s
public key. In both cases, unlike SecurSight, the
authorization is in another certificate, linked to
the user’s identity certificate, and signed by a
trusted authority.

Keeping authorization distinct from the
identity certificate is useful in distributing

management of authorization decisions, but it
requires the end application to process and
validate two certificates or chains instead of one.
In addition, by maintaining the authorization
information in a standard identity certificate, this
information can be communicated to the target
application as part of an SSL handshake, with no
additional protocol requirements.

The use of PACs helps make SecurSight a
scalable architecture, by requiring transactions
with the central server only at authentication
time, rather than every time a resource is
accessed.

4. Trust Management

The desktop must be configured with the
public keys of the managers from which it will
obtain services. This trust relationship can be
leveraged by allowing the manager to maintain a
list of trusted certificate issuers. This list may
then be downloaded to the desktop on request.
The list is called the Issuing authority table or
IAtable.

4.1 Certificate Authority

The Certificate Authority is an optional
component of SecurSight that provides
certification services. This CA may be used to
issue certificates for use with a PSD on the
desktop or it may be used independently of
desktop and manager to register keys used in
desktop browser or other applications

4.2 Certificate Validation Service

The Certificate Validation Service (CVS) is a
verification entity within SecurSight. Two types
of verification are supported, a simple CRL
check, and a full certificate chain validation. The
service is used by the desktop, primarily to
verify the host certificates for application
servers.

The CVS uses the CSSP protocol to
communicate validation requests from the
desktop to the validation service and to return the
responses. SSL is used to protect the integrity of
the communication and to authenticate the CVS
server to the desktop The desktop supplies only
the certificate to be validated. Any additional
certificates needed for a full chain validation are
retrieved from a directory, using LDAP.

8

A CVS transaction is quite simple. The
desktop or other client application sends a
request including the type of service and the
certificate to be checked, if any. The CVS server
responds with a status code indicating the result
of the validation. The transaction can be
represented as follows, where D represents the
desktop and S represents the CVS server.

D->S: <Request><Type>[<Cert>]
S->D: <Status>

Figure 6: CVS Request

The types of validation service provided by
CVS are described in the table below.

CVS
Service

Description

Complete Complete verification with
both revocation check, and
certificate signature
verification.

no_crl Verification of certificate
signature, but no revocation
check.

crl_only Revocation check only, no
signature verification.

Table 3: CVS Services

The status returned by CVS indicates if the
validation succeeded, partly succeeded, or failed,
and the reasons for failure, if any. The possible
statuses are listed below.

CVS
Status

Definition

0 Verified, in accordance with
request

1 Verified, but unable to check
revocation status

2 Expired
3 Revoked
4 Verification failed (bad signature,

format, etc.)

Table 4: CVS Status Codes

The CVS server may cache the result of a
request, to make subsequent validations of the
same certificate more efficient.

CVS makes the desktop requirements for
certificate validation much smaller. In traditional
X.509 implementations, the client requests, or
receives periodically, a certificate revocation list
(CRL) signed by a trusted issuer. The client then
checks whether the certificate in question is
present on the CRL. CVS avoids the need to
download and parse such CRLs, by delegating
this responsibility to the CVS server.

The PKIX Online Certificate Status Protocol,
or OCSP [OCSP], also centralizes processing of
revocation lists, but it does not provide the
additional services that CVS does. In particular,
CVS verifies the signature on certificates, in
addition to checking revocation status. Unlike
OCSP, CVS may perform a full chain validation
including the retrieval of issuer certificates. CVS
also maintains the list of trusted roots, available
for download to the desktop.

In contrast, the proposed Data Certification
Service [DCS] provides a more extensive set of
services than CVS. Specifically, DCS can
validate arbitrary signed data, with timestamps,
in addition to certificate chain validation. These
are valuable services, but they are beyond the
scope of the current SecurSight architecture.

The CVS architecture also allows for the
addition of new validation methods, without any
change required at the desktop.

5. Future Work

SecurSight may be enhanced in a number of
ways. New authentication methods, such as
biometric devices, may be supported.
SecurSight’s proprietary PACs may be enhanced
or replaced with X.509-style attribute
certificates. The Certificate Validation Service
may be extended to provide a more generic set of
PKI services, like those in DCS.

6. Conclusions

SecurSight provides authentication and
authorization services that are similar to those
provided by Kerberos, Sesame, or the
Distributed Computing Environment [DCE]. The
mechanisms used by SecurSight, while differing
in specific details, are similar to the mechanisms
in those architectures.

SecurSight places emphasis on support for
legacy applications and hiding, to the extent
possible, the infrastructure from the end user.
These features may make it more acceptable in

9

an enterprise environment. This may allow
organizations to make a faster and easier
transition from their current security methods to
a public-key infrastructure.

Finally, SecurSight uses public-key
credentials to establish secure connections from
user desktops to existing applications. This
allows critical data to be protected now, rather
than waiting for new applications that employ
public-key technology.

Acknowledgments

Special thanks to Alan Abrahams, Bill Duane,
Peter Röstin, and the other architects at Security
Dynamics for developing the architecture
described here. Thanks to Vipin Samar of Sun
Microsystems for his work on key formats, upon
which much of the PSD design is based. Also
thanks to Burt Kaliski, John Linn, and Magnus
Nyström of RSA Labs as well as the anonymous
referees for their suggestions on improving the
content.

References

[CAPI] Microsoft Corporation, Microsoft®
CryptoAPI, Version 2.0, September 1996

[CSSP] J. Brainard, “The CSSP Protocol: An
Architectural Overview.” In Proceedings of the
1998 RSA Data Security Conference, January
1998

[DCE] The Open Group, DCE 1.1:
Authentication and Security Service, Open
Group Technical Standard C311, August 1997

[DCS] C. Adams and R. Zuccherato, Internet
X.509 Public Key Infrastructure Data
Certification Server Protocols , Internet Draft,
draft-ietf-pkix-dcs-00.txt. work in progress,
Internet Engineering Task Force, September
1998

[KERB] J. Kohl and C. Neuman, The
Kerberos Network Authentication Service (V5),

RFC 1510, Internet Engineering Task Force,
September 1993

[LDAP] M. Wahl, T. Howes, and S. Kille,
Lightweight Directory Access Protocol (v3),
RFC 2251, Internet Engineering Task Force,

December 1997

[OCSP] M. Myers, R. Ankney, A. Malpani,
S. Galperin, and C. Adams, X.509 Internet
Public Key Infrastructure Online Certificate
Status Protocol – OCSP, Internet Draft, draft-
ietf-pkix-ocsp-07.txt, work in progress, Internet
Engineering Task Force, September 1998

[PK8] RSA Laboratories, PKCS #8: Private
Key Information Syntax Standard, version 1.2,
November 1993.

[PK11] RSA Laboratories, PKCS #11:
Cryptographic Token Interface Standard,
Version 2.0, April 1997.

[PK12] RSA Laboratories, PKCS #12:
Personal Information Exchange Syntax
Standard, version 1.0, April 1997.

[PKIX] R. Housley, W. Ford, W. Polk, and
D. Solo, Internet Public Key Infrastructure: Part
I: X.509 Certificate and CRL Profile, RFC 2459,
Internet Engineering Task Force, January 1999

[SESM] T. Parker, A Secure European
System for Applications in a Multi-Vendor
Environment,

March 1992

[SSL] A. Frier, P. Karlton, and P. Kocher,
The SSL 3.0 Protocol, Netscape
Communications Corp., Nov 18, 1996

[X509] CCITT. Recommendation X.509: The
Directory - Authentication Framework. 1988.

