

Reusable Components for Developing Security-Aware Applications

Stefan Probst, Wolfgang Essmayr, Edgar Weippl
Software Competence Center Hagenberg

{stefan.probst, wolfgang.essmayr, edgar.weippl}@scch.at

Abstract

Today, security is considered to be an important

aspect of multi-tier application development. Thoroughly
researched concepts for access control exist and have
been proven in mainframe computing. However, they are
often not used in today’s development of multi-tier
applications. One reason may be the lack of appropriate
reusable components that support application developers
that frequently have to re-invent the wheel when it comes
to access controls. The goal of this paper is to promote
awareness of security issues when developing
applications and to illustrate a suitable approach for
that. Our framework called GAMMA (Generic
Authorization Mechanisms for Multi-Tier Applications)
offers several authentication, access control, and
auditing mechanisms. Access control models can be
combined or used simultaneously in order to provide
application-specific and highly customizable
mechanisms. Moreover, due to its component-based
structure, new security models and additional
approaches for authentication or auditing can easily be
added.

1. Introduction

Security achieves more and more acceptance as

„enabling technology“ within our Inter-networked
society. Currently, we experience a lot of security
infringements being increasingly accompanied with
substantial financial losses of the attacked enterprises.
Within modern, multi-tier application architectures the
consistent and transparent enforcement of security
mechanisms especially at the application- and business-
logic levels can be a decisive measure against this trend
(compare [1], [2]).

As illustrated in Figure 1 there are several levels of
security mechanisms. Reusable components for the
development of security-aware applications are available
especially for the lower levels of IT security, namely,
cryptography and communication security. At the higher

levels, i.e. authorization models, access controls,
authentication, and auditing, adequate components
require a specific platform and/or architecture (e.g.
.NET, J2EE) and are most of the time not expressive
enough respectively cannot be sufficiently adapted to
complex application requirements (see [3]).
Consequently, the enforcement of high-level security
mechanisms at the application- and business-logic layers
results in a practice of permanently re-inventing the
wheel.

Auditing

Cryptography
(e.g. Hashing, Ciphers, Digital Signatures, Certificates)

Communication Security
(e.g. VPN, IPsec, SSL/TLS, S/MIME, Firewalls)

Authentication
(e.g. Password, Challenge-

Response, Biometrics, Kerberos)

Authorization & Access Control
(z.B. DAC, RBAC, MAC)

Auditing

Cryptography
(e.g. Hashing, Ciphers, Digital Signatures, Certificates)

Communication Security
(e.g. VPN, IPsec, SSL/TLS, S/MIME, Firewalls)

Authentication
(e.g. Password, Challenge-

Response, Biometrics, Kerberos)

Authorization & Access Control
(z.B. DAC, RBAC, MAC)

Figure 1 Levels of security mechanisms.

In this work, we present the design and Java
implementation of a security framework called GAMMA
(Generic Authorization Mechanisms for Multi-Tier
Applications). The framework contains a set of
components offering a range of high-level security
mechanisms including discretionary access controls
(DAC), role-based access controls (RBAC), the
possibility to use multiple concurrent authorization
models, support of negative authorization, or arbitrary
constraints such as separation-of-duty, which are ready to
be used for application development. The design
especially focuses on platform and architecture
independency, allowing us to transfer the implementation
to other platforms and programming languages in future.

The remainder of this paper is structured as follows:
section 2 discusses general issues for a generic security
framework and provides related work. Section 3 presents
the set of components designed for offering high-level
security mechanisms. Section 4 discusses realization
issues encountered during implementation of the

GAMMA framework. Furthermore, section 5 briefly
sketches an example showing the application of the
framework. Finally, section 6 concludes and gives an
outlook on future activities.

2. Generic security framework

Modern software applications are realized using a

multi-tier architecture. The software is divided into
several tiers or layers according to its functionality. Each
layer is able to communicate with the underlying or
superior layer via a well-defined interface.

Figure 2 illustrates the layered architecture conceived
for providing high-level security mechanisms in multi-
tier environments.

Backend Layer

Business Layer

Infrastructure (Data Provider)

Access
Control

Authen-
tication Auditing

Security Manager

Security Connector

Application Layer

S
ec

ur
ity

 L
ay

er

Figure 2 Architecture for multi-tier security.

In particular, a security layer is established in between
the business and backend layers of the architecture. The
security layer has a distinct interface to the backend layer
(i.e. data providers) exchanging security data with
backend systems. Furthermore, a particular component
(i.e. a security connector) is offered, which is to be used
as entry point from the business- (or application) to the
security layer. Finally, the security layer contains high-
level components for security coordination in general
(i.e. the security manager), for the provided security
mechanisms (i.e. authentication, access control,
auditing), and for the infrastructure required to enforce
the aforementioned security mechanisms. A detailed
description of the components is given in section 3.

The security layer consists of a set of classes with a
common focus (i.e. security) and can thus be called
framework. We categorize the potential target users of
the framework into five groups as illustrated in Figure 3.

The users of business applications benefit from using
applications that contain high-level security mechanisms.
The connection between the users and the framework is
given by an increased confidence in the software they are

using. However, there is no direct link between the users
and the framework. Business application developers are
interested in developing applications using the
framework for integrating high-level security
mechanisms in their business applications. If they input
anything into the framework, it is in terms of new ideas
and visions that will be realized by framework architects,
who are responsible for the design, implementation,
maintenance, and further development of the security
framework itself. Model providers are in charge of
introducing new access control models into the
framework. This can be done without modifying the
framework kernel, which will only be changed by
framework architects. Security administrators are
responsible for setting up the framework’s mechanisms.
Primarily, their work consists of realizing the security
policy in defining the access rights and the mapping
between the several domains and layers. In principle,
they will work together with the business application
developers.

Business
Application
Developers

Users of
Business

Applications

Security
Administrators

Framework
Architect

GAMMA
Framework

Model
Provider

Figure 3 Target groups of the framework.

This categorization is not intended to be exclusive; it
is a categorization of interactions rather than of users.
Moreover many users will belong to several groups.

2.1. Related Work

Within existing solutions for distributed authorization

(compare [4]), we especially concentrated on solutions
that support application developers to implement
distributed software applications. Furthermore, we looked
at existing architectures (e.g. Microsoft .NET, Sun’s Java
2 Platform) and compared them with respect to security
features according to our requirements.

2.1.1. Distributed Authorization Systems. SESAME [5]
provides an infrastructure for authentication,
authorization and access control as well as auditing. This
distributed security system is based upon Kerberos and
provides role-based access control. SESAME does not
allow customizing or changing access control models to
special application requirements. Furthermore, multiple
concurrent access control models cannot be applied at a

time. Summarizing, SESAME is a distributed security
system and has not especially been developed for
supporting application development by reusable
components.

The Adage system [6] provides authentication,
authorization and access control as well as auditing in
distributed environments. Adage offers a user-centered
expression and enforcement of security policies and
enables integration in systems due to its modular
architecture. However, application developers have
limited support by Adage’s API. Furthermore, access
control models other than RBAC can be defined but
require substantial effort to provide them. Nevertheless,
the Adage architecture gives important input due to its
modular structure of authorization components that
enable flexible and adaptable distributed authorization.

2.1.2. Authorization Systems for the Java Platform.
There are a number of systems that actively support
application developers by providing a framework, class-
library or API that can be used instantly when designing
and implementing Java applications.

JSEF [7] is a security framework that offers
authorization and access control for system-wide security
policy maintenance. JSEF especially addresses the
security of mobile code. JSEF offers role-based access
control including a rich set of possible constraints.
Additive and subtractive hierarchies of user groups are
provided as well as global and local security policies that
are defined using XML. However, JSEF is concentrating
on protecting mobile code. Authentication and auditing is
based on the underlying Java platform and not part of
JSEF. Furthermore, multiple access control models are
not supported. Nevertheless, JSEF has interesting ideas
concerning a system-wide security policy that is able to
merge local and global policy settings.

Kava [8] is a security infrastructure that uses meta-
object protocols to provide flexible and fine-grained
control over the execution of components. By developing
a meta-level security architecture various real-world
security models can be realized for Java. Kava inserts
security checks directly into compiled code, which
prevents modifications to existing code. The meta-object
protocol is based on a reflexive extension to the Java
runtime that gives the control over the behavior of
components. The approach uses byte-code transformation
so that the meta-object protocol has control over the
components executed in a meta-layer. Kava comes with
an expressiveness enforcement of its security
mechanisms and supports multiple access control models.
However, the transformation of the compiled code is not
transparent to the developer and might result in
unforeseeable behavior of the application. Furthermore,

authentication and auditing is not supported by Kava
itself since it concentrates on authorization.

2.1.3 Programming Environments. We investigated
today’s most important programming environments,
namely, Sun’s Java 2 platform [9], [10] and Microsoft’s
.NET environment [11].

Java’s best-known security feature is the sandbox
model. Code is executed in a protected environment and
is not allowed to access resources outside this
environment. Furthermore, code is categorized according
to its origin into so-called protection domains based on
digital signatures. Privileges can be assigned to these
protection domains, allowing local code to access more
resources and restrict mobile code. However, Java does
not support security at a higher logical level by itself.
More complex mechanisms are provided as add-on
libraries (e.g. the Java Authentication and Authorization
Service (JAAS)) that neatly integrate into the Java
environment. Nevertheless, adequate security models (a
variant of RBAC) are only provided within the Java 2
Enterprise Edition (J2EE), the Standard Edition (J2SE)
lacks of these features.

Microsoft’s .NET environment offers a wide variety of
security features. The evidence-based security evaluates
the code’s privileges at runtime. The privileges result
from digital signed code, the identity of the software
developer or the code’s origin. .NET offers a role-based
access control system and security mechanisms such as
Kerberos authentication or various cryptographic
algorithms. Within the .NET framework, security is
realized in the business objects itself. These objects are
extended with code that verifies access. Developers have
to perform checks based on the role of their future users.
This results in inflexibility since roles have to be defined
before implementation is done and cannot be changed
later on without modification within the code.
Furthermore, reuse of objects is more difficult since
security requirements and roles will vary from
application to application.

Generally, Java and .NET are programming
environments that offer strong security mechanisms
(such as cryptographic components) at a lower logical
level. Mechanisms at a higher logical level are missing
(J2SE), require a special architecture (J2EE) or have to
be realized directly in the business objects.

2.1.4. Our Approach. Our approach tries to relieve the
application developer of the burden to think about
security issues when implementing his/her business
objects. The application itself should be security-aware;
adoptions to new security requirements should be
possible without having to recode or modify the

application. Our approach separates the authorization
model from the application. Objects themselves do not
know much about security; they are protected by the
environment. The protection settings can be modified
according to the actual security needs and objects can be
reused in any other kind of application. Furthermore, our
approach does not require any special infrastructure and
can be realized on various platforms and architectures.
Finally, none of the approaches mentioned in this section
allows to flexibly restrict authorization by constraints as
realized within our approach.

3. The Framework Components

In this section we provide an overview of the different

framework components, their functionality, and their
relationships to other components.

Figure 4 Overview of framework components.

The following sub-sections explain the framework
components grouped by their functionality. For the
overall picture compare Figure 4.

3.1. Main Components

For providing high-level security mechanisms the

framework offers one central coordination component
(i.e. security manager) and three specific components
corresponding to authentication, access control, and
auditing. Within this work, the focus is on access control
components.

3.1.1. Security Manager. The SecurityManager

component controls all other security components of the
framework. The application posts requests to the security

manager, which dispatches these requests to the
corresponding components. Only the security manager
knows which components are initialized and running.
Thus, it is the central information point for any
application. In particular, the security manager handles
the interaction between the authentication, access control
and auditing components of the framework. However,
each machine serving a distributed application may have
its own security manager adhering to a centrally defined
common security policy. This allows addressing
performance issues in distributed environments.

3.1.2. Authentication. The Authenticator component is
responsible for ensuring correct authentication upon
which further access controls will be based. The
authenticator checks the subject’s identity based upon an
identifier. The framework does not require a special kind
of identifier, thus the software developer can use various
authentication mechanisms. It is the task of the
authenticator to validate the identifier according to the
method used. The framework currently offers password-
based authentication, which will be extended in future
releases.

3.1.3. Access Controller. The AccessController
component is responsible for controlling access to objects
according to a particular access control model and based
on a valid authentication. This component together with
its required infrastructure components are described in
detail within sub-section 3.2.

3.1.4. Auditing. A security framework has to be able to
track security relevant activities. Thus, the framework
provides a flexible audit trail mechanism that gathers
messages from all other components and optionally
dispatches them to multiple output media. The auditing
system allows online filtering of messages for each output
media. This can be used for printing critical messages
directly on the screen and all other information in a
database, for instance. Each output media requires an
audit handler that is aware of the media’s specialties. It is
also feasible to provide a special audit handler that
performs online analysis of the audit messages and builds
the base for an intrusion detection system.

3.2. Access Control Components

We now want to explain those components in more

detail that are related to access control.

3.2.1. Access Control Model. The AccessControlModel
component is the abstract base class for a concrete access
control model. It collects subjects, objects, authorizations,

and constraints from data provider components and
transfers them into the authorization base. The model is
aware of an underlying closure assumption (open or
closed world) when performing access validation, which
affects the way that final access decisions are made.

When the access controller contacts the access control
model for handling an access request, the model
generates a search pattern that contains the requesting
subject and the object to which access is requested. It
then forwards the pattern to the model’s authorization
base where rules are searched and analyzed. Depending
on the rules one of the following results is returned to the
access controller:
• True: if a rule is found and access is granted, i.e. the

subject has a corresponding permission on the object
• False: if a rule is found and access is denied, i.e. a

prohibition denies access from the subject to the
object

• Weak True: if there is no rule found in an open
world assumption

• Weak False: if there is no rule found in a closed
world assumption

Finally, the model is responsible for model specific
tasks that are often realized in additional helper classes
(such as role activation, ownership, or delegation of
access rights).

In our framework we currently support two types of
access rules. General rules are assigned to object
instances, including all data within the object and its
methods. Authorizations on this level grant for example
access to data stored within the object. The second type of
rules are specific rules. These rules are assigned to a
certain object’s method. The rule applies only to this
method, all other methods of an object are unaffected.

3.2.2. Access Control Context. The AccessControl-
Context is an abstract component that captures meta data
needed by various other components when making access
control decisions. The particular structure has to be
defined as required by the access control model.

3.2.3. Autorization Base. The AuthorizationBase
component realizes a storage holding tuples with
references to a subject, an object, optionally a class or
method, a certain authorization and an optional list of
constraints. Each tuple is a rule that describes how a
subject may access an object, a class or a method based
on an authorization and constraints. When the defined
subject requests access to an object, all matching rules
are considered and the authorizations’ as well as
constraints’ checkAccess methods are called.

Each access control model has its own authorization
base. Thus, different types of access control models might

have to realize an adapted authorization base, in order to
capture its particular functionality.

3.3. Infrastructure Components

The components described within this sub-section are

required by any of the main components especially by the
access control components in order to enforce their tasks.

3.3.1. Subject. The Subject component realizes actors
and entities of the system, such as persons, processes or
access control model specific entities (e.g. roles), each
represented by an adequate sub-class that possible has to
be derived and implemented.

When a subject wants to execute a method on an
object, which requires access to another object, basically
two options can be followed:
• the object becomes a subject and access control is

done by verifying the corresponding object’s access
rights, or

• the first object is calling the method of the second
object on the behalf of the subject. Therefore, the
subject has to have sufficient access rights itself to
fulfill the task (transitive access).

When accessing an object transitively, the subject of
the first object is used for evaluating access. This subject,
as a part of the request parameters, is stored in the access
control context. When access to the second object is
requested, the access controller can retrieve the subject
from the access control context and check whether or not
the subject is allowed to call the method on the second
object. In that case the transitively accessed objects trust
the security framework to correctly authenticate the
originating subject.

3.3.2. Secure Object. The SecureObject component is
the base class for all objects, which need to be protected
within the framework. In order to ensure enforcement, it
is necessary that a client does not obtain a direct
reference to the object. By hiding the constructor, only a
privileged component can create an instance of a secure
object. This component returns a SecureObjectWrapper
as a proxy instead of the object itself. The object can only
be accessed by the proxy object, which guarantees that
security checks are called before the object is accessed.

In order to use secure object wrappers, there has to be
a central component that is aware of generating these
components. The ProxyGenerator component is aware of
the existing objects and can create secure object wrappers
using introspection. In fact, the Java language offers a
ready-to-use component that realizes this proxy
generator. In other environments, this component has to
be created using the language’s runtime information.

Objects are identified via a unique id within the
framework. This id is computed from the object’s full-
qualified class name and an instance identifier. The
prefixed class name allows an easier lookup of the object
and administration within the data storages. However,
the algorithm for computing the object’s id is adaptable
according to personal needs.

3.3.3. Authorizations. The Authorization component
realizes the type of access rights onto a resource.
Authorizations are logically separated from the access
control model to increase flexibility. Thus, authorizations
are implemented by the business application developers
and have a defined meaning for a given secure object. As
a consequence, each authorization component has a
checkAccess method. This method is called when access
validation is done. The framework also offers specialized
components for positive (permissions) and negative
(prohibitions) authorizations. The usage of the specific
type of authorization depends on the closure assumption
maintained by the access control model.

Authorizations can be defined either on object level or
for specific methods of an object. Thus, the developer of
an authorization must additionally take care of different
meanings of a certain authorization (e.g. an execute
permission at object level allows the invocation of all
methods whereas at method level it allows only the
execution of a certain method). This implies also that
some authorizations are applicable only to object level or
to method level.

3.3.4. Constraints. The Constraint component allows to
further restrict authorization within the system in a
flexible way. Some constraints are specific to particular
access control models (e.g. separation-of-duty). These
specific constraints influence only actions and tasks of
the access control model and are defined and
implemented by the model provider. Other constraints
are independent of the current active access control
model and influence the application as a whole. They
have to be defined and implemented by the framework
architect. Examples include location constraints (e.g.
logins are only allowed from specific IP addresses), time
constraints (e.g. logins are allowed from 8am to 5pm).

Similar to the authorization component, the constraint
component offers a checkAccess method that is able to
evaluate access.

3.4. Data Provider Components

The data provider components realize the

interoperation with underlying backend systems. Each
infrastructure component mentioned in section 3.3 (i.e.

subject, secure object, authorization and constraint) needs
to have a specific data provider, which is able to read and
write from and to persistent storage (compare

Figure 5). A so-called security data provider manages
the configuration of the framework and the relation
between an application and it’s specific data providers.

Figure 5 Data provider components.

This security data provider handles the framework’s
configuration by interacting with an XML-based storage.
The configuration file points to various other data
providers that are able to communicate with various
objects storages (e.g. LDAP, database). The security data
provider coordinates these data providers that are
necessary for the establishment of the authorization base.

Each security component has its own data provider
which allows the connection to different systems (e.g.
users can be taken from the operating systems whereas
objects are stored within a database). Furthermore, data
providers take care of the different needs of the security
model (e.g. a DAC model merely needs users, an RBAC
model needs users and roles), thus different data
providers can be specified for different models. In
general, each model must reference to a subject data
provider that manages the model’s subject, an object data
provider for the objects to be protected, an authorization
data provider pointing to the various authorizations
available, a constraint data provider supplying
constraints and the authorization base data provider that
manages the authorization statements in the form of
subject, object, authorization and constraint tuples.

If a tuple in the authorization base cannot be resolved
due to missing entities, the tuple is removed and an
auditing message is generated.

4. Realization Issues

We now want to discuss particular realization issues

encountered when implementing the framework.
Currently, GAMMA is available as beta-release
implemented in Java. As mentioned before, we want to

realize the platform and architecture independent design
also within the .NET framework in future.

4.1. Canonical Access Control Mechanism

For providing generic access controls an extremely

flexible way of enforcing access controls has to be found.
The basic assumption is, that access controls can be
stated in terms of subjects accessing protected objects.
Particular access control models have to implement
particular authorization components, stating the
semantics of authorization within that model.
Furthermore, access control models can make use of
constraints that capsulate either model specific
authorization conditions (e.g. separation of duty) or
general authorization conditions like time or location
constraints, for instance. Figure 6 illustrates the
particular steps of the canonical access control
mechanism implemented in GAMMA.

Time Constraint

08:00 – 12:00

Check(s, o, p); bool

true/false

Authorization Base

S O A Constraints

Access Control Context

+Subject
+HostInformation
+TargetInformation

uses

Check(...)

Authorization Secure Object

Person o;

...

setName()

Access Control
Model

process
request 1

2

3

4

5

6

true/false

Figure 6 Canonical access control mechanism.

In general, a subject wants to access a protected object
in a certain way. The requested operation on the object
defines authorizations that are necessary in order to
fulfill the task. The way how to decide whether an access
is granted or not is determined by the access control
model, the authorization objects defined for that model,
and the constraint objects assigned to the authorizations.

First the access controller receives a request from an
authenticated subject for a certain operation on a
protected object, which has been mediated by the security
manager. The request is passed to all active access
control models according to a particular order specified
within a configuration file. Further details on using
multiple concurrent access control models are discussed
in section 4.2.

Each access control model searches for a
subject/object combination in the authorization base (1),
which matches the request. The search process returns a
list of matching authorization rules that are defined for

the subject/object combination. Each authorization is
explicitly checked by invoking the authorization’s
checkAccess-method (2). However, there is the possibility
of defining additional constraints that further restrict a
specified access operation to a protected object. Thus,
each constraint that is defined for the particular
authorization is evaluated. Again, the decision is
delegated by invoking the checkAccess-method of the
particular constraint (3/4). When both, the authorization
and any constraint suggest granting access, the access
control model either reports a positive (access is granted)
or negative (access is denied) result (5) depending on the
closure assumption of the model (open/close world). This
result is then returned to the security manager via the
access controller, which finally gives or prevents access
to the requested object (6).

This possibility may lead to conflicts requiring each
model to have a conflict resolution strategy. We propose
and implemented a strategy, where – in that order –
specific rules (assigned to an object’s method) win over
general ones (defined on object- or class level),
prohibitions over permissions, and any rule wins over the
closure assumption, which in anyway regulates the case
of having no applicable authorization rule. Consequently,
it may happen that a specific permission wins over a
general prohibition. For instance, a bank secretary may
be generally prohibited to access individual bank
accounts retrieving the name or other data. However, the
secretary may be specifically allowed to retrieve the total
amount of money stored in a certain account by means of
invoking a certain method (e.g. getAmount) in order to
perform statistical measurements. However, it remains in
the hands of the model provider to define the conflict
resolution strategy that is most appropriate to the
particular application’s security requirements.

Currently, a traditional DAC approach as well as an
RBAC approach according to NIST standardization
efforts (compare [12]) has been realized based on the
aforementioned canonical access control mechanism.
However, we plan to realize multi-level approaches as
one of the next steps in the project in order to evaluate
the spectrum of applicability of our canonical access
control mechanism.

4.2. Multiple Concurrent Access Control Models

When using multiple access control models, it is

probable that different models have different meanings
concerning access privileges. Thus a strategy to resolve
such conflicts is required. An example of concurrent
access control models is given in section 5.

Any access control model that should be used is
specified within a framework configuration file. The

sequence in which they are listed defines the domination
of the models. When access is checked, the access
controller contacts the active models, starting with the
first one. Each model can return four values, which
indicate either strong or weak results. If the model
returns a strong result, the access controller accepts this
result and returns it to the security manager, thus a
strong result is mandatory. A weak result indicates that
the current model cannot make a proper choice but
returns a proposal based on its closure assumption. In
this case the access controller contacts the next active
access control model as long as a strong result is
returned. If each model returns weak results indicating
that no model is able to make a proper choice, the first
weak result is returned.

This mechanism ensures that a result is found and that
the access control mechanism pays attention to the
domination order of the active access control models. If a
more dominant model is able to make an obligatory
choice, this choice is taken irrespectively of all other less
dominant models. However, if a model cannot make a
proper choice but a less dominant can, the most proper
choice is taken and returned to the security manager.

4.3. Security Enforcement

A proxy controls access to an object with the help of a

prefixed representative object [13]. Access to the real
object is only possibly through the proxy. GAMMA
protects data objects that contain sensitive information by
automatically generating proxy objects and returns them
instead of the real object. Proxies offer the very same
routines as real objects, thus the client does not recognize
any differences. Accessing these objects via the proxy
directly invokes the access control mechanism. Since the
real objects are kept in a separate space and can only be
accessed through proxies, an application cannot
circumvent or bypass the access control mechanism. In
fact, a client will never obtain a direct reference but a
proxy that seems to be the real object.

4.4. Reflection

To provide GAMMA’s flexibility, a mechanism is

necessary to introspect software objects at runtime. This
is necessary to generate proxies but also to load user-
defined framework extensions (e.g. new access control
models, data providers). The current implementation of
GAMMA is realized using the Java language. Java offers
introspection – called reflection. However, GAMMA’s
concept can be implemented in any other language for
any other architecture (e.g. Microsoft .NET) where
introspection facilities can be realized.

5. Example: Time Management

In this section we present an example application that

is simple yet incorporates comprehensive authorization
requirements to demonstrate the benefits of the presented
component framework. The sample application has been
implemented as vision demonstrator within the GAMMA
project.

5.1. Authorization Requirements

Figure 7 illustrates the authorization requirements of

the time management application.
During a month employees record their project hours

into timetable objects. Each employee is owner of his/her
monthly timetable and shall thus have full control over
the object. The employee shall furthermore be allowed to
pass access to his/her timetable object to third persons, if
(s)he wants to (REQ1). Additionally, project managers
shall have read access to their employee’s timetables
(REQ2). However, at the end of each month employees
shall finish their timetables and loose write access over
them. Rights granted to individual third persons shall be
revoked. Project managers shall have the ability to
finalize their project reports using the timetables of their
project members. Furthermore, full control of any
timetable shall be passed to a secretary, who balances
accounts with customers (REQ3).

Figure 7 Authorization requirements.

In this example, REQ1 can be realized using a
discretionary access control (DAC) model. REQ2 can be
best realized by using a role-based access control (RBAC)
model, where a role “Project Manager” has always the
right to read the timetables of his/her employees. In the
case of combining DAC and RBAC mechanisms it is
necessary to define that RBAC mechanisms shall be
stronger than DAC mechanisms, since an employee shall
not be able to revoke read-access to his/her timetables
from his/her project-manager. According to REQ3 a
change to the authorization scheme is caused by a

temporal event. At the end of each month, the owners of
timetable objects lose their full control automatically and
thus delegate access rights to dedicated roles (i.e. project
manager and secretary).

The combination of DAC and RBAC is changed into a
single RBAC model. The role “Secretary” now has the
full control over the timetable objects and is the only
subject who is able to do modifications. The owner and
the project manager still have read access or - when
granted by the secretary - also restricted write access.
Subjects that had access to the object before - granted by
the owner - now lose their access rights to the object.

5.2. Realization using Multiple Access Control
Models

This example also highlights the ability of GAMMA

to work with two access control models at the same time,
i.e. a DAC and an RBAC model, both using a closed
world assumption.

 DAC

RBAC

a User

a 3rd Person

Time-constrained Authorization

Timetable

has right

grants

Granted Authorization

Project Manager a Project Manager read

Full control
Secretary a Secretary

Figure 8 Concurrent DAC and RBAC models.

Figure 8 illustrates the schematic combination of the

two access control models. At the beginning of each
month, an employee creates his/her timetable, which is
an instance of a class derived from the secure object
component. The employee automatically receives a
special authorization “ownership”, which grants full
access to the timetable. Additionally, a time-constraint is
associated with the ownership authorization (indicated by
a watch symbol) that restricts the employee’s ownership-
privilege to the current month. When granting access to
third persons additional time-constraints are
automatically created also restricting the delegated access
rights to the current month.

At the end of the month, when the timetable is given
to the secretary, the ownership privilege as well as any
right granted to a third person is automatically disabled
due to the time constraints.

At the same time some other persons have access to
the timetable based on appropriate roles. These are, for
example, the project manager or the secretary. Roles are
assigned to users. Additionally, authorizations are
assigned to roles. However, these authorizations also
have time constraints – in fact exactly those constraints
that are complement to the DAC authorizations’ time
constraints.

Using this approach the validity period of access
control models can be regulated. During the month only
rules specified in the DAC’s authorization base are valid.
At the end of the month, all these rules become invalid
since their time-constraints do not allow access anymore.
However, the rules of the RBAC model become valid.

5.3. Used/Extended Framework Components

The authorization requirements and the realization

approach mentioned above can be realized with
GAMMA using and/or extending particular components
of the framework.

First of all, a timetable business object is created by
business application developers, which needs to be
protected and has thus to be derived from a secure object.
Then, model providers have to derive two concrete access
control models, namely, DAC and RBAC that will be
specialized for that particular application. Framework
architects may later on decide to include the resulting
access control model with the framework for future
usage. Application developers and model providers
negotiate and derive the particular subjects to be used in
this application, i.e. employees (as users) and roles.
Furthermore, they define concrete authorizations
applicable for that scenario such as ownership (full access
and the right to grant access to third persons), read
permission (allowing a subject to view the contents of a
timetable), write permission (allowing a subject to modify
the contents of a timetable), and delete permission
(allowing a subject to delete a timetable). Additionally,
time constraints have to be derived that are automatically
associated to authorizations in order to realize the
temporal switch of access control models. Finally, model
provides have to realize concrete data provider objects if
not yet available for the particular backend systems.

6. Conclusions and Future Work

In this paper we have presented GAMMA, a security

framework supporting the development of multi-tier
applications. It contains a variety of components offering
a range of high-level security mechanisms including
different access control models that can be used
concurrently and the support of arbitrary constraints.

Based on the experience of having used GAMMA for
several applications we have identified the following
major issues that we plan to address in future:

First, we strive to realize the framework for the .NET
programming environment, which does not yet offer the
convenient enforcement. This shall be a straight forward
task due to the language and architecture independent
design of the GAMMA framework.

Second, we will implement additional forms of
authentication, since the GAMMA prototype currently
only provides an implementation for password-based
authentication. In particular, we will concentrate on
challenge-response methods.

Third, since multi-level approaches can be useful in
some situations we will also implement models such as
the Bell-LaPadula model. We think that one reason why
MLS is not widely used is the lack of support in today’s
developing environments. That said, we will also be able
to evaluate the spectrum of applicability of our canonical
access control mechanism.

And finally, several standards bodies, including
OASIS (Organization for the Advancement of Structured
Information Standards), IETF (Internet Engineering
Task Force) and W3C (World Wide Web Consortium),
have proposed XML-based security standards. The most
relevant with respect to authorization and access controls
are SAML (Security Assertion Markup Language) and
XACML (eXtensible Access Control Markup Language),
both driven by OASIS technical committees. SAML is an
XML-based framework for exchanging information about
authentication acts performed by subjects, attributes of
subjects, and authorization decisions about whether
subjects are allowed to access certain resources or not.
The specification is currently under consideration for
becoming an official OASIS standard. XACML, on the
other hand, defines a core schema and a corresponding
namespace for the expression of authorization policies in
XML against objects that are themselves identified in
XML. XACML is currently an OASIS working draft. At
the time starting to develop GAMMA, these standards
were not available or at least not stable enough to
consider integration into GAMMA. However, our
architecture allows realizing dedicated security data
provider for SAML or XACML, for instance, which we
plan to do, as soon as stable specifications are available.

References

[1] J.E. Dobson and B. Randell B, “Building Reliable Secure
Computing Systems out of Unreliable Insecure Components”,
Proc. 17th Annual Computer Security Applications Conference

(ACSAC), New Orleans, Louisiana, USA., Dec. 10th –14th,
2001.
[2] M. Carey, H. Garcia-Molina, J. Hamilton, H. Pirahesh, and
B. Thuraisingham, “Where are Our Promising Research
Directions: Database Server, Middleware, or Applications?”,
Panel Discussion: Proc. 18th Int. IEEE Conf. on Data
Engineering (ICDE), San Jose, CA, USA, Feb. 26th – March
1st, 2002.

[3] W. Essmayr, S. Probst, and E. Weippl, “Role-based Access
Controls: Status, Dissemination, and Prospects for Generic
Security Mechanisms”, to appear: Int. Journal of Electronic
Commerce Research, Kluwer Academic Publishers.

[4] W. Essmayr, S. Probst, and E. Weippl, “A Comparison of
Distributed Authorization Solutions”, Proc. 3rd Int. Conference
on Information Integration and Web-based Applications &
Services (IIWAS), Linz, Austria, Sep. 10th-12th, 2001.

[5] P. Ashley, and M. Vandequauver, “Intranet Security - The
SESAME Approach”, Kluwer Academic Publishing, 1998.

[6] M.E. Zurko, R. Simon, and T. Sanfilippo, “A User-
Centered, Modular Authorization Service Built on an RBAC
Foundation”, Proc. IEEE Symposium on Security and Privacy,
Berkley, CA, USA, May 1999.

[7] M. Hauswirth, C. Kerer, and R. Kurmanowytsch, “A
flexible and extensible security framework for Java code”,
Proc. 9th International World Wide Web Conference,
Amsterdam, May 2000.

[8] I. Welch, and R. Stroud, “Supporting Real World Security
Models in Java”, Proc. 7th IEEE Workshop on Future Trends
in Distributed Computing Systems, Tunisia, South Africa,
December 1999.

[9] Sun Microsystems, “Java Security Architecture”,
http://java.sun.com/j2se/1.4/docs/guide/security/spec/security-
specTOC.fm.html (last accessed on May 31, 2002).

[10] E. Jendrock, S. Bodoff, D. Green, K. Haase, M. Pawlan,
and B. Stearns, The J2EE Tutorial, ISBN 0-201-79168-4,
Addison Wesley, 2002.

[11] Foundstone Inc., CORE Security Technologies, “Security
in the Microsoft® .NET Framework”,
http://www.foundstone.com/pdf/dotnet-security-framework.pdf
(last accessed on May 31, 2002).

[12] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST Model
for Role-Based Access Control: Towards A Unified Standard”,
Proc. 5th ACM Workshop on Role-Based Access Control, July
2000.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, ISBN 0-201-63361-2, Addison-Wesley, 1995.

