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Abstract

Recent advances in embedded computing and communications technology have
facilitated the development of intelligent environments, enabling exciting new ap-
plications, but also creating new challenges for security. The large number of het-
erogeneous devices, mobile users, and new kinds of applications all contribute to
making security administration and enforcement more difficult.

We study the problem of access control for such environments, which we call Ac-
tive Spaces. Context plays an important role in these systems—users may have
different permissions in different situations, making access control harder to con-
figure, enforce and understand. Collaboration between users is common in these
spaces, and needs to be supported by the system.

My thesis is that existing models for access control, such as Role-Based Access Con-
trol, can be extended to satisfy the access control requirements for Active Spaces.
An access control architecture for Active Spaces must integrate physical and virtual
aspects of the environment, provide explicit support for collaborative applications,
and support the dynamic and heterogeneous nature of ubiquitous computing en-
vironments. Usability, for end-users as well as security administrators, is an im-
portant concern. The system must be flexible enough to support a variety of access
control models, as new applications, with varying security requirements, are still
being developed for these environments.

We propose an access control model that is designed for such environments. We
have developed a prototype implementation in the framework of the Gaia system,
which we use to demonstrate our thesis. Our model supports discretionary and
mandatory access controls, and allows a variety of collaborative modes of usage.

We evaluate our model on the criteria of expressiveness, performance and usability.
The model is sufficiently expressive for applications used in our Active Space. The
performance overhead of our access control is demonstrated to be negligible. We
conducted user studies for an administrative tool for our access control system
to identify requirements for security administrative tools. To improve usability for
the end-users of this system, we developed Know, a framework to provide feedback
about access control decisions while protecting the access control policy.
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1 Introduction

Recent advances in computing, communication, and sensor technology have led to
the creation of environments that contain a plethora of heterogeneous networked
devices. This brings the dream of “ubiquitous computing” or “pervasive comput-
ing” closer to reality. Ubiquitous computing envisions a world where large num-
bers of inexpensive computing devices provide new functionality, enhance user
productivity and ease everyday tasks. The goal is anytime/anywhere access to
information, with the computing infrastructure becoming ubiquitous enough to
blend into the background and no longer be noticed. In homes, offices, and pub-
lic spaces, ubiquitous computers will unobtrusively augment work or recreational
activities with information technology that optimizes the environment for people’s
needs.

The goal of ubiquitous computing research is to create a user-centric and application-
oriented computing environment—users do not want to program a VCR to se-
lect the right devices for input and output, they just want to watch a film. De-
vices in these environments may communicate through a spectrum of networking
technologies—from point-to-point infrared, through very local-area wireless com-
munications and body networks, to local-area wireless and wired networks, going
all the way to wide-area networks like the Internet and cellular communication
networks. This heterogeneous and device-rich environment makes it essential to
have some software to integrate all these devices into a computing environment.
Developing infrastructure services and applications for such environments is an
active research area [DSA99; JFW02; RHC+02].

The Gaia project [Gai00; CHRC01] takes an operating system approach to the prob-
lem and provides various services, such as data storage, context, location, and au-
thentication, as middleware system services. The objective is for Gaia to deal with
the specifics of interacting with the various devices, just as an operating system on
a desktop computer deals with the specifics of interacting with peripheral hard-
ware. Thus, Gaia converts the physical space with the users and devices in it into
a unified programmable entity. We call such an environment—the physical space
with the devices and appliances in it, and the software services to facilitate interac-
tion with them—an Active Space.
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Such environments fundamentally change the nature of personal computing. The
integration of the physical space with the hardware and software environment fa-
cilitates interactive information exchange between users and the space, enabling
new types of collaborative applications as well as augmenting traditional models
of human–computer interaction. The availability of inexpensive computing de-
vices and sensors and the prevalence of wireless networks are making such spaces
increasingly common. A user is no longer logged into a single personal computer,
but interacts with a variety of computing devices in the space around him. The set
of devices and users is very dynamic, since users and devices are mobile. Appli-
cations follow their users, and use the most appropriate devices available in the
environment. Flexibility and reconfigurability are important aspects of such sys-
tems. The same space is typically used for different applications at different times
and by different users. Contextual information, such as the current users in the
space, or the current activity, is important for the configuration of Active Spaces.

However, these pervasive computing environments pose new security challenges
which must be addressed before they can be deployed for real-world applications.
While anytime/anywhere data access is very useful, it can also make it easier for
data to fall into the wrong hands. The pervasive nature of these environments
increases the risks—for example, enabling criminals to access sensor information
from a “smart” home to plan their burglaries better, or stalkers to spy on their vic-
tims by getting information from the sensors in their “smart” environments. User
privacy is an important concern as the system knows ever-increasing amounts of
information about the user. New types of applications and new modes of user in-
teraction with the computing environment (such as using voice or gestures) make it
necessary to rethink the traditional user-password approach for computer security.
The dynamic environment and the number, heterogeneity and mobility of devices
and users makes security management difficult.

Security is often regarded as an obstruction while these systems are still being used
for research purposes; the interesting challenge is to connect all these devices to
each other in a useful way. However, without effective ways to restrict access to au-
thorized users, these systems can never be deployed for serious applications. Prior
experience has shown that it is nearly impossible to retrofit security into systems
that have not been designed with security considerations in mind. We argue that
the software infrastructure for these environments must contain adequate mecha-
nisms for enforcing the variety of security policies that applications may require.
To this end, we study the access control requirements for such ubiquitous environ-
ments in this thesis research.
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1.1 Problem

The problem I address is that of access control for Active Spaces. Access control is
a basic security requirement for guaranteeing security properties such as confiden-
tiality, integrity or availability. Access controls are necessary wherever controlled
sharing of resources between different users and applications is desirable.

While access control is a much-studied problem, existing approaches were mostly
developed in the context of traditional distributed and multi-user systems, and
do not adequately address the requirements of Active Spaces. Access control sys-
tems typically specify the allowed accesses by a set of users or subjects to a set
of resources or objects. In traditional systems, this set of subjects and objects is
reasonably static, whereas in an Active Space, both subjects and objects may en-
ter and leave the space dynamically. An Active Space can also be configured to
support different activities, each of which has its own security requirements. Se-
curity mechanisms for the space must support this dynamic reconfiguration of the
security policies.

While the operating system on traditional multi-user systems isolates users from
each other so that their activities do not affect each other, this is not always pos-
sible when users are in the same physical space. For example, a meeting being
conducted in an Active Space is accessible to all users in the room, and the only
way of restricting access to it is to restrict access to the space for the duration of
this activity. Thus, a user’s permissions to the Active Space are affected by what
other users are doing, and by the space context in general. An access control system
for Active Spaces must consider the physical and virtual context of the space while
enforcing security policies.

Active Spaces are commonly used for collaborative applications, where a group of
users co-operate to complete a task. Security policies for these spaces must support
such collaboration in a secure manner. If the system cannot support such applica-
tions, users bypass the security mechanisms to achieve their goals, for example, by
sharing passwords to share permissions to a set of files. The system must support
limited sharing of permissions (for the collaborative task) between dynamically
formed groups of users, where preconfiguring group permissions is not feasible.

Active Spaces are also envisioned to be used for non-technical applications, such as
smart homes. Users in these environments may not undergo any special training
and expect the devices to be “easy-to-use”. Usability considerations such as the
“principle of least astonishment” are indicated in such environments. This applies
equally to the design of the security mechanisms. While security threats may not
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be correctly perceived by users, inconvenient security mechanisms are likely to be
disabled. The design of the security systems must be informed by experience from
human-computer interaction (HCI) research.

The role-based access control (RBAC) model has become popular in recent years
for its ability to support a variety of access control policy configurations (such as
mandatory and discretionary access controls). However, the RBAC model as pro-
posed assumes a relatively static environment in which security policies are con-
figured and enforced.

This thesis states that the RBAC model can be extended to support the access con-
trol requirements of Active Space applications. The key features that are required
in such environments are: explicit support for collaborative applications, integra-
tion of physical context into the access control system, and support for dynamic,
heterogeneous environments.

1.2 Example

We illustrate the problem with the help of an example. Our example Active Space
is a “smart room” in a University. The room contains computers on wired and
wireless networks, display walls, microphones, speakers, cameras, and other sen-
sors for light and temperature. Users also bring in personal equipment such as
laptop computers or PDAs, which they can use in conjunction with the equipment
in the space. This environment is shared by a number of research groups, who use
the equipment for various projects. Security policies in this environment are, there-
fore, context-dependent—the same users have different permissions under differ-
ent conditions in the space. We describe some of the activities that are conducted
in this environment to highlight their requirements pertaining to access control.

The “smart room” is used for a variety of activities, some experimental and research-
oriented, and some “production” activities such as seminars and meetings. The
room is also often used to demonstrate research to visitors. These activities differ
widely in their security requirements. Some meetings may need to be restricted
to members of a particular research group, while other seminars may be open to
any one in the department. Authorized users must be allowed to participate in
these activities, and unauthorized users disallowed from using the space during
these activities. This requires that access control policies for the space be reconfig-
urable on a per-activity basis. Since applications for these systems are still being
developed, it is important that the security systems be flexible enough to cope with
emerging requirements.
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Active Space environments tend to be somewhat decentralized, with the space
used by different groups of users. This requires the ability to combine the security
requirements of the various parties involved. Mandatory access control policies
for the room are required to share equipment securely between the different au-
thorized users. This can be used to specify requirements for room usage that have
to be followed by all users, for example, ordinary (non-administrative) users are
not allowed to disable system logs. However, personal devices brought in by users
need to interact with other users and devices in the room, but their owners will
need the ability to control access to them. This is achievable using discretionary
access controls. Similarly, users may have privacy requirements that may conflict
with the room audit policies, and this needs to be detected and flagged.

User permissions may change during the course of an activity. For example, only
the presenter at a seminar has control of the slide projector, whereas the other par-
ticipants only have read access to the slides. The presenter can use different mech-
anisms to control the slide projector (e.g. controlling the slides via a cellphone or
a PDA, or by using voice or gestures), but other users in the space should not be
allowed to do so. Different users may take the role of the presenter at different
times, and obtain the associated permissions. Similarly, different speakers during
the course of a meeting or class may need access to particular resources within
the space. While socially acceptable protocols for passing control of devices may
be sufficient in some situations (like a meeting chair calling upon different par-
ticipants who have questions), access control mechanisms are required for other
activities, such as ensuring that only students registered for a particular class are
taking the examination.

The physical location of users and devices in the space may also affect their permis-
sions. Many of the Active Space applications are restricted to users who are phys-
ically in the room. This imposes two requirements on the access control system—
first, that it know who is in the space and be able to restrict access accordingly, and
second, that the policies may be reconfigured if and when this context changes.
For example, all users in the space can view the contents of the display walls, so it
cannot be used to display information that some of the users in the room are not
authorized to view. Similarly, a confidential meeting may not be allowed to start
while unauthorized users are in the room.

As in the example above, the presence of unauthorized users can change the ac-
tivities that are allowed in the space. Similarly, users of the room may be allowed
to play music on the loudspeakers as long as there are no other users in the room.
Again, a user’s permissions are affected by the presence of other users in the space.
This is different from access control in traditional multi-user systems, where a
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user’s permissions are not affected by who else is logged into the system.

Fine-grained location-tracking of users can also allow permissions to “follow the
user” around the space. A user can walk around the room and use any of the vari-
ous touch-screen displays, and the system will know who is making these requests,
since it knows the location of users. Without such fine-grained location-tracking, it
may not always be possible for the space to identify which of the users in the room
is interacting with a particular device. However, for some activities, it may not al-
ways be necessary to identify the exact user. For example, it may be sufficient to
know that only a meeting participant is allowed to write to the whiteboard while
the meeting is in progress. This is relevant since most of the activities conducted in
this room are by groups of users rather than individuals.

There are different types of group activities conducted amongst users with differ-
ing levels of mutual trust. Participants in a meeting may all have the same permis-
sions, and shared access to documents created for the meeting. However, a pro-
fessor teaching a class will have more permissions than the students in the class.
Students will not typically be using the whiteboard during a lecture unless asked
to by the professor. In other activities, users may obtain permissions for certain
activities as part of a group, such as being a member of a committee. The access
control system must recognize and support these varying requirements.

While designing security systems for this environment, especially in research en-
vironments, it is easy to ignore the complexity of the configuration. However, con-
figuration complexity is most likely to result in poor security in practice. Systems
that are too complex to configure correctly are typically left in default modes, or
have the security settings disabled. Thus, administrative usability is an important
concern for such a system.

The example shows how access control decisions in such an environment are af-
fected by contextual conditions, both physical and virtual. We also described some
of the types of user collaboration in the space that we would like to support. Our
objective is to design an access control model that can address these requirements.
We describe our approach in the following section.

1.3 Approach

To demonstrate the thesis, we proposed an access control model that addresses
the special requirements for such Active Space environments. We implemented a
system based on this model in the framework of Gaia, a ubiquitous computing sys-
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tem for Active Spaces. We then evaluated this system on the basis of expressivity,
performance and usability.

Expressivity was evaluated in terms of the ability to express the security policies re-
quired for this environment. The basic requirements are to incorporate contextual
information into the access control policies, to support discretionary and manda-
tory access controls and to support various collaborative modes of applications.
The access control model extends the role-based access control (RBAC) model to
provide the additional features. Group permissions for collaboration are supported
by means of “space modes”.

The main performance requirement for the access control system was that it not be
a bottleneck. To verify this, we tested the access control system with a varying load,
and observed its behavior under rapid changes of context and increasing numbers
of users and devices. Detailed performance results are presented; however, the
main result is that the delay introduced by access control was insignificant. This is
an important concern, since security mechanisms that are perceived as introducing
unacceptably large performance overheads are often disabled in practice.

Usability evaluation is harder, since there are no clear metrics. We consider two
aspects of usability: for the security administrator, who has to configure the access
control policy, and for the end-user, who is faced with the decision of the access
control system. We performed user studies on an administrative tool designed for
this interface, from which we conclude that the configuration complexity is within
acceptable limits. The study also identified some requirements for security ad-
ministration tools. We improved usability for the end-user by means of the Know
framework, which provided feedback about the access control decision to users
who were denied access. The reasoning behind this was that users in such systems
are often denied access because of changes in context that are hard to perceive, and
that the system has enough information about the user to provide helpful informa-
tion.

1.4 Thesis contributions

The result of this thesis research is a demonstration of an access control system for
a ubiquitous computing environment. The specific contributions of this work are
described below.

Access control model for ubiquitous computing environments: The model sup-
ports policies that can represent the physical and virtual context of the space.
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The model is flexible enough to support DAC and MAC policies.

System implementation and evaluation: The implementation of the model within
the Gaia system demonstrates the practicality of the system. In particular, the
low performance overhead makes it feasible for use within Active Spaces.

Collaborative environments: We identify the different types of collaboration com-
mon in Active Space environments and provide access control support for the
differing levels of mutual trust between users in such environments.

Administrative usability: A user study of a tool for security administrators who
need to configure this system identified some general requirements for secu-
rity administration tools.

Feedback for access control: The Know system provides a framework for feedback
about access control decisions to improve system usability while still honor-
ing meta-policies to protect policy confidentiality.

1.5 Roadmap

The rest of this document is structured as follows: Chapter 2 provides the neces-
sary background required to understand this work before we provide the problem
statement in Chapter 3. Chapter 4 describes the access control model and the policy
specification. The system design and implementation are presented in Chapter 5,
along with a performance evaluation. We describe the usability issues considered
during system design in Chapter 6. We conclude in Chapter 7 with a discussion of
future work.
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2 Background and Related Work

This chapter explains the terms that are needed to understand this research and de-
scribes related research. We explain the basic access control problem in Section 2.1.
Then, in Section 2.2, we describe the ubiquitous computing environment and the
Gaia system that we use to demonstrate the thesis research. Section 2.3 describes
previous work in access control in collaborative environments, while Section 2.4
describes work on usability and security. Section 2.5 describes some other related
work. Finally, in Section 2.6, we outline our approach to the problem in relation to
existing work.

2.1 Access control

The basic access control problem is to ensure that all accesses to system resources
are authorized. An access control system receives requests of the form “Can a user
U perform an action A on an object (or system resource) O?” and responds with a
“Yes” or a “No”.

Access controls are essential to regulate any sharing of resources. They are a re-
quirement of any system that wants to provide any of the security properties such
as confidentiality, integrity or availability.

The problem of designing access controls, which are also known as protection
mechanisms, has been studied since the early days of computing [Lam71]. Com-
puters started out having restricted physical access and only authorized users were
allowed to submit programs. Even in such a system, access controls can restrict
what parts of the system a user program is allowed to access. Multi-tasking sys-
tems require that different processes (even those belonging to the same user) be
protected from each other to prevent one process from accidentally or maliciously
harming another. Multi-user systems need to protect processes belonging to dif-
ferent users from harming each other. This is typically handled by authenticating
users when they login and creating separate protection domains for them. Net-
worked systems allow remote users to access resources, and various mechanisms,
typically based on requester identity or network location, are used to restrict this
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Subject
Object

S1 S2 S3 O1 O2

S1 own own read
read read
write

S2 own read own
read write

S3 own read
read write

Figure 2.1: Access Matrix

access. A typical operating system may employ different techniques to restrict ac-
cess to different resources to authorized users or processes.

An access control system consists of a security policy to specify authorized accesses
and mechanisms to enforce this policy. Different policies are required for different
access requirements. Policies and mechanisms are generally studied separately, but
in a practical system, a policy must be enforceable by the available mechanisms.
Saltzer and Schroeder [SS75] identified a set of design principles for information
protection mechanisms.

An access control request has three parameters: a subject making the access request
(which could be a user or program on behalf of a user), a system object, and the
specific object right (such as read, write, execute, or the ability to call a method on
an object) being requested. The effectiveness of access controls depends on proper
(and unforgeable) user (subject) identification and protection of the policy from
unauthorized modification.

One of the earliest models for representing access control systems is the access
matrix model, proposed by Lampson [Lam71], and extended by Graham and Den-
ning [GD72]. The model is defined by states and state transitions, where the protec-
tion state of the system is represented by a matrix and the transitions are described
by commands that modify this matrix. Subjects in the system are represented as
rows of the access matrix and objects as columns. Each cell in this matrix contains
the rights of a subject on an object, as shown in Figure 2.1.

An authorized state is an access matrix that contains only authorized rights. An
access control policy (also called a protection policy) partitions the set of all possi-
ble states into authorized and unauthorized states. The state can be modified by
commands that create or destroy subjects or objects, or add or remove rights from
the access matrix. In practical access control systems, different sets of users may
be allowed (or authorized) to perform these commands. A policy specification is
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secure if the set of all reachable states are authorized, starting at the given initial
(authorized) state [Den82]. Alternatively, a secure access control system obeys the
following safety property: the access matrix at any point of time contains only au-
thorized access rights. Harrison et al. [HRU76] proved that in the general abstract
case, the security of computer systems was undecidable, and explored some of the
limits of the system.

Access control policies can be classified based on who is allowed to change the ac-
cess matrix. Most operating systems today implement some form of Discretionary
Access Control (DAC), where the owner of an object (generally its creator) is allowed
to permit or deny other users access to it. A problem with DAC is that it is hard to
enforce a system-wide policy, since the owners of the individual objects can affect
the policy. Instead, military systems have tended to use Mandatory Access Control
(MAC), where the owner of an object cannot change its security attributes. A se-
curity administrator sets the access policy, and a system mechanism enforces the
access control policy. An example of a MAC system is one in which documents
(objects) are classified into categories such as “top secret” or “confidential” and
users (subjects) with appropriate security clearances have access to them, but can-
not change the document classifications.

The access matrix is useful as an abstract representation of the protection state of
a system. It is rarely used to implement a protection system, because, in practice,
it is large and sparse. Access rights to objects are traditionally stored in access
lists (ALs) or capability lists (CLs). Each object has an AL, which contains a list of
subjects and their access rights to this object. Alternatively, each subject may have
a CL, which contains a list of objects and rights that it is allowed. Conceptually,
merging these two sets of lists would result in the access matrix.

Around the same time that the access matrix was being used to model protection
in operating systems, Conway et al. [CMM72] modeled protection in database sys-
tems by means of a security matrix. Here, the subjects are users and the objects
are files, records or other data objects. Entries in the matrix are decision rules that
specify the conditions under which a subject has access to a data object. This al-
lowed a limited form of “context-dependent” permissions—permissions could be
data-dependent (based on the values of the data item being accessed), or time-
dependent, or based on access history (what other documents the subject has ac-
cessed so far).

11



2.1.1 Role-based access control (RBAC)

One of the most popular access control models in recent years has been role-based
access control (RBAC), which is based on the principle that access control decisions
are based on the roles that individuals take on as part of an organization [SCFY96;
FK92]. The key concept in RBAC is a role, which is associated with a set of per-
missions. Roles may be organized into a hierarchy to represent organizational
hierarchy. RBAC maintains two mappings: a User-Role Assignment (URA) and a
Role-Permission Assignment (PRA). These two mappings can be updated indepen-
dently. Users can be added to the URA when they are to perform a new function.
The key insight in RBAC is that the URA and PRA change less frequently than per-
missions of individual users.

The RBAC family contains a family of four models [SCFY96], known as RBAC0,
RBAC1, RBAC2 and RBAC3, that share the basic idea, but have different additional
features. RBAC0 is the basic role-based access control model, consisting of the fol-
lowing components:

• U,R, P and S, sets of users, roles, permissions and sessions, respectively

• PRA ⊆ P ×R, a many-to-many permission to role assignment relation

• URA ⊆ U ×R, a many-to-many user to role assignment relation,

• user : S → U , a function mapping each session si to a single user which is
constant for the session lifetime, and

• roles : S → 2R, a function mapping each session to a set of roles, roles(si) ⊆
{r|(user(si), r) ∈ URA}, which can change with time.

Role hierarchies are introduced in RBAC1. These allow roles to be structured to
reflect an organization’s lines of authority. Thus, RBAC1 introduces, in addition
to RBAC0, a partial order RH on the roles, written as ≥, and known as the role
hierarchy.

The next version, RBAC2, introduces the concept of constraints [AS00], which can
apply either to the URA or the PRA relation of RBAC0, or to the user and roles

functions. They are predicates that, when applied to these relations and functions,
return a value of “acceptable” or “not acceptable”. While the model allows for ar-
bitrary constraints, implementation considerations generally limit the complexity
of constraints that can be checked and enforced. Constraints are a useful mecha-
nism for specifying higher-level organizational policy such as “separation of duty”.
They enable more dynamic aspects of the environment to be incorporated in access
control, but implementation support for constraints has been limited.
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Role hierarchies and constraints are provided in RBAC3, which combines RBAC1 and
RBAC2.

One of the goals of RBAC is to simplify administration. If roles map directly onto
organizational functions, it is easy to represent the organization security policy
using RBAC. An administrative model for RBAC [SBM99] has been proposed, with
a separate hierarchy of administrative roles. RBAC is policy-neutral and has been
used to model both MAC (where roles represent security “levels” or clearances) and
DAC (where roles represent identities) systems [NO95; OSM00].

One of the problems with RBAC, however, is that it does not directly allow for the
incorporation of anything other than user identity (or role membership) into the
access control decisions. Constraints allow for the specification of more complex
policy conditions, but most implementations of RBAC do not support complex con-
straints. Various extensions have been developed to allow other information to be
incorporated into the RBAC model, some of which are described below.

RBAC has become popular in recent years, and has been extended in various ways
for different applications. It has been used to model workflow authorization [BFA99].
Bertino et al. [BBF01] propose a model to incorporate temporal considerations into
RBAC. They do this by supporting periodic triggers that can enable or disable role
activation on a temporal basis.

Kumar et al. [KKC02] describe a context-sensitive RBAC, where user contexts and
object contexts can be used to create role contexts, which can be specified by ad-
ministrators during role creation. These role contexts are Boolean expressions that
can limit the applicability of a role’s permission to a subset of the instances. Ob-
ject roles, which allow specifying permissions to groups of similar objects, are also
described in the GRBAC [CMA00] model. These concepts can be useful for Ac-
tive Spaces.

Role-based access control has been adapted for ubiquitous computing environ-
ments [Gil01; Vis01; CMA00], with the concept of roles extended in various ways to
deal with context information. The Aware Home project has extended RBAC to al-
low context-aware policies, such as those based on temporal authorizations. They
do this with the help of object and environment roles [CMA00; CLS+01; CFZA02].
Their work is closest to ours, but we also explicitly address the permissions for col-
laborative activities in the space, and the effect of users concurrently in the space
on each other.
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2.2 Ubiquitous computing

Marc Weiser articulated a vision of ubiquitous computing [Wei91] where compu-
tation becomes so cheap and small that it is embedded into everyday objects and
moves to the periphery of human attention. Recent advances in communication,
device miniaturization and sensor technology have brought this vision closer to
reality.

Much of the early work in ubiquitous computing focused on simplifying the inter-
action between humans and their computing environment, leading to the develop-
ment of applications that allow users to interact with applications in more natural
ways than via a keyboard and mouse—using speech or gestures, for example. One
of the novel features of such environments was the introduction of context into ap-
plications, where context can be anything from the physical world that affects an
application—location, time, weather, user mood etc. It soon became apparent that
many applications performed similar base operations and some system support for
these operations would simplify application development. This led to the develop-
ment of tools such as the Context Toolkit [DA00] to provide contextual information
about the surrounding environment.

Ubiquitous computing tries to bridge the physical and virtual environments by
augmenting physical objects with intelligent sensors and incorporating an array
of software, hardware and applications into computing environments. These en-
vironments consist of intelligent rooms or spaces that contain appliances (such as
video walls or whiteboards), computers and users with mobile networked devices.
There may be different input-output mechanisms and other sensors to detect con-
textual conditions like temperature and lighting. Thus, the computational environ-
ment is composed of the physical space, along with all the devices and appliances
in it. While networked applications have traditionally attempted to hide physi-
cal location by providing uniform interfaces for local and remote users to access
services [BG99], spatial location is often important to the organization of commu-
nication in intelligent environments such as smart rooms [Pen96; HB00].

As these devices have become more numerous and more capable, software infras-
tructure to manage them has not kept pace. Interconnecting or running applica-
tions across a set of such devices still poses a challenge. More recently, various
research projects are working on providing infrastructure support for using such
interactive workspaces [GSSS02; JFW02; Oxy; RHC+02].

Ubiquitous computing spaces are used in different ways from traditional desktop
systems. There is no longer a one-to-one relationship between users and applica-
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tions. Spaces are typically used as shared workspaces to support group activity.
Applications in the space typically run across a variety of heterogeneous devices,
and can be dynamically reconfigured.

2.2.1 Active Spaces and Gaia

The Gaia project focuses on developing infrastructure services for a class of ubiq-
uitous computing environments called Active Spaces. As physical spaces are inte-
grated with the hardware and software they contain, they become interactive and
programmable, turning into Active Spaces. Homes, offices, classrooms and pub-
lic spaces may all turn into Active Spaces, but they share some common defining
criteria:

Heterogeneity: The environment typically has many computing devices, of vary-
ing capabilities and resource requirements.

Mobility: Users and devices in this environment are mobile. Applications and
data can move with the users.

Distributed nature: Applications use the resources in the space, and may be par-
titioned to run across different devices.

The Gaia approach is to treat the Active Space itself as the computing environ-
ment. The software approach is analogous to an operating system for a desktop
computer—just as the operating system on a desktop computer manages the com-
puting resources, input/output devices and peripherals, the Gaia “OS” manages
the details of interacting with devices in the Active Space and provides applica-
tion programmers a uniform interface to develop to. Gaia acts as a “meta-OS”
for the space and provides virtualized access to resources. Middleware services in
Gaia provide infrastructure services, including a filesystem [HC03; Hes03], events,
naming, context and location. An application model [RC03; Rom03] allows devel-
opers to create generic applications for an Active Space without needing to know
the specific hardware configuration of a space. When the application is instanti-
ated, the devices required by the application are mapped onto currently available
resources in the space.

Gaia provides a set of kernel services. The general system architecture is shown in
Figure 2.2. We describe some of the important services below.
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Figure 2.2: Gaia kernel services

Gaia Component Model

The Component Management Core, which is the lowest layer in Gaia, manages com-
ponent instantiation and destruction. This core acts as a remote execution node,
and can be instructed to load and run Gaia components. Each host that joins a
Gaia Active Space runs an instance of the Component Management Core, which
is implemented as a service known as the UOBHost. Gaia applications are typi-
cally a set of components that run on a set of networked hosts. When components
are instantiated, they register into the Gaia system, and can be contacted by other
components in the system. In the current implementation, Gaia components are
typically implemented as CORBA objects.

Space Repository

The Space Repository maintains information about all the hardware and software
entities in an Active Space. Services, applications and devices are all registered
in the Space Repository when they start up in an Active Space. Users known to
the Authentication Service are also listed in the Space Repository. Thus the Space
Repository maintains information about the run-time state of the space. Figure 2.3
shows the contents of the Space Repository in an Active Space.

The Space Repository also maintains more static information about the characteris-
tics of the entities (users, devices, services and applications) in the space. These are
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Figure 2.3: Snapshot of the SpaceRepository

provided in the form of XML files containing attributes describing these entities.

Applications contact the Space Repository to get information about available re-
sources in the space. This allows applications to be developed in a generic manner
and then be mapped to the specific resources available in a particular Active Space.

Application Framework

The Gaia Application Framework [Rom03] provides an interface based on the Model-
View-Controller [KP88] pattern. Gaia applications are partitioned among a set
of co-ordinated devices, receive input events from different devices, present their
state using different types of devices (such as audio, video display or by control-
ling the temperature) and can adapt to changes in the environment. Applications
consist of a set of components: a model, one or more presentations, one or more
inputsensors and a co-ordinator. The model contains the application logic. Pre-
sentations are different “views” of the output, and the same application may use
different presentations based on the facilities available in an Active Space. Input-
sensors allow users to interact with the application. Again, different types of input-
sensors may be used for the same application. A co-ordinator maintains the link
between these components, and allows new presentations and inputsensors to be
dynamically added, moved or deleted during the application lifetime.
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Authentication Service

The Gaia Authentication service [AMRCM03] identifies users within a space, us-
ing a variety of techniques, such as biometrics, badges or passwords. Different
methods of authentication may be trusted to different extents. The Authentication
Service maintains a list of users who are logged into a Gaia Active Space. This in-
formation may be used to configure the access control policies for the space. The
Authentication Service can issue credentials to authenticated users, and these cre-
dentials may be used by the access control system to verify that users requesting
services from the space are authorized to receive them. We describe the issues re-
lated to using these credentials, and more details of the interaction between the
Authentication Service and the Access Control System in Chapter 5.

Location Service

An Active Space may contain a variety of location-tracking devices, with varying
physical properties. RFID badges can provide approximate location information,
while UbiSense tags can be tracked with a much finer granularity. The Gaia Lo-
cation Service combines information from all these sensors and provides location
information to users and applications. The Location Service also provides an inter-
face that applications can use to define regions, query for the location of particular
objects, or to track objects as they enter and leave regions of interest.

Location information can be important for access control in Active Spaces. Users
may be permitted access to some resources based on their location. User location
can also be used to identify the source of requests—a request made from a touch-
screen display can be recognized as coming from the user standing in front of it. For
other applications, access to resources may be permitted to users who are “near”
something, for example, all users within a building may be allowed access to the
calendar of events occurring in the building that day.

Context Service

Since Active Spaces are heavily context-driven, Gaia needs a mechanism to sense
context information from the environment. A Context Service, consisting of con-
text providers, provides this information in Gaia. All resources in Gaia are accessed
through middleware services. Services also provide access to devices within an Ac-
tive Space. Thus, controlling access to resources in Gaia requires mediating access
to these services.
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2.2.2 Security in ubiquitous computing

While considerable research has gone into adapting traditional applications to an
environment of heterogeneous devices [WKJ+01], the security issues have not re-
ceived much attention so far. There has been work on authentication and trust in
ubiquitous environments, but not much attention has been paid to the problem of
authorizing users in such dynamic and heterogeneous environments.

The Aware Home project [AHR] has developed context-based security mechanisms
for such environments. Generalized RBAC [CMA00] extends the standard RBAC

system with object and environment roles, which can be used to represent some
contextual information. Zhang and Parasher [ZP04] have proposed an extension
to RBAC that activates some subset of user roles based on system context provided
by a Context Agent.

Kagal et al. [KFJ01] propose a trust-based delegation model for pervasive com-
puting environments. Entities can delegate trust to third-parties. For example, the
user of an office can allow limited office access to a visitor, even though the security
policy does not specify access to visitors.

Shankar and Balfanz [SB02] propose a scheme where contextual information about
the user making the request (such as the location) can be used to automate security
management.

Bullock et al. [BB94] describe an approach to access control for collaborative vir-
tual environments based on access to physical spaces. Access to an object depends
on where it is currently located and who has access to that space. They propose
that groups of users could obtain permissions that can allow them to enter certain
spaces. They do not address the issue of how to form or identify such groups.

Another security concern in such environments is privacy. Since these systems
often collect more information about their users than traditional computers, by
means of pervasive sensors and the like, they can pose a bigger threat to user
privacy if the information collection and data handling systems are not designed
carefully. Marc Langheinrich [Lan01] highlights the importance of privacy consid-
erations in the design of ubiquitous computing systems. Another area of concern
with respect to privacy is the prevalence of capture applications, in which audio,
video or other sensors record copious information about everyday environments.
A common application in pervasive computing systems is location-tracking and
the provision of location-based services. This leads to the problem of controlling
access to user location information [HS04].
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2.3 Access control in collaborative environments

Active Spaces are typically used as shared workspaces, or by groups of collabo-
rating users. Much research on collaborative systems has been conducted in the
Computer Supported Cooperative Work (CSCW) area. Key issues of CSCW are
group awareness, multi-user interfaces, concurrency control, communication and
co-ordination within the group, shared information space and the support of a het-
erogenous, open environment which integrates existing single-user applications.
Security has not been a major consideration since the environment assumes a rela-
tively small group of co-operating users.

Pettifer et al. [PM01] describe some types of virtual environments (such as simu-
lation of real environments used in training, or fictional game environments) and
describe the types of access needed in collaborative virtual environments. They do
not discuss enforcement mechanisms, but describe the types of policies that might
be useful in such environments, and discuss system support for such policies in
the context of an entity/programming architecture called Deva. The key features
of these access policies are the context-based conditions and requirements of agree-
ment from other collaborating users (e.g. “I will agree to this after 6pm or if A,B
and C all agree”).

Jaeger et al. [JP96] outline the requirements for role-based access control for collab-
orative systems. They argue that RBAC systems need to implement a DAC model
to allow collaborative users to control rights to their own objects and allow other
users some subset of their rights.

Kang et al. [KPF01] model inter-organizational workflow, pointing out that these
typically require fine-grained access control on workflow objects (such as docu-
ments). Access may be allowed depending on contextual conditions and dynamic
constraints (i.e. a user may have different access to a document based on who has
performed some previous task on the document).

Shen et al [SD92] provide a generalized editing model for collaborative access con-
trol, whereby users interact with a collaborative application by concurrently edit-
ing its data structures.

There has been some work on access control for coalitions [CTWS02] or co-operating
organizations. Phillips et al. [PTD02] describe the problem of information sharing
and security in Dynamic Coalitions, such as organizations working together tem-
porarily to respond to crises such as natural disasters or wars. Users belonging
to these different organizations must be able to access information and perform ac-
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tions for the duration of this coalition, but more restrictions may need to be applied,
such as temporal constraints on the permissions. Gligor et al. [GKK+02] discuss the
negotiation of access control policies among collaborating institutions that want to
share some resources for the collaborative task. Khurana et al. [KGL02] propose
the formation of coalition authorities to issue authorizations to access coalition re-
sources.

The dRBAC [FPP+02] model is a decentralized trust-management and access con-
trol mechanism for systems spanning multiple administrative domains, such as
those encountered in grid computing [FKT01].

Task-based Authorization Controls [TS97] model access control requirements from
the task’s point of view—different permissions are allocated to different users at
different stages in the task. Georgiadis et al [GMPT01] used a team-based access
control scheme to support fine-grained policies using RBAC. Teams of users can be
assigned permissions for a particular task, and some contextual information such
as time and location can be considered by the access control system.

The main difference between the above work and ours is that collaborations in our
environment may be more ad hoc, such as groups of students working together in
a space, and we would like to enable collaboration without requiring administrator
intervention.

2.4 Usable security

Usability has been recognized as an important concern for security systems since
the early days [SS75] of research in computer protection systems; however, in prac-
tice, usability issues have not been a primary consideration for security designers.
One reason for this could be that much of the early access control work was per-
formed in the context of military applications, where it is reasonable to assume that
users are aware of the importance of security, and are likely to undergo training and
follow orders while operating systems. However, this model is not appropriate for
the most common use of computers these days, in homes or at work, where users
are not properly aware of the risks of security failures, and disable security mech-
anisms that interfere with what they want to do. Usability concerns are especially
important in ubiquitous computing environments, since the objective of ubiqui-
tous computing is to blend into the background and allow the user to perform his
tasks without having to pay attention to the computing environment.

As computing becomes more pervasive, the weakest link in the security system is
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often the human factor. Many attacks today target legitimate users rather than at-
tempt to break cryptostems. For example, “phishing” attacks that lure users into
entering personal information into websites created to steal this information work
because it is not obvious to users who they are giving this information to. Simi-
larly, various types of worm/virus attacks depend on users clicking on attachments
without knowing exactly what they do. While users are now exhorted not to click
on links, more usability considerations while designing these systems would have
been a better solution.

Recently, there is increasing interest in the field of HCISEC, which considers the us-
ability or “human-computer interaction” aspects of security mechanisms. A study
of PGP [WJ99] found that even when using software designed for security, users
often did not have a clear model of what was supposed to happen, and misused the
software so that they did not obtain the security it was supposed to provide. The
authors identified some guidelines for designing security interfaces. More work
in this area was done by Yee [Yee02; Yee03], arguing that the principle of Least
Authority is essential to usability of secure systems. Consistent feedback has been
identified as an important aspect of usability. This led us to explore options to
provide feedback about access control to users of the system.

2.5 Other related work

Bonatti et al. [BdS00; BDS02] propose an algebra of security policies to address com-
posing authorization specifications from different sources (and perhaps, different
languages and enforcement mechanisms). They define policies as a set of autho-
rization terms, representing the outcome of a policy specification. This is similar to
our approach, where the DAC and MAC policies are composed to result in a set of
authorizations that are enforced by the Access Control Service.

Policy hashing [KHJ03] has been proposed to protect the policies for a firewall from
less trustworthy enforcement points. This prevents intruders from reading sensi-
tive policies on compromised enforcement points. Feedback to end-users is not a
consideration. Access control systems for Web publishing [BDS01] provide more
information about the policy if conditions needs to be changed for access. How-
ever, policy protection is not addressed. Trust negotiation protocols [BS02; WL04;
YWS03] address the problem of protecting the confidentiality of credentials of both
parties involved in a session. At each stage, one of the parties must provide feed-
back to the other party as to what credentials are needed to proceed with the nego-
tiation. These systems are similar to our policy feedback system, Know, which can
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augment these systems at each stage of trust negotiation by providing useful feed-
back. With respect to suppressing feedback options, Bonatti et al. [BS02] protect
the server’s state by filtering policy feedback. Such techniques can also be applied
to Know, which protects the server’s policies. Policy protection in [BS02] is achieved
by progressively revealing more requirements depending on credentials revealed
by the user.

2.6 Our approach

To summarize, access control in the context of traditional operating systems has
been well-studied, but the novel characteristics of Active Space environments re-
quire new facilities. We believe that such ubiquitous computing environments can-
not be deployed for serious use until a security architecture is in place. We have
developed an access control model that can support context-based access control
policies in a collaborative environment, while addressing usability concerns. In
addition to supporting present-day applications, the model is designed to be flex-
ible, so that it may satisfy access control requirements of new applications in this
rapidly-developing area.
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3 Problem Statement

Section 3.1 describes the context in which this work was performed, and the as-
sumptions we make about the system environment. Section 3.2 presents the precise
thesis statement and Section 3.3 discusses how to evaluate our approach.

3.1 Environment

Access control deals with the problem of ensuring that all access to resources within
a system are authorized. It is impossible to guarantee any of the security proper-
ties of confidentiality, integrity and availability without effective access controls.
An access control system consists of policies that specify the authorized accesses
within a system, and mechanisms to enforce these policies. While access control has
been studied since the early days of shared computing systems, Active Spaces pose
some novel challenges. In this section, we identify the specific problems for access
control in Active Space environments.

3.1.1 Dynamic environments

Active Spaces are very dynamic. Users, devices and applications are mobile, en-
tering and leaving the space in an unpredictable fashion. Furthermore, physical
resources are composed dynamically in a multitude of ways to support user tasks.
This mobile and dynamic environment poses many challenges for an access control
system.

Dynamic users and devices

Traditionally, access control policies specify the authorized modes of access for a
set of subjects (or users) to a set of objects (or resources) in the system. These sets
are typically fairly static. In Active Spaces, both subjects and objects in the system
change frequently. Users of the system are not fixed. For example, visitors to a
building are a common occurrence and need access to resources in the building.
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Similarly, the set of devices in the environment vary as they are carried around by
users. In addition to mobility, the same resources may be used for different tasks at
different points in time. Adaptability and reconfigurability are important charac-
teristics of the environment. Access control policies must support this dynamism
and be able to express this reconfiguration.

Mobile applications

Applications in these environments can follow their users, getting instantiated on
different sets of hardware resources. Application policies are thus not attached to
any set of devices, but must apply to an instance of the application, and are set by
the user. Thus, access control policies need to be more user and application-centric
than system-centric.

3.1.2 Context

Context plays an important role in ubiquitous computing environments. Human
beings interact with each other based on an implicit shared context, which has
not been available so far in interactions with computers. Active Spaces, however,
attempt to incorporate context about the physical world and the current activity
into the configuration of the space.

Physical context

Active Spaces have a variety of sensors that allow them to obtain contextual in-
formation, such as time of day, number of users present, ambient temperature
or lighting conditions. Ubiquitous computing often combines the physical world
with virtual resources to deliver context-rich applications. Access control is no
longer determined strictly by a user’s identity and access rights, but also by the
physical context. Traditional multi-user operating systems isolate users from each
other, so that multiple users on a system do not affect each other. This is not fea-
sible in an Active Space, since the physical aspects of the space affect the virtual
ones—multiple users in a room can all see the videowall, so it cannot be used for
displaying data that they are not all allowed to view. Security architectures for Ac-
tive Spaces must integrate the physical context with the virtual for access control,
taking into account the fact that users cannot always be isolated from each other.
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Virtual context

An Active Space may be used for different tasks at different times. Access to de-
vices depends not only on the user, but on the task for which the space is being
used. For example, a student in a classroom is not allowed to use a cellphone while
a class is in session, but may do so in the same room at other times. As such, an
access control architecture must support dynamic decisions based on the virtual
context.

Feedback to users

Since user permissions within a space change with context, and that context is often
implicit, it may not be easy for users to understand why they are now disallowed
from doing something they have been able to do in the past. In order to avoid
user frustration due to apparently erratic or arbitrary behavior, an access control
system must provide good feedback to the user. Since Active Space applications
may not have a traditional keyboard and display interface to interact with users,
new feedback mechanisms have to be used.

3.1.3 Collaboration

Many Active Space applications involve groups of users working together towards
a common objective, requiring members of the group to have shared access to cer-
tain resources and information. Access control for these groups of users must be
supported. As these groups are often formed in an ad hoc manner, it is not rea-
sonable to expect security administrators to pre-configure them into access control
policies.

Support for ad hoc groups

Collaborative applications involve a set of users who wish to share some permis-
sions in a limited manner. For example, a group of students may get together to use
an empty classroom to work on a class project. They wish to combine their rights
to the files and devices they use for this project, but not permissions to all other
files and applications. Traditional access control systems have not provided much
support for dynamically-created groups of users. Administrators can assign users
to groups in common operating systems like Unix or Windows, and assign permis-
sions to these groups, but these groups tend to be relatively static. We would like to
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support ad hoc groups of users getting together to collaborate, without requiring
administrator support for them to be added into a shared group. On conventional
systems, users often resort to potentially insecure methods, such as sharing pass-
words. There are different types of collaboration, based on the level of mutual
trust between group members—an access control service should provide explicit
support for these.

3.1.4 Policy management

Managing security in ubiquitous computing is challenging due to the complexity
and dynamism of the environment. Tools to aid security administrators in man-
aging this complexity must deal with the large number of devices and multiple
sources of security policies.

Scale

The sheer number of users, devices and applications make Active Spaces complex
to manage. In particular, security administration is complicated by the large num-
ber of users and resources in the space, because it is easy for a misconfiguration to
be lost in the volume of information.

Multiple security policies

Active Spaces have multiple sources of security policies. System resources, mobile
devices, and applications all have their own system or user–defined policies. An
access control service must be able to compose policies in meaningful ways, and
provide adequate feedback both to the end user and the security administrators so
that access control decisions do not appear arbitrary.

Configuration complexity

Configuring an access control system for real security domains is error-prone. In
role-based access control systems, a user may have several roles, and a role may be
applied to multiple users. It is difficult for a security administrator to understand
all the ramifications of changing any particular role-to-permissions mapping. For
example, it is easy to give more users access to a resource than intended.
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3.1.5 Assumptions

We assume that users are authenticated on entering an Active Space. The space
thus knows which users are present in it. The details of the authentication mech-
anism are not important. Anonymous use of the space may be permitted, but the
space must still know of the presence of an “anonymous” user in order to config-
ure policies appropriately. Security policies of a particular space may or may not
permit anonymous usage.

When users are authenticated, they are issued a credential by the authentication
service. This credential accompanies all requests for service made by a user, and is
used by the access control service to check for authorization. We assume that these
credentials are unforgeable, and can be securely transmitted within the system.

It is not always possible for a space to distinguish between the different users in it.
For example, when a group of users are grouped around a videowall and using a
touchscreen to enter data for an application, it is impossible to distinguish between
the users without extremely intrusive authentication before every action. The ac-
cess control system is based on the assumption that it may not always be possible
to distinguish which user in the space has performed a particular action.

We assume that users will bring their own devices, such as laptops and hand-held
computers, into the Active Space, and will want to restrict access to these devices as
they see fit. Hence, we support discretionary access control (DAC) policies for such
“user-owned” devices, while the policy for the devices that belong to the space is a
mandatory access control (MAC) policy.

Access to devices in the space is mediated through software services. The access
control system operates by intercepting requests at this level. Denial-of-service at-
tacks, such as physically disconnecting devices in the space, are not addressed. We
assume that access to the space is restricted to authorized users, and this, together
with audit mechanisms, can mitigate this threat.

3.1.6 Solution space

We propose a model for access control in Active Space environments that addresses
their particular security requirements. However, one of the objectives for our pro-
posed solution is that it must be practical to implement within existing Active Space
environments. As these environments are still being used in experimental ways,
with new types of applications being proposed, the access control scheme must be
flexible enough to support a variety of security requirements, which may change
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with more experience with such environments. It is also not reasonable to expect
that intrusive security mechanisms will be accepted in an system where the objec-
tive is for computing to blend into the environment and become invisible.

Our goal, therefore, is to come up with an access control model that can satisfacto-
rily express policies for Active Space environments, and mechanisms that can im-
plement these policies within existing ubiquitous computing environments. While
we can modify the system software in the space to provide support for the neces-
sary mechanisms, we strive to minimize these required modifications to simplify
deployment. Applications cannot typically be modified at the source code level,
though it may be possible to provide some control of the run-time environment by
means of wrappers or launchers. Ideally, the access control system must enforce
the space policy, while remaining transparent to the applications.

3.2 Thesis statement

The thesis can be stated as follows:

Access control for ubiquitous computing environments can be provided by extend-
ing existing models, such as role-based access control, to incorporate physical and
virtual context information into the access control decision and to provide support
for collaboration amongst users in the space.

3.3 Success criteria

To demonstrate the thesis, we develop a model for access control for Active Space
environments and evaluate it. The evaluation criteria we will use are:

• Expressiveness: Our access control model must be expressive enough to sup-
port the requirements of Active Space environments. We study the applica-
tions used in such environments to verify that our model can support these.

• Performance: If the overheads imposed by the security mechanisms are too
high, users disable them, and run such systems in insecure manners. Perfor-
mance considerations are therefore important in the design and implementa-
tion of practical security systems. We evaluate the performance of our system
and demonstrate that it is not a bottleneck in the Gaia environment.

• Usability: Usable security is particularly important in such environments
since we have non-expert users, and new applications. The complex environ-
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ment poses challenges for administrators who must configure policies that
make sense. Incorporating context into the security decision adds another
variable, increasing the complexity and making it harder for users to under-
stand what is happening. We provide some tools for administrators to config-
ure the security policies, and design the system to provide feedback in cases
where access is denied.
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4 Access Control Model

In this chapter, we provide a formal description of our access control model. Sec-
tion 4.1 identifies the limitations of existing models, and describes the requirements
for our model. We describe the model in Section 4.2, provide a formal specification
in Section 4.3, and follow it with a validation in Section 4.4. We evaluate this model
by discussing its applicability to Active Space applications in Section 4.5.

4.1 Requirements

The dynamic, decentralized and context-dependent nature of Active Spaces make
new demands on the Access Control System. While there are many well-studied
models for access control, none of them sufficiently satisfy the requirements for
Active Spaces.

Role-based Access Control (RBAC) [FK92; SCFY96] is probably the most popular
model for access control in recent years, and has been extensively studied. In an
RBAC model, roles represent functions within an organization, and permissions are
assigned to roles rather than to individual users. Since roles represent functions
within an organization, role-based models can support an organization’s security
policy more naturally. Administration is simplified—a user moving from one de-
partment to another does not require all authorizations to be individually revoked
and new ones granted, but just needs to be assigned to the new role.

However, in the basic RBAC model, permissions granted to a role are based only on
the resources required for the particular function. There is no mechanism for ex-
pressing other factors that may influence authorization. In many systems, includ-
ing Active Spaces, access is restricted based on other attributes of the computing
environment, such as time-of-day or the type of computer of network connection
being used. While separate roles could be created for each of these possibilities,
with role constraints used to control their activation, this leads to a role explosion
and an administrative nightmare.

The RBAC model is suitable for assigning permissions to users in an organization,
where permissions are relatively static, and permissions assigned to roles do not
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change much. The roles are expected to be pre-defined by a security administrator
to specify the permissions required for specific organizational tasks. It is not easy
to specify permissions in a more dynamic way, say, to support an ad hoc group
of users who get together and wish to collaborate. Creating roles for each such
collaboration is not very practical, especially for short-lived collaborations.

Active Spaces are often used in more decentralized ways than conventional dis-
tributed systems, and the security administration model has to take account of that.
For example, our prototype “smart room”, while part of the University and Com-
puter Science department, is most commonly used by members of a few research
groups working on a project. The security and access policies are, therefore, agreed
upon by these groups. While they must still comply with University and depart-
mental regulations (for example, accounts cannot be created for people without
university affiliation), we cannot expect the department administrators to be in-
volved in configuring policy for each of the experiments conducted in this space.
Our model is designed to recognize this administrative organization.

While there have been extensions to make RBAC more dynamic and incorporate
more information into the access control decision, notably temporal [BBF01] and
context [CMA00] information, none of these address collaboration and group per-
missions which are important for Active Spaces. Our model was designed to sup-
port different types of co-operation between users in an Active Space; the objective
is to share only the necessary permissions without requiring administrator inter-
vention for most tasks.

One of the distinguishing features of Active Spaces, when compared to traditional
computing, is the user-oriented and application-oriented nature of computing. An
Active Space can be used for different activities and permissions change based on
the activity. Different devices or services may participate in these activities, and
permissions need to be controlled.

So the main requirements for an access control model for Active Spaces are:

• Permissions depend on contextual information (in addition to user identity),
so the model must be able to represent this information.

• Users bringing their own devices into the space control them; thus devices in
a space may belong to, and be administered by, multiple different users.

• Collaboration between users is common, and must be supported easily.

• Decentralized administration of security policies is required, since Active Spaces
are usually part of a larger system, and the task of security administration
may be split between the larger organization and the component Active Space.
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We present our model for Active Space Access Control based on these require-
ments.

4.2 Model

Our access control model is based upon RBAC, where the basic concept is a role.
RBAC simplifies security policy administration by splitting the task into two parts:
user-role assignment and role-permission assignment. Users are assigned “roles”
when they enter a space, and access control policies for services in the space are
created by allocating permissions to these roles. The objects in our model are the
services and devices in an Active Space. The possible access rights to a service
are the set of operations that can be performed on it. Each service has an access list
associated with it, which contains a list of roles and their correponding permissions
for this service.

To simplify administration, our system recognizes three kinds of roles: system
roles, space roles and application roles. Access control enforcement in an Ac-
tive Space is performed in terms of space roles; the other two kinds of roles are
mapped into space roles. A system administrator creates user accounts and assigns
them appropriate system roles, based on their rights and responsibilities within the
system. The system here refers to an administrative domain such as a university or
company. System roles are assigned permissions to all system resources, based on
their task requirements.

We introduce the concept of a space role, with associated space permissions, which
are just permissions to resources within the space. Access control policies for an
Active Space are expressed in terms of these space roles and permissions, and this
simplifies the task of the space administrator. User accounts are never assigned
directly to space roles—the space administrator creates a mapping from system
roles to space roles, and when a user with a system role Rsys enters an Active Space
A, she is automatically assigned a space role Rspace, which is restricted to a set of
permissions that make sense within the space. Figure 4.1 shows how system roles
are mapped to space roles.

For example, a space administrator could create a space role of videoconferencer that
is allowed to setup videoconferences, and decide that only users with a system role
of faculty could be assigned this space role. While a faculty member may have many
other permissions in the system, when the role is mapped into a videoconferencer, it
is only allowed permissions related to that task.
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Figure 4.1: System roles mapped to space roles

A user’s permissions within a space cannot exceed his or her permissions within
the entire system, i.e. the permissions assigned to a space role are always a subset
of the permissions assigned to the corresponding system role.

Application roles are used to specify access control policies for applications. These
application roles are then mapped into space roles by the space administrator. For
example, as shown in Figure 4.2, an application for a seminar may have two ap-
plication roles—speaker and audience . The application developer can decide
conceptually what the functions of different participants in the application are,
and specify this conveniently in terms of application roles—e.g., a speaker must
have access to a projection device and audience members must have read access
to the slides used. The specific permissions that a speaker requires depends on
the devices in the space that are running the application. When the space admin-
istrator decides that the application can run in a space, he or she also performs the
mappings from application roles to space roles. Thus, application roles and system
roles are mapped by the space administrator to appropriate space roles, and access
control within a space is only enforced in terms of these space roles.

The protection domains in our model are defined by the mode of the space. When
the space switches modes, new roles may be dynamically created, based on the
context of the space, and permissions automatically assigned to them. The secu-
rity state of the system is represented by the set of access lists associated with the
various services in the space.
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Figure 4.2: Application roles mapped to space roles

4.2.1 Space modes

As users in an Active Space cannot be completed isolated from each other, their per-
missions affect each other, and the access control model must be able to represent
this. We introduce the concept of space modes for this purpose. An Active Space is
typically used for collaborative applications, by a group of users in the room. There
are different kinds of groups that may work together, with different implications
for access control. Our model recognizes one mode of individual access and three
modes of group access:

The space is in individual use mode when only a single user is present. In this mode,
this user is allowed access to all the space resources that the access control policies
allow her space role.

Group modes, with multiple users in the space, are the most typical usage mode.
There are different types of group activities, which involve different modes of space
usage.

1. The most common group mode is the shared mode, where the Access Con-
trol System grants every member of the group the same permissions. In this
mode, the users do not have any special trust relationship between them. For
such a group, the permissions allowed are only the intersection set of their in-
dividual permissions. So a user’s set of permissions to the shared resources in
a space may decrease if another user (with lower privileges) enters the space,
but can never increase. This is the default mode in our system.
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2. Another common mode of usage for an Active Space is for a group of users
to collaborate on a particular application. In this mode, users trust the people
they are working with (for this application), and delegate their permissions
to the group. The permissions valid in this group are thus the union of the
set of permissions of the individual members. Each member of the group has
the same set of permissions, but this set could be more than the intersection
set.

While this increase of permissions appears dangerous at first glance, these
increased permissions are only valid for the duration of the session, and the
space never switches into this mode without explicit on-demand authentica-
tion. This mode is only used by a set of users who want to cooperate with
each other for a particular task. Thus they are able to perform certain ac-
tivities as a group that they would not be able to do individually. A simple
example of this kind of activity is the meeting of the executive committee
of an organization—committee members may only have permission to make
budget decisions as a committee.

Thus, the collaborative mode is useful for two kinds of situations: activities
by a pre-defined group of individuals (such as the executive committee), or
by an ad hoc group of users who get together to collaborate on a project. In
the former case, permissions have been pre-defined to take advantage of a
collaborating group (e.g., no individual space role has sufficient permissions
to access the budget, but the set of space roles of president and treasurer
together do). An example of the latter case is a group of people bringing all
their resources (i.e., permissions in this space) to bear upon a problem they
are trying to solve.

The collaborative mode is thus an appropriate model for many uses of Ac-
tive Spaces.

3. Supervised usage is an alternative mode for a group of users in an Active Space,
when some users need more permissions than the group to complete an ac-
tivity. For example, a lecturer might need more permissions than the listening
students. We allow a “supervisor” to have more permissions than the default
group-mode permissions. Unlike the group modes, where the permissions of
all users are set to a common level, in supervisor mode, the supervisor gets
more permissions than the group. The supervisor does not, however, obtain
more permissions than his original system role is allowed.

Not all system roles are allowed “supervisor” privileges. When an individual
(authorized) user requests supervisor privileges, the space switches to super-
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Table 4.1: Mode switching in an Active Space
IND GROUP

SHARED COLLAB SUPER
IND - switch - -
SHARED switch - switch switch
COLLAB switch switch - -
SUPER switch switch switch -

vised mode, a session with supervisor privileges is created for this user, and
the permissions of other group members remain unchanged from the shared
group mode.

The space switches automatically from individual to a shared mode (after notifying
the users) when a second user enters it. The collaborative and supervisor modes
are only entered if explicitly requested.

The modes of access are similar to protection domains used by traditional operat-
ing systems. These group domains are automatically created when a group of users
is present in an Active Space, and Table 4.1 shows the allowed domain switches in
our system. Traditional operating systems like UNIX usually set a protection do-
main per user or per process, which is independent of others who may be using the
machine. In contrast, in Active Spaces, the mode is dependent on the set of users
who are sharing the space, and an additional user entering/leaving can cause the
domain to switch.

The access control decision in our system thus depends on the mode of the space,
the requester’s space role, the access control policy of the space and the operation
being attempted.

4.3 Policy specification

Access Control policy development consists of defining methods to control and
modify the access lists of services. Access to these services’ interfaces in an Ac-
tive Space is controlled via policies set up by the space administrator. This is the
MAC policy for the space.

Users may also bring their own devices, such as personal laptops or PDAs, into an
Active Space, and can exercise discretionary access controls over them. However,
if users want to access resources belonging to the space, they have to present their
credentials with these requests (as usual), and the regular MAC policy will apply to
those requests.
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We present the policy specification using the guarded command notation, similar
to the guarded command language[Dij75; Sch00]. A guarded command is repre-
sented as a (guard −→ command) where a sequence of guards is followed by a se-
quence of actions. Our policy specification consists of three parts. First we describe
the state variables and functions. Next, the access control decision is specified by
the Allow method. All other rules specify transitions that change the state of the
access lists.

4.3.1 State variables

The state variables that describe our system are:

U : set of USERS

Rsys : set of SYSTEMROLES

Rspace : set of SPACEROLES Rsys ⊆ Rspace

Rgrp : set of GROUPROLES Rgrp ⊆ Rspace

Rapp : set of APPROLES Rapp ⊆ Rspace

Rdev : set of DEVICEROLES

S : set of SERVICES (objects in the system)
OD : set of OWNEDDEVICES OD ⊆ S

ALs : set of {〈r : roles;m : methods〉} (Access list for a service s ∈ S)
A : set of all ALs : s ∈ S (conceptual Access Matrix)
Mode : enum {Ind, Shared, Collab, Super} (space modes)
C : set of CREDENTIALS which are one of

typeof(u : USERS; r : SYSTEMROLES)
owns(u : USERS; o : OBJECT)
exports(s : SERVICES;m : METHODS)

URA : set of {〈u : USERS; r : ROLES〉} User-role assignment
AS : Current Active Space; users, services and ALs
CU : set of users currently in space AS

RPA : set of {〈r : ROLES; s : SERVICES;m : METHODS〉} (conceptually the union of all ALs).
CRT : set of {〈u : USERS; rsys : SYSROLES; rspace : SPACEROLES〉}

(Current role translation for users in space AS)
SysAdm ∈ Rsys, SpaceAdm ∈ Rsys, system and space administrator roles
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4.3.2 Functions

The currentrole function takes a role and returns its current space role, depending
on the space mode.
currentrole(r, mode) : ROLES ×Mode → SPACEROLES

The access control decision checks credentials that accompany a request for a
method of a service, and returns true if the method is allowed. The decision de-
pends on the space mode and the requester’s current space role.

allow(u, s,m) ∧ typeof(u, r) ∈ C ∧ (s ∈ S) ∧ exports(s,m)
∧ (currentrole(r, mode),m) ∈ ALs −→ true

4.3.3 State transitions

The state transitions are the operations that change the conceptual access matrix A,
i.e. by changing the roles or methods in the service access lists.

System policy

The SysAdm role is the only role allowed to add and remove users, roles, devices
and services from the system.

AddUser(uadm, u) ∧ typeof(uadm,SysAdm ) ∈ C −→ U := U ∪ {u}
RemoveUser(uadm, u) ∧ typeof(uadm,SysAdm ) ∈ C ∧ {u ∈ U} −→ U := U \ {u}

Specifications for AddSysRole and RemoveSysRole, AddSysService and RemoveSysService,
AddUserToSysRole and RemoveUserFromSysRole are similar: the system administra-
tor credential is checked, and users, roles and user-role assignments are added or
deleted. They are omitted here for brevity, and we proceed to the specification of
AddPermToSysRole.

AddPermToSysRole(uadm, r, s, m) ∧ typeof(uadm,SysAdm ) ∧ (r ∈ Rsys)
∧ (s ∈ S) ∧ (m ∈ M) ∧ exports(s,m) −→
ALs := ALs ∪ {〈r, m〉}

RemovePermFromSysRole(uadm, r, s,m) ∧ typeof(uadm,SysAdm ) ∧ (r ∈ Rsys)
∧ (s ∈ S) ∧ (m ∈ M) ∧ {〈r, m〉} ∈ ALs −→
ALs := ALs \ {〈r, m〉}

The system policy specification similarly specifies all functions for management of
the sets U,Rsys, URA, S and one ALs for each service s in S.
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Space policy

In each Active Space, a space role is automatically created for each system role. In
addition, the space administrator can create additional space roles.

∀r ∈ Rsys : Rspace := Rspace ∪ {r}
AddSpaceRole(ua, r) ∧ typeof(ua,SpaceAdm ) −→ Rspace := Rspace ∪ {r}
RemoveSpaceRole(ua, r) ∧ typeof(ua,SpaceAdm ) ∧ (r ∈ Rspace)−→ Rspace := Rspace \ {r}

When the first user enters an empty space, the EnterSpace method is called.

EnterSpace(u) ∧ CU = φ ∧ typeof(u, role) ∈ C −→
CU := CU ∪ {u}
CRT := CRT ∪ {〈u, role, role〉}
Mode := Ind

When there are multiple users, the group roles are automatically created from the permis-
sions of the group members.

CreateSharedRole(CRT ) −→
∀ALs : s ∈ AS (all ALs in space),

if (∀u ∈ CU, (〈u, role〉 ∈ C) ∧ {〈role, m〉} ∈ ALs)
then ALs := ALs ∪ {〈rshared,m〉}

CreateCollabRole(CRT ) −→
∀ALs : s ∈ AS (all ALs in space),

if (∃u ∈ CU, (〈u, role〉 ∈ C) ∧ {〈role, m〉} ∈ ALs)
then ALs := ALs ∪ {〈rcollab,m〉}

Note that rshared gets permission m iff it is in the intersection set of permissions of
each role in CU, while rcollab gets all permissions m that are in their union.

When users enter a non-empty space, the following actions are performed.

EnterSpace(u) ∧ CU 6= φ ∧ typeof(u, r) ∈ C −→
CRT := CRT ∪ 〈u, r, r〉}
CreateSharedRole(CRT )
CreateCollabRole(CRT )
SwitchToSharedRole(CRT )
CU := CU ∪ {u}

SwitchToSharedRole(CRT ) −→
∀u : u ∈ CU ∧ typeof(u, role) ∈ C
CRT := CRT ∪ {〈u; role; rshared〉}
Mode = Shared

These roles are also re-computed when a user leaves a space.
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LeaveSpace(u) ∧ u ∈ CU ∧ typeof(u, r) ∈ C −→
CU := CU \ {u}
CRT := CRT \ {〈u, r, r〉}
CreateSharedRole(CRT )
CreateCollabRole(CRT )
SwitchToSharedRole(CRT )

The CurrentRole method is used to obtain the current space role of a user.
CurrentRole(r, Mode) ∧ {〈u, r, rspace〉} ∈ CRT −→ rspace

Supervisor mode

GetSuper(r, s,m) ∧ (Mode = Super) ∧ typeof(r, super) ∧ ({〈r, s,m〉} ∈ ALs) −→ true

Application policy

Policies for an application can be specified in terms of application roles and per-
missions. The space administrator creates a space role for the application role (if
necessary) and maintains a list of system roles that are allowed to switch to this
space role. When the set of system roles is updated, this list needs to be updated.

map(usp adm, ra, rspace) ∧ typeof(usp adm,SpaceAdm ) −→ Rspace := Rspace ∪ {ra}

Discretionary access policies

For every “owned” device D that is to be allowed in the system, the system admin-
istrator must first create the DeviceOwnerD system role, and add the owner of the
device to this role. The device owner can then set DAC policies for the device.

AddOwnedDevice(uadm, ownerd, d) ∧ (uadm ∈ SysAdm ) ∧ (ownerd ∈ U) −→
S := S ∪ {d}
OD := OD ∪ {d}
AddSysRole(uadm, DeviceOwnerd)
AddUserToSysRole(uadm, ownerd, DeviceOwnerd)
C := C ∪ owns(ownerd, d)

AddDeviceRole(ud, d, rd) ∧ owns(ud, d) −→ Rdev := Rdev ∪ rd

AddUserToDevRole(ud, u, rd) ∧ owns(ud, d) ∧ (u ∈ U) −→ URAd := URAd ∪ ud
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AddPermToDevRole(ud, rd, d,m) ∧ owns(ud, d) ∧ (d ∈ OD) ∧ exports(d, m) ∧ (rd ∈ Rd)
−→ ALd := ALd ∪ {〈rd,m〉}

4.4 Validation

Based on our specification, we give an informal proof sketch about the safety prop-
erties of our access control model. The proof assumes that the credentials were gen-
erated correctly and the keys of the trust authority were not compromised. Given
this assumption, we claim that in the conceptual access matrix A in our system, the
existence of an access right of the form ({〈role, method〉} ∈ ALs) ∀ALs : s ∈ S, is
synonymous to the possession of unforgeable typeof, owns, or exports credentials
that collectively authorize the entry of that right into their respective ALs. This
guarantees that only authorized access to services are allowed in our system.

The proof proceeds by examining all the state transitions and evaluating each state
transition rule to guarantee there are no “leaks”. A leak occurs when a state tran-
sition rule can add an unauthorized entry into an AL. Since we have two types of
policies MAC and DAC, we examine the transition rules in turn. For our MAC policy,
we observe that whenever we add a new role and method into an access list, we re-
quire that the entities (here any user u ∈ Rsys) making the request produces a valid
typeof credential and a suitable exports. This guarantees that only administrators
can add rights to methods that are defined for a given service.

For the DAC policies for user-owned devices, the owns(ownerd, d) credential can
only be added to the system by administrators. This credential cannot be delegated
to anybody other than the owner of the device. A device owner can create roles
and add permissions to their own access list, and add users to their private roles.
All rights to device interfaces are authorized by the device owner. In addition, by
transitive closure of the typeof and owns credentials, these rights are authorized by
the system administrators as well, imposing MAC on top of DAC. Therefore, given
an initial configuration with only authorized rights, the set of all the reachable
states in our conceptual access matrix are also authorized.

Switching domains is governed by the modes of the space, and does not add any
new access rights to the matrix, except in the case of the collaborative mode. Col-
laborative mode sessions are only created when a group of users who trust each other
want to use the space for a particular activity. The amplification of rights that may
occur lasts only for the duration of the session, and are not added into the access
matrix for further use.
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4.5 Discussion and evaluation

We evaluate the suitability of our model for Active Spaces by discussing its appli-
cability for Active Space applications, and comment on some features and limita-
tions.

4.5.1 Active Space applications

To evaluate the access control model, we considered the dozen or so applications
we use commonly in our prototype Active Space. Most applications are started by
a user in the space, and other users may sometimes be allowed to modify applica-
tion behavior. By default, the initiator of the program can terminate the program.
Other actions, such as adding or removing inputsensors or presentations (which
are analogous to controllers and views in the model-view-controller paradigm),
may be restricted, depending on the permissions to the available resources in the
space.

We classify the applications into the following categories for the purpose of access
control. Some applications may be used in multiple ways and show up in multiple
categories.

• Single-user applications: Applications like mp3player and some games can
be used when the room is in Individual mode. Access control for these ap-
plications is straight-forward—typically they use a small number of services,
and access to other devices is not required.

• Multi-user/supervised-usage applications: Various applications such as the
PPT application for presentations, or the mp3 player can be used in multi-
user mode. These applications may sometimes be used in supervised mode
if some extra permissions are required. The most common case in which this
happens is the use of some equipment in the room, such as a projector or
the camera, whose permissions are restricted to professors (and sometimes
to administrators).

• Collaborative applications: As mentioned earlier, there are two types of col-
laborative applications. One type requires the presence of certain users before
permissions are activated—we have experimented with this sort of applica-
tion, for example, by requiring that at least 3 persons were present before
starting a presentation. The other mode of collaboration supported is where
users present agree to share permissions from roles they activate. We find that
users typically do not use this “union of permissions” mode of collaboration
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as much as the “supervised” mode—typically there are a few permissions
that need sharing for an application, but the supervised mode suffices.

• Space applications: There are various long-running applications that run in
the space, e.g. the x10 application to control the lights, the cameracontroller

application to control the cameras in the room, and the tickertape application
that can display messages in the space. These applications behave like system
services, and are typically launched with system credentials. These services
cannot be disabled by most users. Users may be allowed to interact with
these applications, e.g. moving or aiming the camera, or sending messages to
the tickertape application.

For any of these applications, users can bring their personal devices into the space,
and have them participate in these applications. While joining the space, the per-
sonal device registers its owner, and, optionally, an access list for services it runs.

The model supports only a limited form of delegation, via the supervised mode.
Since new permissions from the supervised mode are not added into the access
matrix, this simplifies the security analysis. However, we recognize that the lack of
delegation may prove a limitation for certain applications.

This model appears to be expressive enough to satisfy our current Active Space
applications.

4.5.2 Comparison with existing models

Since Active Spaces are still being used in experimental ways, flexibility about the
kinds of access control policies that can be supported is important. Our model is
a form of RBAC, and supports DAC and MAC security policies. We discuss here the
differences from traditional RBAC.

Access control policies for Active Spaces typically allow a role (or set of roles) per-
missions to perform certain actions under certain contextual conditions. The RBAC

has a set of users, roles and permissions. Role activation decides which permis-
sions are active in a session. Roles are fixed sets of permissions, which are suitable
for reasonably static task descriptions.

To cope with the dynamism of Active Spaces, our model supports more dynamic
roles—system roles and application roles get mapped into space roles at run-time,
and access control enforcement takes place in terms of space roles. Since rights
amplification cannot occur in this mapping, the system and application roles are
purely for administrative convenience, and do not affect the safety considerations.
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Group roles are also created dynamically, based on the active permissions in the
session. Dynamically creating roles allows the set of permissions to be more adap-
tive to the current state of the space (such as the users currently in the space) with-
out the administrative overhead of pre-configuring policies for all possible situa-
tions.

4.5.3 Collaboration support

Active Spaces need to support a range of collaborative activities between users
who trust each other to varying extents. Our model handles this by recognizing
different modes of collaboration, in which different sets of permissions are shared.

The shared mode enables the intersection set of permissions of the users present;
this is safe, but possibly too restrictive. It is a useful mode for sharing the space be-
tween mutually non-trusting users, especially when the space cannot definitively
recognize which of the users present is performing some action (such as entering
data via a shared touchscreen display).

Supervised usage represents a form of limited delegation—a user in the room may
be permitted certain actions during a particular session in the presence of a super-
visor. This maps well to real-world situations where students are often allowed
to use a classroom projector after the professor has unlocked it. In our model, the
permissions do not last beyond the presence of the supervisor.

Collaborative mode allows some rights-amplification, however, it is rarely used.
We argue that explicitly providing support for this mode of operation is useful,
since users otherwise have to find ways around the model to perform activities
that require this support.

We posit that these modes are sufficient to represent all possible modes of collabo-
ration that occur. Formal study of the completeness of these collaborative modes is
left for future work.

4.6 Conclusion

In this chapter, we provide the formal specification for our access control model.
The main differences from RBAC are the existence of three types of roles, and the
various space modes to represent different modes of collaboration. This model is
expressive enough for the requirements of Active Spaces. It is flexible enough to
support a variety of access control policies, such as DAC and MAC, and supports the
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various modes of collaboration in a secure manner. A limited form of delegation is
supported via the “supervised usage” mode.
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5 System Design and
Implementation

In this chapter, we describe the architecture and implementation of the Gaia Access
Control system. Section 5.1 outlines the design objectives. Section 5.2 describes the
system architecture, and Section 5.3 the implementation of the Gaia Access Con-
trol System. Section 5.4 presents a security analysis of the implementation, and
Section 5.5 a performance evaluation, before the conclusion in Section 5.6.

5.1 Design objectives

Active Spaces pose special challenges for access control because of their context-
dependent nature, the variety of mobile and heterogeneous devices and users, and
new modes of interactions with the sytem. From our model, we obtain the follow-
ing design goals for an access control system implementation:

• User permissions in Active Spaces depend not only on the identity of users
and the objects being accessed, but vary with system context. The Access
Control System, therefore, must have access to information about the system
context, and should be able to incorporate this information into the access
check.

• Users can bring their own computing devices (such as laptops, PDAs or cell-
phones) into an Active Space and have them become part of the space. In
these situations, the owners of the devices should be able to control access to
them, which requires supporting discretionary access controls (DAC). Manda-
tory access controls (MAC) are also required, to specify policies for an Ac-
tive Space, especially for devices that are shared by users in the space.

• Most usage of Active Spaces is collaborative in nature; such spaces are typ-
ically used by groups of users for various applications. The access control
mechanisms should facilitate collaboration, by allowing groups of users to
interact in a secure manner without requiring administrative intervention.

• The potentially large number of devices and services in the system require
a scalable approach. Poorly-implemented security mechanisms can cause a
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great performance hit, leading to users disabling them in practice. Hence
performance considerations are critical in the design of practical security sys-
tems.

• The complex environment can also make security administration a problem.
Manageability of the access control system is an important design criterion.

• Usability is important for a practical security system, since accidental misuse
of security mechanisms are often responsible for security breaches. Usability
has many aspects; we consider both end-user and administrative usability to
be important for our system.

In the following sections, we describe the architecture and implementation of the
access control system and how it addresses these objectives.

5.2 Architecture

We now present the architectural design of the Gaia Access Control System, first
providing an overview of the access control system before describing the compo-
nents of the system in more detail. Broadly, the access control system works as
follows:
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Figure 5.1: Gaia Access Control System architecture

• The space administrator configures access control policies for all devices and
services in the space. All access to devices is through services, and these
services are associated with the appropriate access control policies for the
device.

• Users enter the space after authenticating themselves. Physical access to the
space is restricted to legitimate users. The space knows who its current users
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are. Anonymous use may be allowed by the space policies, but the space will
still know that an anonymous user is present.

• Users run applications in the space, which make requests to services on their
behalf. The access control system intercepts all requests to services, checks
the accompanying credentials, and enforces the policies associated with the
services.

The basic architecture of the Gaia Access Control System is shown in Figure 5.1.

For the access control system to be able to restrict access to authorized users, it
must be able to identify the users. We describe this process next.

5.2.1 Authentication

User

Authentication
Service

Access Control
Service

Credential
Credential

Figure 5.2: Authentication and access control

Traditional access control schemes typically base authorization decisions on the
identity of the requester, so recognizing users accurately is an important require-
ment for an access control system. In Active Spaces, a variety of other factors, such
as the system context, may also affect user permissions, but user identification is
still required. User identification is not part of this research; we rely on existing
services such as the Gaia Authentication Service to perform this function. The ar-
chitecture is shown in Figure 5.2. However, we discuss here the practical challenges
in using these or traditional authentication systems in our environment.

In principle, any mechanism to identify users and issue them appropriate creden-
tials that they can use to make requests within the Gaia system will serve our pur-
pose. The Access Control System also needs to have information about which users
are in the space, since permissions may depend on this. Precise identification of
the user may not be essential in certain contexts—a user may choose to be “anony-
mous” in the space, and use only such privileges as the space allows anonymous
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users. However, even here, the system needs to know that someone is in the space,
as activities permitted in an empty space are probably different from those allowed
in a space containing an unidentified user. We assume that any user physically en-
tering the space is noticed, either by the Authentication system which might chal-
lenge him to authenticate himself, or by some other sensing device like a camera
or a doorlock server. This is a reasonable model for Active Spaces such as smart
rooms with controlled physical access. For Active Spaces that have more uncon-
trolled access (such as a shopping mall), it may be more accurate to assume that
there can always be unidentified users around, and configure access control ac-
cordingly. Whatever authentication mechanism we use, the Access Control System
needs to know how many users are in the space. It may also have more information
about their identity or location, as provided by the Gaia Authentication Service or
Gaia Location Service. If available, this information may also be used for access
control.

After users have been identified, they can be issued with credentials certifying their
identity. In theory, they can then use these credentials to obtain services from the
system. However, there are several practical challenges in designing such a system.
We describe two techniques that have been used to assign credentials to users in
the Gaia system, and point out the issues related to using them for access control.

Identity-based credentials

The Gaia Authentication Service deals with user identification by having users “lo-
gin” to the Gaia system. It uses a variety of techniques to identify users, such as
passwords, various types of biometrics (fingerprint and iris scanners), and tracking
devices such as RFID badges. Once identified, the user is issued with a credential.
This credential can be used to make requests within the Active Space. In the Gaia
system, users have permissions within an Active Space based on their identity and
their current space role, which depends on the current activity within the space.

While passwords are the most commonly-used mechanism for user authentica-
tion, there are well-known problems with them [Kle90]—“good” (i.e. not easy-
to-guess) passwords are often hard for humans to come up with or remember. In
Active Spaces, where users may not even be using a keyboard, limitations of pass-
words are even more apparent. Biometrics may prove to be a useful mechanism
for user identification, but currently available technology has limitations. We have
experimented with biometric devices such as fingerprint readers and iris scanners
in our Active Space, but they are still fairly intrusive and slow. Recognizing a fin-
gerprint can take upto a few seconds, and often requires repeated attempts. This
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is not a feasible option for frequent re-authentication. Less intrusive methods like
face recognition by tracking cameras sound attractive, but are not reliable enough
yet. Different methods of authenticating users have differing levels of accuracy
and usability. The Active Space Authentication System uses a combination of these
mechanisms to identify users with varying levels of confidence, depending on the
methods used [AMRCM03].

One problem with credential-based authorization in Active Space environments is
credential management by the user. After the user is issued a credential, it needs
to be stored securely, presented while requesting services, and associated by the
system with the appropriate user.

To understand this problem, consider the case of a user, John, who moves around
and uses various devices in an Active Space. John authenticates himself to the
Gaia system by means of a fingerprint scanner. The Gaia Authentication Service
is satisfied that John is in the Active Space, and is standing near the fingerprint
scanner. If John is the only user in the space, it may be appropriate to assume
that any request made within the space was issued by John. However, if there are
other users present in the space, how can the space distinguish requests from the
different users? Since John was just at the fingerprint scanner, it may be appropriate
to assume that any commands issued from that part of the space within a certain
time interval were issued by John.

However, if John then proceeds to walk up to the plasma display wall and use the
touchscreen to enter commands to interact with the space, there is no way for Gaia
to realize that these commands were issued by John, rather than any other user
in the space. John could re-authenticate himself at another identification device
near the display wall, in effect informing the space of his new location, and pro-
ceed from there. However, this repeated re-authentication is tedious if it requires
John’s intervention. It may be usable if the space could track his location as he
moves around, without his having to repeatedly use fingerprint scanners or enter
passwords.

For the system to know for certain that a request comes from John, the request
should be accompanied by his credential. This raises the problem of credential
storage—when John identifies himself to the Authentication Service by means of
a fingerprint scanner, where is the Authentication Service to send the credential
to? One possible solution is for John to have some personal storage on a device
such as a PDA or a cellphone. Upon identification, the Authentication Service can
then send the credential to “John’s personal device”. This device then behaves as
John’s proxy—he can use this device to launch applications in the space, and the
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requests will be accompanied by his credential. Since applications can be dynam-
ically moved to different devices in the space, this may be a reasonable approach
for certain users and applications.

However, the scheme described above fails if John does not have a personal device
with him. In that case, another option is for the Active Space to provide a credential
storage service. However, this still requires John to identify himself to this service
whenever he wants to use his credential, say, to launch an application in the Ac-
tive Space. While this may be suitable for certain low-frequency operations, it is
too cumbersome for general use with all Gaia activities.

From the above example, we identify the following three criteria:

1. Users in an Active Space are not limited to using a single device. It must be
possible to have them authenticate themselves once and then be allowed to
use all the devices they are authorized to. Repeated re-authentication as they
move around the space is not a feasible option.

2. Identifying user location within an Active Space is useful for access control.
Having Gaia do this automatically without requiring repeated user interac-
tion is desirable.

3. It is useful for users in Active Spaces to have at least a small amount of local
secure storage, to store credentials.

We explore this idea further with the use of location-tracking tags, which can be
used to associate users with credentials in Gaia.

Location-based credentials

In some situations, the user’s identity may not be as important for allowing access
as knowing that he or she satisfies the criteria required to obtain a particular service
from the system. For example, any user within a building may be allowed access to
information about activities occurring within the building. So if a user can prove
she is within the building, she is allowed access to the relevant services. With
the help of location-tracking systems, it is possible to perform location-based access
control.

In an ideal world, tracking cameras with face recognition capabilities would be
able to identify users exactly as they walked around the room, and use that identi-
fication for access control. The current state of the technology is still some distance
from that ideal—face recognition is nowhere near accurate enough to be relied on
for distinctly identifying users in the space. We get around this problem by having
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the user co-operate with the tracking system by carrying a badge, so that we do not
have to rely on automatic visual recognition of the user. The Gaia Location Service
can use any of a variety of sensing techniques, such as infra-red (IR) beacons or
radio-frequency (RFID) badges, to provide location information about users.

Our prototype Active Space is equipped with UbiSense [WWB03] location-tracking
equipment, which is capable of locating UbiSense tags to an accuracy of 6 inches in
3D. The software platform uses sensor data from the tags to update a model of the
space that changes in real-time. Users are issued tags when they enter the space,
and these tags identify them within the space. With this scheme, a user enters the
space, identifies himself (to the Authentication System) and then picks up a tag.
For the rest of the session (until he logs out), the tag is associated with this user.
Permissions associated with this user follow the tag around the space, and requests
for services are attributed to the user whose tag is located near the request source.
Thus, the tag serves as a physical credential for the user, and solves the problem of
associating credentials with a user as he moves around the Active Space. The actual
credentials are maintained with either the Authentication Service or the Access
Control Service, and the tag serves as a pointer to the correct credential for each
user in the space.

One drawback of this scheme are that user permissions follow the tag, so someone
stealing the tag could steal permissions. However, we expect that a user who loses
a tag will notice it (since she will no longer be able to do anything in the space), so
this is not a serious threat in practice. Tags cannot be stolen and re-used secretly
later, since the mapping of the tag ID to a particular user is only valid until the user
logs out. So far, this seems a reasonable approach to the problem.

The key points of this scheme are:

• A user can be identified once on entering the space, and her permissions will
be associated with her as she moves around the space. No re-authentication
is required for each device she wishes to use.

• Losing or stealing a tag could lead to permissions being lost, but since the
association is only for the duration of the session, and the loss of the tag is
immediately obvious, this is not likely to be a problem in practice.

• An advantage of this scheme is that it allows users in the space to perform
actions in an authorized manner without requiring them to carry a device
such as a PDA with them.
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5.2.2 Policy management

We use a form of role-based access control (RBAC) to administer security policies
within an Active Space. Security administration in this access control system is
distributed between the system administrator and the space administrator. The
system administrator adds new users and gives them permissions within the en-
tire system, whereas the space administrator is concerned with permissions to the
specific devices and resources within an Active Space. This is an accurate repre-
sentation of administration in most real-world environments, with the delegation
of administrating individual spaces to local administrators.

The system administrator’s task consists of assigning new users to the system to
appropriate roles. The space administrator maps these system roles to appropriate
space roles, based on tasks that may be performed in the Active Space. When a
new application is to be installed in the space, the space administrator can map the
application roles to appropriate space roles, creating new space roles where neces-
sary. The space administrator ensures that no rights amplification can occur during
this role mapping. The administration model is designed to minimize administra-
tive actions required at run-time—collaborative groups are automatically formed
from the roles of the users present, and do not need special roles to be created.

This division of labor is similar to what happens in today’s networked environments—
user accounts are created, and users are assigned to “groups” in UNIX or Microsoft
Windows systems. Less frequently, new “roles” may be created, when new types
of users enter the system. For example, all students in a university may be given
a university computer account, but only students taking a certain class may be al-
lowed to use a particular department computer. The departmental administrators
are usually separate from the campus system administrator, but will check that the
requester is a bona fide student before creating an account on the departmental
computers. In our system, the space administrator’s task is simplified by assign-
ing space permissions to roles, since roles can be thought of in terms of tasks that
users want to complete, and form a natural grouping of permissions that need to
be assigned or removed.

5.2.3 Sessions

Sessions in an Active Space represent a configuration of the access control policy.
The protection state of the system is invariant for the duration of a session. A
session contains the current mapping of users to roles, and the mode of operation
of the space. The access control policy for each service is a boolean expression
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that contains propositions representing user credentials (and identity or role) as
well as those representing system context (such as activity). Since access control
is on the critical path, the performance of the actual access check is important. To
speed up the permission check, we maintain the policy in the form of a table, such
that the run-time cost is just a simple table lookup in a reasonably small table.
For each session, this policy is translated and stored in the form of an access list,
containing an entry for each active role within the space and listing the permissions
that members of this role have for this service. The access control decision is thus
reduced to looking up the requester’s role in this access list, and verifying that it
is allowed to perform the operation it is attempting. Since this is a simple table
lookup, it can be performed efficiently. The access control decision is based upon
the current space role of a user, and the permissions assigned to this role in the
access list of the service.

A new session is created when a user enters or leaves a space, or when an applica-
tion is started. Creation of a new session consists of updating the role mappings in
the space, and setting the space mode to a new value if necessary. Access lists for
the services may need to be re-computed when the space switches modes.

The space administrator maps application roles to space roles (this has to be done
once per application, when the application is installed in the space). On starting an
application session, users in the space get assigned to the space roles corresponding
to their roles in the application. Sessions are destroyed when applications termi-
nate, or when a new session starts, perhaps by a different set of users gathering in
the space. A session is valid as long as the role mappings do not change.

The trade-off with the session approach is that we incur the cost of updating ac-
cess lists when a session starts; however, this allows us to have a low lookup cost.
This trade-off is reasonable if sessions are at least a few seconds long. In practice,
sessions in Active Spaces are typically minutes long, as they last the duration of
applications. Users entering and leaving may sometimes cause session reconfigu-
ration, and too many users entering and leaving in a short period may cause undue
overhead. However, situations like students entering a class will not require recon-
figuration, so we expect this scheme to deal satisfactorily with most normal flows
of users.

Now that we have described the prerequisites such as authentication and the pro-
cess of configuring the access control policy, we move on to describe the access
control system.
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5.2.4 System components

To implement access controls, all attempts to access Active Space resources must
be intercepted and checked against the policy before being allowed to proceed.
We describe the design of the two components of the run-time system: one that
performs interception and the other that checks for authorization.

Request interception

One of the requirements for access control is complete mediation, i.e. that all requests
are checked by the ACS before being allowed to proceed. This is most commonly
achieved by using a reference monitor, which intercepts all relevant requests and
performs access checks. Every request must be accompanied by a credential which
contains sufficient information to authorize the request. This credential (and other
relevant information, if any) must be presented to the Access Control Server, which
makes the decision to allow the request to proceed or not.

One possible technique to implement this is to have each service interface contain
a credential as an additional request parameter. The server first extracts the cre-
dential and passes it on to the ACS for permission-checking. Only on receiving
authorization from the ACS does the request proceed. However, this approach is
intrusive: it requires every service/application developer to be aware of and im-
plement this interface. Client applications have to explicitly manage the user cre-
dentials, and servers will each need to implement the functionality of interacting
with the ACS. It is difficult to ensure that all services do perform the access control
step correctly, since it is implemented as part of the service.

A cleaner mechanism is provided by the CORBA Portable Interceptors [OMG], which
allow all requests in a CORBA system to be intercepted, at either client or server side
(or both). This interception mechanism can be provided as part of the Active Space
system infrastructure. Client-side interceptors can be used to attach credentials to
requests, and server-side interceptors can extract these credentials and perform an
access check. All this is entirely transparent to the application, which does not need
to be modified in any way. More details about the implementation are provided in
Section 5.3.

Providing this service as a part of the Active Space has two advantages: it ensures
that all services running in the space will have access controls and it relieves ap-
plication developers from having to be aware of the security interfaces. Installing
a service in an Active Space requires the specification of a policy with the ACS (de-
fault space policies could be provided and used), and this policy will be enforced

56



automatically by the Access Control Service in the space. At the client-side, a sim-
ilar interception mechanism can be used to attach credentials to outgoing requests
automatically.

The basic functionality provided by the interception component of the access con-
trol system is:

• At the client-side, attach credentials of the calling user. This assumes that the
user authentication process in the space provides the credentials.

• At the server-side, extract and check these credentials.

Both these happen transparently to the application, so application developers need
not be concerned with implementing security mechanisms. The only visible effect
of the ACS is that unauthorized requests fail.

Access control server

The function of the Access Control Server is to maintain the current access policy
for the Active Space and to perform access control checks for all requests to services
within the space. This leads to the following design considerations:

Availability: Every request to a Gaia service must be checked by the ACS before
being allowed to proceed (if authorized). Thus, the Access Control Server
must be on-line and available throughout system operation.

The Access Control Server must be initiated at system startup, before any
other services are started, since access control is only effective if it implements
“complete mediation”, i.e., it should not be possible for service requests to
bypass the Access Control Service in any way. This requires high-availability
from the ACS, since the ACS being unavailable brings the entire system to a
halt. This requirement led us to keep the ACS implementation simple. To
minimize unavailability due to ACS failure, we allow the ACS to be restarted
without requiring a full Gaia reboot. This is enabled by having the ACS use
soft-state, so that it can be reconstructed on restart.

Performance: Since every request in the request passes through the ACS, the re-
sponse time of the ACS is of great importance. The ACS must not be a bot-
tleneck in the system. To achieve this objective, we process the policy and
store it in such a manner as to allow for the run-time check to be as efficient
as possible.

The system access control policy is expressed as a boolean formula, with the

57



proposition values depending on the user credentials and the current state
of the system at the time of attempted access. To improve performance, this
formula is interpreted and reduced to an AL, which is a list of authorized
users (or roles) and the methods they are allowed to call on a particular ser-
vice. Thus, at run-time, the access check involves a simple lookup in the
AL. Whenever the policy changes, usually as a result of a change in the sys-
tem context or due to administrator intervention, the formula is re-translated
into an AL and loaded into the ACS. We are thus assuming that the rate at
which the policy needs to be updated is low enough (typically of the order of
once every few minutes) that this works well; this is a reasonable assumption
given the environment.

Policy support and dynamic reconfigurability: An important requirement for the
ACS is the ability to enforce the variety of policy requirements of the different
applications that may use an Active Space. Support for both MAC and DAC

policies are necessary, due to the different administrative authority over var-
ious devices in the space. Users who bring personal devices into the space
will need to retain the ability to control access to their devices, whereas the
administrator of the Active Space will set the policy for devices that belong
to the space.

Given the high-availability requirement and the dynamic nature of Active Spaces,
it is not feasible to restart the ACS whenever a policy change is required. Thus,
the ACS must support dynamic reconfiguration of the policy.

Usability and manageability: While mechanisms for fine-grained access control
are feasible from an implementation point of view, the configuration com-
plexity can rapidly overwhelm a human administrator. If it is not possible in
practice to specify a desired security policy, it is impossible for any system to
enforce it. One of the design criteria to help configuration is to require that it
be possible for an administrator to obtain the current state of the system from
the running ACS. This information may be used by other tools to help with
policy configuration, or for system monitoring.

We now proceed to describe the implementation of this system.

5.3 Implementation

The Gaia system is implemented as a middleware “meta-OS” using CORBA. The
current implementation uses Orbacus [Orb] as the CORBA implementation for Mi-
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crosoft Windows and Linux, and also uses a smaller custom ORB [UIC] for hand-
held devices. All system services are CORBA services. We, therefore, implement
the Access Control Server as a CORBA service. The two major components are an
Access Control Server and a Request Interception library, and we describe each of
them in detail in the following sections.

5.3.1 Request interception

In the Gaia environment, where system services are implemented using CORBA,
the natural choice for intercepting requests and enforcing access control policies
is to use CORBA Portable Interceptors[OMG]. Request Interceptors allow one to
write and attach portable ORB (object request broker) hooks that intercept all ORB-
mediated communication. These hooks can be completely transparent to the ser-
vice implementation, so service and application developers do not have to worry
about security, and the administrator can install the hooks to implement the space
access control policy when a service or application is installed in an Active Space.

There are two types of Portable Interceptors—IOR interceptors and request intercep-
tors. We use request interceptors, which are further divided into client request inter-
ceptors and server request interceptors. These are designed to intercept the flow of a
request/reply sequence through the ORB at specific points on clients and servers.
The interceptors are installed into the ORB via an IDL interface defined by the
CORBA Portable Interceptor specification. There are ten different interception hook
methods that can be called at different points in the chain, but we are mainly con-
cerned with:

• send request(), called when a client sends a request, before marshaling.

• receive request(), called on the server after the request is demarshaled.

At run-time, the interceptors can examine the state of the request that it is associ-
ated with, and perform certain actions. They can access information in the request,
insert and extract piggybacked information from a request’s service context, redi-
rect requests and/or throw exceptions. Interceptors cannot, however, modify the
request parameters or return values.

The interception mechanism is implemented as two libraries: one each for the
server-side and client-side interceptors. These are implemented as subclasses of the
two CORBA-specified classes, PortableInterceptor::ServerRequestInterceptor and
PortableInterceptor::ClientRequestInterceptor. These classes specify the hook meth-
ods, such as receive request() and send request(), which are overridden to provide
the required functionality.

59



The server-side library intercepts every request going through the ORB before the
target server object receives it. The receive request function implemented in the
interceptor expects a user credential to be available in the request service con-
text. It then calls the isAllowed() method of the ACS, providing it with the user
credential and the requested target object and method. If access is allowed, the re-

ceive request function completes, and the request proceeds to the target server. If
the request fails, the ACS throws a CORBA NO PERMISSION exception, which is pro-
vided to the client application to be handled appropriately. It is, thus, impossible
for an unauthorized request to reach a Gaia service in the space.

The main task of the client-side request interceptor is to attach credentials to the
requests. Ideally, this process is completely automated, and requires no user in-
tervention. However, some protocols and/or user-intervention may be required to
have the library access the credential in a secure manner. We have two implemen-
tations of this client library—one using identity-based credentials, and the other
using host/location-based credentials. For the identity-based credentials, we as-
sume that the user has authenticated himself or herself to the space, and obtained
a suitable credential, which is maintained in a location accessible to the library. For
example, we use an environment variable pointing to the location of the credential.
Obviously, other users on a multi-user machine should not have access to these
credentials.

Our second implementation of client-side interceptors also attaches the hostname
of the sending machine to each request. Combined with the use of location infor-
mation obtained from the various location-tracking mechanisms in the space, this
can be used to enforce location-based access control.

Client-side interception provides a simple mechanism to intercept all requests and
automatically attach the required credentials, so that requests can present the ap-
propriate credentials when they reach the server.

All applications in Gaia are component-based. A ComponentContainer component
runs on each Gaia execution node. Gaia application functionality is implemented
in the form of shared libraries (DLLs) that are loaded by the ComponentContainer.
The ComponentContainer also performs the CORBA initialization, while loading the
ORBACUSExporter library. The interceptor libraries are loaded before initializing
the orb. All requests are automatically and transparently intercepted.

Gaia applications developed using the Ubiquitous Application Framework [RC03]
consist of a set of communicating components. A Model provides the application
functionality, and is controlled by user commands via InputSensors. Output is dis-
played via Presentations. Controlling access to an application functionality, there-
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fore, involves restricting access to the functional methods exported by the model
for the application. User operations are typically performed by the InputSensor,
which act as clients to the Model which provides the application services. Thus the
InputSensor components need client-side interceptors and the Models need server-
side interceptors.

5.3.2 Access control server

The Access Control Server is implemented as a single CORBA service. It is started
during the bootstrap of the Gaia system. At startup, it is initialized with access
control policies for the various system services. All requests for services in the
Active Space cause a query to the Access Control Server, which responds after
checking the Access List for the relevant service. During regular operation, users
entering and leaving the space may cause mode change and access list reconfigura-
tion. Sessions are also started when applications start and end. Collaborative and
supervised sessions are explicitly started, and do not happen automatically.

The interface provided by the ACS has the following important functions:

• isAllowed() is the most-used method. It is called for every request, and uses
the information provided to check whether that particular request is autho-
rized. This function is called often and is on the critical path for every request,
so performance considerations are important. This function takes three argu-
ments: a user credential, the target service and the target method.

• EnterSpace() and LeaveSpace() are used to inform the ACS about users en-
tering and leaving the space. This information can be provided by the Au-
thentication Service. These functions trigger the reconfiguration of the space
modes based on the number of occupants.

• readAList() is used to configure the ACS with an access list for a particular
Gaia service. The arguments are the service name, and a filename pointing to
the access list.

• dumpSpace() is a diagnostic function to display the access control state of the
system.

A complete interface specification for the ACS is presented in Appendix A.
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5.4 Security analysis

In this section, we present an informal security analysis of our implementation. We
discuss the practical attacks that can be mounted against an access control system
and discuss the vulnerability of our implementation to them. While the prototype
implementation is not resilient to all the attacks, it is fairly straightforward to im-
plement the defenses for a production system.

The primary task of the access control system is to ensure that only authorized
requests are allowed to proceed. This imposes two requirements on the system:
being able to intercept every request and attribute it to the correct source (i.e., being
able to identify the requester), and being able to decide, based on the system policy,
whether this request is permitted. This identifies the following ways in which to
attack such a system:

Request Identification: Correct authorization of requests depends on the ability
to identify the source of the request accurately. We depend on the Gaia Au-
thentication Service to perform this task. The Authentication Service iden-
tifies users and issues credentials. Our concern (for access control) is with
the possibility of generating false credentials or stealing or replaying legiti-
mate credentials. Having credentials cryptographically signed by the issuer
reduces the likelihood of fake credentials. The use of stolen credentials can
be detected and prevented by having users re-authenticate themselves to re-
fresh credentials periodically. We use this mechanism in Gaia, but there is a
tradeoff between the intrusiveness of repeated re-authentication and the vul-
nerability window during which a stolen credential may be used.

Policy Configuration: Misconfiguration of security policy is an obvious vulner-
ability in security systems. We have addressed some usability concerns to
simplify the task of the administrator, but better configuration and monitor-
ing tools would be helpful.

Bypassing access controls: Another problem is if requests can somehow bypass
the Access Control Service. Using the CORBA portable interceptors is a sim-
ple way to automatically intercept all requests to a CORBA service, and works
very well for Gaia, since system services and applications are implemented
as CORBA services. Thus, it is not possible to bypass the access control mech-
anism while requesting Gaia services.

Availability: Since the Access Control Service intercepts all requests, it could be
used to try and mount a denial-of-service (DoS) attack on the space. Flood-
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ing the Access Control Service with malformed or unauthorized requests can
slow down response to legitimate requests. However, the Gaia Access Con-
trol System is less vulnerable to DoS attacks than a general Internet service,
because most legitimate requests for services in an Active Space come from
local devices, and misbehaving or flooding clients can be easily identified and
blocked. While we have not implemented this in our prototype, throttling re-
quests from misbehaving clients is feasible.

In our current implementation, the access control service is a single point of
failure in the system. While bringing down the access control service makes
the entire system unavailable, our architecture uses soft-state for the ACS,
which allows it to be restarted during system operation without much effect
on clients.

Our current implementation has a monolithic access control service, but for
larger or busier systems, it can be implemented in a distributed fashion for
improved performance.

Unauthorized devices: Unauthorized devices that never register with the space
do not have access controls. This poses a risk for privacy policies, for exam-
ple, a space policy may require that all recording devices be turned off, but a
“stealth” recorder brought in by a user may go undetected.

5.5 Performance evaluation

Access control is on the critical path for all requests in the system, so performance
considerations are paramount. The access control system design and implementa-
tion were strongly influenced by performance considerations. We have evaluated
the implementation of the Access Control System, and present the results here.
The evaluation is in two parts: a qualitative evaluation first describes the behavior
of the ACS with the help of an example scenario, describing the security state of
the system as various operations occur, and then we present results from micro-
benchmarks designed to evaluate the scalability of the system with respect to the
number of users, devices and contexts.

5.5.1 Qualitative evaluation

In this section, we describe the operation of the Access Control System by working
through a representative scenario of how the Active Space is used, and showing
the security state of the system at each step.
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Space mode: Empty

Table 5.1: Security state of Space in Empty mode

Access lists
Roles mp3player
RoomUser start, stop

previous, next
setVolume, getVolume
toggleVisualization
storeCurrentTime, getStoredTime

Visitor stop
Admin stop

Current Role Translation
user System Role Space Role
Alice CSstudent RoomUser

Space mode: Individual

Table 5.2: Individual mode session for mp3player

Our “Smart Room” is part of a Computer Science department, and has been op-
erational for over a year. The room contains a variety of computers and displays,
and other devices like cameras and location-tracking devices. It runs the Gaia soft-
ware to manage all these devices and provide a unified computing environment.
The room is used for various research and academic activies—seminars and classes
are conducted there, students work to develop and test their software, and visitors
often stop by to watch demonstrations of the research. We describe a series of ac-
tivities that are conducted there, and which, between them, represent the various
modes of operation. For simplicity, we describe a subset of the devices and how
their access permissions change.

The Active Space starts out in Empty mode, with the Gaia services running, but
no users present. The Access Control Service is started as part of the Gaia boot,
and installs the configured access lists for the system services. No applications are
running at this time. The security state of the system is shown in Table 5.1.

A user, Alice, enters the room. When she authenticates herself to Gaia, she ac-
quires the system role of CSstudent, which is currently mapped into the space role
of RoomUser and the room switches into Individual mode. Alice wants to use the
mp3player application to listen to music in the room. When she starts the applica-
tion, a new session is created. Her RoomUser role is allowed to use the mp3player
application, as shown in Table 5.2.

Another user, Bob, enters the room. The room automatically switches into Shared
mode, with the permissions as shown in Table 5.3. Bob’s system role is student,
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which maps into a space role of Visitor. Since the Visitor role is not allowed to use
mp3player and the Shared mode uses the intersection set of the permissions, the
next song cannot be played.

Access lists
Roles mp3player
Group stop

Current Role Translation
user System Role Space Role
Alice CSstudent group
Bob student group

Space mode: Shared

Table 5.3: Shared mode session

It is now time for a class, and the professor, Carol, enters the room. The class

application session is started, with Carol assigned to the professor role, and Alice
and Bob to student space roles. Carol starts the PPT application, which can display
Microsoft PowerPoint slides across various displays in the room. She is assigned to
the supervisory speaker role, while all others in the room are assigned to the space
role of audience. Only the speaker can control the presentation, but all others have
access to the content. While the speaker is present, write access to the whiteboard
is enabled.

Access lists
Roles PPT
Speaker start, stop

previous, next

Current Role Translation
user System Role Space Role
Alice CSstudent audience
Bob student audience
Carol professor speaker

Space mode: Supervised

Table 5.4: Supervised session

We finally describe the collaborative mode, when a faculty committee meeting oc-
curs. The meeting application has an agenda that is displayed using the PPT appli-
cation, and a log that contains the minutes of the meeting. The agenda document
is displayed when the meeting application starts, but write access to the log is only
permitted if at least two faculty members have entered.
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Figure 5.3: ACS response time with varying with number of clients

5.5.2 Scalability evaluation

The main performance criterion is that the access control system should not be a
bottleneck in the system operation. This has been qualitatively verified by having
the access control system operational in our prototype Gaia Active Space for over
a year, with negligible performance overheads. In this section, we evaluate the
system by means of micro-benchmarks to demonstrate how the Access Control
Service responds to increasing load. We measure the response time of the access
control server as the number of clients, requests and services change.

All tests are conducted in our prototype Active Space environment. The ACS runs
on a desktop PC running either Linux or MSWindows, and client requests are made
from a pool of PCs on the same Local Area Network.

During each request for resources, the access check overhead consists of the fol-
lowing components:

1. Client request interceptor retrieves and attaches credential to the request.

2. Server request interceptor extracts the credential from the request.

3. The credential is sent to the Access Control Server, which responds after
checking the credential.

Step 3 above involves a network round-trip, as well as possible contention at the
Access Control Server. Therefore, it is the likeliest source for a bottleneck, especially
in a heavily-loaded system where network congestion and/or ACS overloading
may lead to delayed response, and performance hit for system requests. To eval-
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Figure 5.4: Time taken to reconfigure policy on mode change

uate the scalability of this part, we construct a microbenchmark to measure the
response time of the ACS with an increasing number of clients, and the results are
shown in Figure 5.3. The test was performed by having a number of clients bom-
bard the ACS with requests, and measuring the response time of a particular client.
The times calculated are an average of 1000 consecutive requests. All requests are
made for the same service. Figure 5.3(a) shows the mean and standard deviation of
the response times, while Figure 5.3(b) shows the mean, minimum and maximum
response times. The mean response time (of around 230 µsecs) does not increase
noticeably with an increasing number of clients. The standard deviation is quite
small (5− 15 µsecs), so we expect that requests will not be arbitrarily delayed due
to the access check.

The other constraint for scalability of the Access Control Service is the time taken
to reconfigure policies when the space switches modes. Mode changes are trig-
gered by context changes, including events such as users entering and leaving the
space and applications starting and terminating. Figure 5.4 shows the time taken
to rebuild services while switching into “shared” or “collaborative” modes. Fig-
ure 5.4(a) keeps a fixed number (2) of users in the space and varies the number of
services to which access is being controlled. Figure 5.4(b) considers the effect of
varying the number of users for a fixed number of services. Creating the shared
mode access lists involves finding the intersection set of the permissions allowed
by the individual access lists to all the users who are in the space, while finding
the collaborative mode permissions involves calculating the union. Both these are
affected by the number of users and services in the space; however, the times taken
to recompute are fairly small, in the order of tens of milliseconds. This is the dura-
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tion for which the ACS will be unavailable after a change of mode. Since we expect
that sessions will typically last at least a few minutes, this overhead is acceptable
for our environment.

5.6 Conclusion

The Gaia Access Control System was designed to address the security requirements
of Active Space environments. The objective was to balance three requirements—
security, usability and implementability—to achieve a system that can be used se-
curely in practice. We have presented the design and implementation of this system
in this chapter. To summarize:

• Access control for Active Space environments is difficult because of the inter-
action of the physical and virtual context of these spaces, and the variety of
mobile and heterogeneous devices present in such spaces.

• The Gaia Access Control System is based on the Role-based Access Control
model. Three types of roles are recognized to simplify administration in such
environments. Space roles are used for access control enforcement at run-
time.

• Space modes are used to indicate the current state of the space. In individual
mode, access control is similar to the traditional role-based access control.
Three different multi-user modes represent different types of group activity
in the space, and provide support for different types of collaboration between
users.

• While user authentication is not part of this research, storage and use of
credentials pose some interesting problems in practical systems. Location-
tracking systems allow us to mitigate this problem in certain situations.

• A qualitative performance evaluation describes the typical usage scenarios
in such environments, and micro-benchmarks are used to test for scalability
and sufficient response time to be usable in the Gaia environment.
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6 Usability Considerations

Human factors considerations are important in designing practical security sys-
tems. Usability was an important design goal for this access control system, and
in this chapter, we describe some of our attempts to achieve and evaluate this ob-
jective. The usability features of the design are described in Section 6.2. After
designing the system, we conducted some user studies for administrative tools for
this environment. We describe this study and the results in Section 6.3. Finally, we
developed a framework to provide feedback about access control decisions to end-
users, and we describe this framework in Section 6.4. But first, we provide some
background on security and usability in Section 6.1.

6.1 Security and usability

Usability has been a major factor in user perception of system quality ever since
the introduction of interactive systems [DHI78]. With computing blending into the
background and becoming pervasive in everyday applications, a new community
of non-technical users will develop around these systems. Good Human-Computer
Interaction (HCI) is imperative if these systems are to become popular. Usability
is of particular importance in ubiquitous computing, since end-users in these envi-
ronments may have little or no access to computing support or training.

Usability and security have traditionally been viewed as being at cross-purposes,
and “secure” systems are expected to be hard to use. However, we think that this is
not necessarily true. While security mechanisms may restrict user actions (to an au-
thorized subset of all possible actions), this need not make the system harder to use.
By preventing unauthorized actions like network attacks or (unauthorized) mem-
ory access, effective security measures can prevent malicious attacks and system
crashes, thereby improving system availability to legitimate users. Thus, securing
the system improves usability, as a system that is unavailable is not very usable.
Conversely, systems designed with the target users in mind are more likely to be
operated correctly and avoid security lapses due to human error. Inappropriate
usage of security mechanisms has been the cause of many security failures; more
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consideration to human factors while designing security systems would help to
improve security in practice. Thus, security and usability do not need to be traded
off against each other.

While designing the Gaia access control system, we were guided by the principles
of designing secure user interaction. Yee [Yee04] identifies some techniques for
aligning usability with security. Zurko et al. [ZS96] describe an RBAC system that
was designed with usability and security as equally important goals. The main fea-
tures are an ability for administrators to query the system about the effect of policy
changes before applying them. We describe the usability aspects of our access con-
trol system design below.

6.2 Design for usability

Configuring security for an Active Space environment can be complicated due to
the large number of heterogeneous devices in the space and the variety of appli-
cations for a particular space. The same space can be used by different users for
different applications with very different security requirements. Users bring their
own devices into the space, and these devices become temporarily part of the space.
However, the owners of these devices will wish to control who has access to them.
The security administrator has to configure policies that represent the desired se-
curity objectives. While designing security systems for such environments, it is
important to consider the practical implications of the design decisions, so as not
to end up with something that is theoretically secure but impossible to configure
in practice.

To achieve this objective, we paid particular attention to administrative usability
while designing the Gaia Access Control system. A key feature of this process is
to recognize the ways in which such spaces are typically used, so that administra-
tive tasks can be simplified. We describe here the usability implications of various
design decisions.

• Decentralized administration: We divide the administrative functions be-
tween a system administrator and a space administrator to better represent the
reality of Active Space environments. We expect that Active Spaces will be
part of a larger system, for example, a room in a University department or
corporation, and will have to be bound by the security policies of the parent
organization. The system administrator is responsible for configuring this
overall policy. While the permissions allocated at the system level may be
more generic (“students can access printing services in their departments”),
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administrators in the specific laboratories will typically restrict this access fur-
ther. An Active Space typically contains a lot of equipment, much of it being
scarce and shared by different groups of users. Having a space administrator
focus on permissions to these devices makes it possible to accurately repre-
sent the desired policy. This decentralization makes the system more scalable
in practice. The usability principle here is to provide a suitable level of ab-
straction for a space administrator to configure access permissions within a
space.

• Support for DAC and MAC policies: Users will want to bring their own de-
vices, such as laptops or PDAs into an Active Space. While they can use de-
vices in the space, they may not wish to have their laptop accessible by all
others in the space. Thus, they need to be able to configure policies to their
own devices. This is supported by allowing users to configure DAC policies
for their personal devices. This does not require administrator intervention
each time a new user-owned device enters the space. This is similar to the
division of functionality between the system and space administrator—the
user (device-owner) and space administrator are each responsible for “their”
part of the system, and follows the principle of using “appropriate bound-
aries” [Yee02] between actions, i.e. boundaries that matter to users.

• Application roles: Computing in Active Spaces is more task-oriented than on
traditional desktops. The access control model reflects this, by allowing poli-
cies to be specified for a particular application. Application roles can describe
the permissions required to run a particular application. The space admin-
istrator can install the policies for the application as a one-time operation
when it is installed in the space. Specifying policies in relation to applica-
tions follows the path of least resistance [Yee02], being the most natural way
to perform this task.

• Ad hoc groups: We argue that group support in traditional operating systems
is under-utilized because of the difficulty in forming and managing groups.
Group creation in Unix, for example, is a relatively heavyweight process, re-
quiring system administrator intervention. Similarly, changing group mem-
bership requires root privileges. While users can belong to multiple groups
in Unix and Microsoft Windows operating systems, these features are often
poorly-understood by users. We provide a more automatic creation of groups
based on the presence of workers in an Active Space. We also support differ-
ent types of groups, to map more closely to the different types of collaborative
activities that users in such spaces undertake. Any mode that requires users
to delegate their permissions (the “supervised” or “collaborative” modes) re-
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quires explicit authorization, in an attempt to reduce inadvertent leakage of
permissions.

While this design was guided by principles of user-centered design [ZS96], good
administrative tools are still essential. The next section describes work on evaluat-
ing administrative tools.

6.3 Security administration tool

To evaluate the usability features of our design, we used some principles of user-
centered design to build and evaluate administrative tools for this system. This
work was performed in collaboration with Yong Liu and Kay Connelly from In-
diana University. Yong Liu developed a GUI administrative toolkit for the Gaia
access control system, and we performed some user studies to evaluate the admin-
istrative tools [LSC03]. The studies helped us to identify some problems with the
toolkit, as well as pointing out some useful guidelines for security administration
tools. We present our experiences with the user evaluation of this access control
management toolkit.

Systems security failures are often the result of misconfiguration of the security
mechanisms. System administrators are not always security experts, and security
systems can be complicated and hard to understand. This risk is particularly im-
portant in the case of Active Spaces, as these environments are relatively new, and
users and administrators are not yet very experienced. One of the problems is the
lack of good tools for administrators. It is often hard to understand the effect of
configuration changes—what appears to be a minor change may have ramifica-
tions on other parts of the system that are not obvious. Incomprehensible security
measures are often left unconfigured, and used in the “default allow” open mode,
just because they are too hard to configure correctly.

The security administration toolkit was developed to address these difficulties. As
described earlier, we expect that each Active Space will have a space administrator
whose task it is to configure the security for the space. We also expect the space
to be a part of a larger system, managed by a system administrator. The toolkit is
designed for these administrators. Security management for such environments
essentially consists of managing the user-role assignment and the role-permission
assignment for the space roles that are valid in this space. Space roles are created
to perform tasks in the space. Administrators do not assign users to space roles
directly, but map system roles to them, while making sure that rights amplification
does not occur. Application roles represent functionality required for tasks in the
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Figure 6.1: Screenshot: first version of admin tool

space. The space administrator maps application roles into space roles when the
application is installed in the space.

The toolkit consists of two graphical components, one for system administrators,
and one for space administrators. The system administration component allows
administrators to add and remove users from the system, and assign system roles
to users. It also allows administrators to add new spaces to the system. Admin-
istrators can install applications in the system and create application roles. The
space administration component allows for mapping the roles. The tools save their
data into files that can then be used by the system for access control enforcement.
Figure 6.1 shows a snapshot of the system administration component.

6.3.1 Goals of user study

We performed a limited user study to evaluate this administrative tool. The tool
was designed to help administrators navigate the process of configuring permis-
sions for an Active Space; the goal of the study was to observe the effectiveness
of the design. Another goal was to verify that the access control architecture was
reasonably comprehensible to administrators who would need to configure it.
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6.3.2 Design of user study

The four basic ways of evaluating user interfaces are: automatically (usability mea-
sures computed by running a user interface specification through evaluation soft-
ware); empirically (usability assessed by testing the interface with real users); for-
mally (using exact models and formulae to calculate usability measures); and in-
formally (based on rules of thumb and the general skill, knowledge and experience
of the evaluators) [NM94]. With the current state of the art, automatic and formal
methods are not good enough. The most commonly used methods are probably
empirical methods such as user testing. Inspection methods are a way to “save
users”, as real users can be difficult or expensive to recruit for testing all aspects
of an evolving design. Studies of usability inspection methods [JMWU91; KCF92;
Rii00] have discovered that many usability problems are overlooked by user test-
ing, but that user testing also finds problems that are overlooked by inspection.
This suggests that the best results are achieved by combining empirical tests and
inspections.

We used a combination of Cognitive Walkthrough [WRLP94] and usability test-
ing [Rub94]. Cognitive Walkthrough is an example of the inspection method. It
has users, or teams of users, explore the system. It uses a detailed procedure to
simulate a user’s problem-solving process at each step in the human-computer di-
alogue, checking to see if the simulated user’s goals and memory for actions can
be assumed to lead to the next correct action. It is used to predict usability prob-
lems with an interface. Usability testing has users perform a set of tasks using the
system. It has been used to obtain two kinds of usability measures: performance
measures, which measure the functionality of a product, and preference measures,
which indicate how much the users liked the product [NL94].

6.3.3 Participants

Participants in our evaluation were mostly graduate students in Computer Sci-
ence, at the University of Illinois or at Indiana University. Most of them had at
least some familiarity with the Gaia system. They were less familiar with the Gaia
security architecture. The Cognitive Walkthrough had one team of 3 users, who
were all familiar with the administrative tool and the Gaia access control system.
The usability test had four participants, all graduate students in Computer Science.
Half of them were working with the Gaia project. Of the others, one had no prior
exposure to Gaia or the Access Control system.
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6.3.4 Cognitive Walkthrough

In the Cognitive Walkthrough, a team of analysts explored a functional prototype
of the administrative tool. They were given a description of 19 task scenarios that
covered all the functionality of the tool. Examples of these task scenarios include
adding roles, assigning permissions to roles and mapping system roles to space
roles. The participants selected 5 of these scenarios as being the most represen-
tative and covering all the tool functionality, and inspected these in detail. They
answered questions after the exploration, and this discussion identified some mis-
taken assumptions or misleading information from the interface. There was no
time limit for this analysis. The details of the scenarios and the analysis checklist
are attached as Appendix B. This process identified some usability problems and
some desirable, but missing, features. We present all the results in Section 6.3.6.

6.3.5 Usability Testing

A total of four participants at the University of Illinois and Indiana University were
given a set of tasks to complete using the prototype system. Direct observation
of the participants performing these tasks, including recording using a videocam-
era, was used to collect extensive data. The tasks assigned were representative of
typical administrative activities, and required the participants to combine several
functional operations to achieve an outcome. For example, one task scenario asked
the user to add a new student to the system and grant this student access to some
applications. The participant had to decompose this into a sequence of actions: add
the new user, assign a system role to the user, grant necessary permissions to the
system role. The tasks were performed using a fully functional prototype of the
administrative toolkit. Details of the tasks and materials used in the usability test
are listed in Appendix C.

Participants also completed pencil-and-paper tests designed to gather information
about the interface terminology. They were given a background questionnaire, two
terminology questionnaires (to be completed before and after performing the tasks)
and a post-test questionnaire. The terminology test was based on screenshots of the
tool interface.

6.3.6 Results

Cognitive Walkthrough identified usability deficiencies in five components of the
system, involving adding users to system and space roles, installing applications,
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mapping roles, and browsing the system role configuration. Some of the problems
were due to a lack of sufficient information about available functionality, indicat-
ing a need for more on-line “Help”. Apart from the specific problems identified,
the evaluators felt that more feedback to the operator about the result of actions
performed would make the system more usable.

Usability Testing identified a similar number of problems. Some of these problems
were identified during the test itself, in the form of participants being unable to
complete tasks satisfactorily. Others were detected via the questionnaires, when
it was discovered that participants were unclear about some of the tasks they had
been asked to perform. Some of the problems were due a terminology mismatch
between the tool developers and users. Users also found it hard to understand
the concept of “mapping” roles. This was especially noticed amongst participants
who were familiar with the RBAC model, and so did not pay much attention to the
instructions provided. However, RBAC does not have the concept of mapping roles.
This mainly indicates a need for better explanatory material.

Both methods noticed some of the same problems. These were of three kinds: lack
of feedback after the user performed an action, some missing functionality that
users expected and some ambiguous labels in the interface. The Cognitive Walk-
through also came up with some suggestions for improving the interface, by pro-
viding “undo” functionality and re-organizing some of the GUI layout.

The problems found by usability testing alone were specific problems users en-
countered while trying to perform the specific tasks. Users did not request any
more functionality, probably because they did not have enough experience with
the tool and environment to identify improvements. Since Cognitive Walkthrough
is a more open-ended method, it is useful for pointing out such design problems
and suggesting improvements. The two methods, thus, complement each other.

6.3.7 Lessons learnt

The study we completed was an initial attempt to identify requirements for secu-
rity administration tools for Active Spaces. Based on the results from the tests,
the tool was improved to incorporate usability enhancements. The main improve-
ments were revising the terminology, using a more graphical representation and
improving the visual layout and re-organizing the functionality.

The revised tool used hyperbolic trees [LRP95] to display the role hierarchy. Hy-
perbolic trees, which are a dynamic representation of hierarchical structure, are an
effective way to display complex trees clearly. They use a focus+context technique
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Figure 6.2: Screenshot of improved administrative tool

to provide a good integration of detail and context on small displays. A snapshot
of the improved tool is shown in Figure 6.2. We have not yet conducted user tests
of this version of the tool.

Further work in information visualization techniques is also likely to be useful.
One of the problems for administrators is the inability to predict the effect of a
configuration change. Good information visualization can highlight these changes.
Providing this visualization along with the ability to view the effects of changes
without actually applying them would be helpful to system administrators.

While the user evaluation was conducted to evaluate a specific tool, some of the
principles identified apply to security administration tools in general. System ad-
ministrators typically perform a few types of tasks many times over, and appreciate
ways to automate or script such tasks. While a GUI administrative tool is useful
for visualizing system state or making small changes, administrators often want
a more programmable way to make many changes at once. Another difference is
that administrators are more likely to look for and read the documentation than a
casual user. Similar results were found by in the design of Adage et al. [ZS96], an
authorization service for distributed applications, where security and administra-
tor usability were considered equally important design goals.

As lack of feedback appears to be a common problem with system usability, we
proceeded to investigate the issue further. The Know system, described next, was
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an attempt to provide feedback about access control to end-users.

6.4 Know—policy feedback for users

Users in ubiquitous computing environments typically interact with a plethora of
computing, communication or I/O devices in their vicinity in many ways—voice,
gestures, and traditional keyboard-and-mouse input being some of them. Different
sets of users are allowed access to different subsets of resources, and these permis-
sions may change depending on contextual information such as the time of day,
the current activity, or the set of people involved. In such an environment, it may
not be clear to a user why he or she was denied access to certain resources. Thus,
informative feedback about why access was denied becomes very important if the
system is to avoid annoying users with apparently-arbitrary restrictions. However,
unrestricted feedback about who is allowed to do what in the system could itself
compromise system security and privacy; therefore, policies need to be protected
against inadvertent disclosure. Apu Kapadia and I explored this space of policy
feedback using the Know [KSC04] system. Know attempts to provide useful feed-
back when access is denied, while maintaining policy confidentiality with the help
of meta-policies. Cost functions are used to rate the value of the different possible
feedback options.

Good security feedback is particularly important for ubiquitous computing sys-
tems, such as Active Spaces, for a variety of reasons:

• Ubiquitous computing is an area of active research [RHC+02; JFW02]; new
systems and modes of applications are being developed. While these sys-
tems are still being used in experimental ways by researchers, application
developers and early adopters, good security feedback will help direct secure
application design. Security is hard to retrofit into existing applications.

• Ubiquitous computing environments, currently most prevalent in academic
and research environments, are expected to percolate into everyday use, with
a majority of non-technical users. In both these situations, feedback is impor-
tant for usability, since users either disable or work around security mecha-
nisms that seem incomprehensibly obstructive.

• Ubiquitous computing systems can be more confusing to users than tradi-
tional distributed systems due to the inherent dynamism (mobile users and
devices may enter and leave the system), the large number of devices and
the context-sensitive environment—without adequate feedback, it can be dif-

78



User Access
Check

App/

KNOW

Allow

DenyFeedback

Request
Service
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ficult to tell whether access was denied due to a bug in the system (especially
in experimental systems) or due to user permissions changing in response to
non-obvious changes in the context.

These reasons led us to explore the ideas that led to the development of Know.

6.4.1 Know architecture

The features of the access control model that are relevant for Know are the follow-
ing. Users get assigned to a “space role” on entering the space and authenticating
themselves, and access control enforcement is performed in terms of these roles.
The Access Control system maintains the policy for each resource in the space.
Policies are represented as boolean formulae that control access to a particular re-
source. Permissions may depend on both user identity (or role) and contextual
information, such as the number of users in the space or the currently scheduled
activity. Thus, permissions available to a user at any point in time depend on a
variety of factors, and good feedback about access control decisions is very impor-
tant.

Know is implemented in the form of a feedback component that can augment the
access control system, as shown in Figure 6.3. The access control system intercepts
all requests and checks them against the system policy. If authorized, they are
allowed to proceed. If not, they are forwarded to Know, which prepares a feedback
message for the user. Feedback consists of a list of alternative conditions under
which this access is permitted. For example, a user trying to access a noisy printer
in a room during a meeting may receive feedback such as “If there is no meeting,
you will have access.” Alternatives may not always be available, either due to
policy or computational resource constraints. In this case, the standard “Access is
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Policy:
R : P

P ↔ P1 ∨ P2

P1 ↔ User.role = Professor

∧ User.department = CS

P2 ↔ User.role = CIA

Meta-Policy:
P1 : User.department = CS

P2 : false

Figure 6.4: Example policy

denied” message is provided.

We describe this system in more detail below.

Policy representation

UniPro [YWS03] provides a generalized framework to model the protection of re-
sources, including policies, in trust negotiation. It allows policies to be treated as
resources in the system, and allows the specification of policies to protect them.
Know uses the UniPro notation for writing meta-policies that protect the policies to
decide what feedback can be provided to a user. We demonstrate the notation with
an example:

Example: The access policy of an electronic door lock might allow access only to
Computer Science professors or members of the CIA. When a person is denied ac-
cess to the room, feedback of the form, “If you are a CS professor or a member of
the CIA, then you will have access to this room” is potentially dangerous. Collab-
oration between the Computer Science department and the CIA could be sensitive
information. Outsiders may also glean intelligence information about where CIA
members meet. Clearly, we may not want to reveal parts of this access rule. Feed-
back of the form, “If you are a professor in Computer Science, then you will have
access to this room” may be acceptable. A meta-policy would control this flow of
information to denied users. Formally, we can represent the policy and meta-policy
as shown in Figure 6.4.

Access control policies here are represented as boolean formulae. A policy defini-
tion includes two types of expressions. An expression of the form O : P means
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that an object O is protected by policy P , where policies themselves can be ob-
jects (since policies may be protected by meta-policies). An expression of the form
P ↔ E means that the policy P is defined by expression E. Expressions can con-
tain both atomic propositions (e.g., User.department = CS) and references to sub-
policies (e.g., P ↔ P1 ∨ P2, where P1 and P2 are defined subsequently). The access
policy for the room is R : P , which means that access to the room R is protected
by policy P . P is defined as the disjunction of policies P1 and P2. P1 is the policy,
“User must be a professor in Computer Science.” P2 is the policy, “User must be
a member of the CIA.” Hence the policy P to access the room is “User must be a
professor in Computer Science or the user must be a member of the CIA.”

We make two assumptions here. First, we assume that any logical dependen-
cies between atomic propositions are captured within the policy. For example, a
policy may contain atomic propositions User.isAdult and User.isMinor. We know
that User.isAdult ⇔ ¬User.isMinor, and hence feedback of the form “If you are an
adult and a minor, you will have access” would be absurd. Such inconsistencies
are avoided by either replacing occurrences of User.isMinor by ¬User.isAdult or by
adding the logical rule User.isAdult ⇔ ¬User.isMinor to the policy. This will avoid
any inconsistencies in feedback. The second assumption we make is that all refer-
ences to an atomic proposition a are protected by the same meta-policy.

It is important to note that in all our examples we are careful to provide feedback as
“If. . . then” clauses. This is important for policy protection. Feedback of the form,
“Only professors may access this room” gives more information than “If you are a
professor, then you will have access to this room.” If both types of feedback were
allowed, the user may infer from the latter feedback that there is a protected policy
not being revealed. Hence, if feedback is consistent in its use of “If. . . then” clauses,
users will not gain any extra information about protected policies.

Ordered Binary Decision Diagrams

Ordered binary decision diagrams (OBDDs) [Bry86] are a canonical-form represen-
tation for boolean formulae where two restrictions are placed on binary decision
diagrams: the variables should appear in the same order on every path from the
root to a terminal, and there should be no isomorphic subtrees or redundant ver-
tices in the diagram. A binary decision diagram is a rooted directed acyclic graph
with two types of vertices: terminal and nonterminal. Each nonterminal vertex
v is labeled by a variable var(v) and has two successors, low(v) and high(v). We
call the edge connecting v to low(v) the 0-edge of v (since it is the edge taken if
v = 0) and the edge connecting v to high(v) the 1-edge of v. A single formula may
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Figure 6.5: Example OBDDs for a ∨ (b ∧ c)

be represented by multiple different OBDDs based on the order that variables in
the formula are tested; however, given a particular variable-ordering, the OBDD
structure is fixed. This is the canonical form for that variable-ordering. Figure 6.5
gives an example of two OBDDs that each represent the simple boolean formula
a ∨ (b ∧ c). The first is the canonical-form OBDD for the variable-ordering a, b, c

and the second is the canonical-form OBDD for the variable-ordering b, c, a. To test
for satisfiability, we start at the root node and test whether the variable at the root
is true or false. If it is false, we follow the 0-edge, and if true, the 1-edge, and re-
peat this process. Eventually we reach either the T -node or the F -node (also called
the 1-node and 0-node, respectively). If we reach the T -node, then the given as-
signment satisfies the formula; if we reach the F -node, it does not. For example,
applying the assignment 〈a = false, b = true, c = false〉 to either of the OBDDs in
Figure 6.5 tells us that the formula is not satisfied. We use OBDDs because they are
a compact and graphical representation of boolean formulas. This allows us to use
cost functions and shortest path algorithms to find conditions of satisfiability that
are of “least cost” to the user.

Know stores access control rules as OBDDs, and can efficiently search these OBDDs
for paths that satisfy the rules. When access is denied, the OBDD can provide infor-
mation about alternate paths that would allow access. Know provides information
to the user about such paths as feedback. The number of nodes in an OBDD can be
exponential in the size of the boolean expression, but there are several heuristics to
find an ordering that reduces the size of the OBDD, and in practice, boolean func-
tions usually have a compact OBDD representation. As mentioned earlier, Know
provides feedback only if it can be done with acceptable overhead.
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Figure 6.6: OBDD for the example policy

Figure 6.6 shows the associated OBDD for the example policy shown in Figure 6.4.
The meta-policy P1 : User.department = CS indicates that the policy P1 may be re-
vealed only to subjects in the Computer Science department, while the meta-policy
P2 : false does not reveal P2 under any circumstances1. For example, a denied
student in Computer Science would receive the feedback “If you are a professor
in Computer Science, then you will have access to this room,” while a student in
Civil Engineering will be informed, “Access is denied.” In either case, no pol-
icy information involving the CIA is revealed. We will describe the application of
meta-policies to OBDDs using cost functions as described below.

Cost functions

There may be many paths from the root to the True node, each representing a dif-
ferent set of conditions under which access to the resource is allowed. However,
they are clearly not equally useful to the user. For example, telling a user who is a
Student that access is allowed to a Professor may not be particularly useful, while
telling her that a Student is allowed access if a labsitter is present is more useful.
Cost functions are used to represent the relative usefulness of the available feed-
back options.

Selecting a path from the list of feedback options implies that all propositions along
that path are satisfied, i.e. the path only uses outgoing True edges from a node
representing a currently true proposition or outgoing False edges from nodes rep-
resenting a currently false proposition. Obviously, no path has this property, or ac-
cess would have been allowed, and Know would not have been invoked. The cost

1In our examples we omit meta-policies of the form P : true for clarity. In practice however, all
meta-policies may be assumed to be of the form P : false unless a meta-policy is explicitly specified.
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of a particular feedback option thus is the cost of changing propositions to make this
path represent the system state—i.e. changing a currently true proposition to false

if the path follows the outgoing False edge and vice versa. We use a cost function
to represent the difficulty of changing the value of a particular proposition.

A simple cost function could assign a uniform cost to changing any proposition.
The cost of a particular feedback option then is simply the number of propositions
that need to be changed. However, all propositions are not equally difficult to
change, so this may not be a very realistic cost function.

A better cost function, in some situations, would be to recognize that users cannot
change their role. This effectively assigns infinite cost to any proposition represent-
ing role information. Other propositions could be considered equally difficult, as
in the previous case. Now, feedback options that require role changes will simply
be eliminated (as having infinite cost), and the remaining options (that require only
context changes) will be ranked by the number of required changes.

Our current system assumes a system-wide cost function. We expect that different
systems will have different cost functions. For example, a student lab may find
feedback asking users to come back at night useful, whereas other office environ-
ments may not. Per-user cost functions are an option to explore, since different user
preferences may result in different opinions on the usability of feedback options.

We provide some notation and a formal definition of feedback.

We use the notation S |= P to indicate that a policy P is satisfied under the atomic
propositions specified by S. For example, we could have S = {Context.meeting =
false, Context.workingHours = true}. In the notation S[a] |= P , S[a] is the set
of atomic propositions in S along with any update provided by a. In our exam-
ple, S[Context.meeting = true] = {Context.meeting = true, Context.workingHours =
true}. This notation naturally extends to a set of updates, e.g., S[A], where A is a
set of atomic propositions. Let C be the set of atomic propositions relating to the
context of the system and U be the set of atomic propositions specific to the user
(identity, role, etc.). Given a policy P and a user U , the user is granted access when
C ∪ U |= P , and denied access when C ∪ U 6|= P . In essence, if C ∪ U 6|= P , then
a set of updates X such that (C ∪ U)[X] |= P constitutes a feedback option to the
user.

To formalize the notion of feedback, let Π = {π1, . . . , πn} be the set of paths from
the root node to the true node in the OBDD of P . Let π′

i be the set of atomic propo-
sitions that appear in πi ∈ Π and whose truth values differ in C ∪ U , i.e., the set of
propositions that must be changed (or a set of updates to the state) for the policy to
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be satisfied. Let F = {π′
1, . . . , π

′
n}. Note that (C ∪U)[π′

i] |= P for all π′
i ∈ F . We de-

fine any subset F of F to be the feedback offered to the user. In other words, each
feedback option fi in the feedback F corresponds to a set of atomic propositions the
user must change to be granted access. F is the set of all possible feedback options
available to the user. Since F can be very large, our primary goal is to find a way
to offer the user only a few relevant feedback options in F . We do this through the
use of cost functions. The cost function assigns a cost to each f ∈ F , and returns
the k lowest-cost feedback options, where k is a tunable parameter.

A naı̈ve cost function could assign the same cost to each change, in which case
the user would be given feedback with the least number of changes that need to
be made to access a resource. For example, we could sort the elements fi of F in
ascending order of |fi| (number of atomic propositions in fi) and return the first k

choices. However, changing roles might be more difficult than changing context.
For example, a Student may be able to come back at a later time, but it would
be extremely difficult to acquire a Professor role. This suggests the use of more
sophisticated cost functions.

We need to define an appropriate cost function that is applied to edges in the OBDD
as edge weights. Using these weights we can use shortest path algorithms from
the root to true to provide feedback with lowest total cost. Running Dijkstra’s algo-
rithm gives us a path with lowest total cost in polynomial time. There are several
proposed algorithms for k shortest paths for graphs. Eppstein [Epp94] presents an
algorithm that computes k shortest paths in time O(m + nlogn + k), where n is
the number of vertices, and m is the number of edges in the graph. This is the best
known bound for k shortest paths in directed acyclic graphs. Since an OBDD with n
nodes has 2n−4 edges (two children for each node, except the true and false nodes),
the complexity for computing the k shortest paths in an OBDD is O(nlogn + k).

Let A be the set of atomic propositions in the policy P . We define a cost function
c : A × {0, 1} → R+ ∪ {∞}, where R+ is the set of non-negative real numbers.
This function tells us the cost to change an atomic proposition, an in effect, the cost
to follow a 0-edge or a 1-edge for a node in the OBDD. An infinite cost disallows
any changes to the current value of the proposition. When a request for access is
denied, let T ⊆ A be the set of propositions that evaluate to true, and F ⊆ A be the
set of those that evaluate to false. We define c(t, 1) = 0 for t ∈ T and c(f, 0) = 0 for
f ∈ F since there is no cost to maintain atomic propositions that are satisfied under
the current conditions (C ∪ U ), and we would like to assign non-zero cost when a
user must change some atomic proposition. Cost functions will differ according to
their assignments to c(t, 0) for all t ∈ T and c(f, 1) for all f ∈ F . Now, for all a ∈ A,
assign the weight c(a, 0) to the 0-edge of a, and c(a, 1) to the 1-edge of a. What
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results is a directed acyclic graph with weights assigned to each edge. We can now
apply k-shortest path algorithms to this graph to get the k lowest-cost paths, which
correspond to the k lowest-cost feedback options. For small k, the running time for
such algorithms is dominated by the structure of the OBDD and not k. Specifically,
since we expect to have k < n (for example k = 3 might be sufficient), the running
time is O(nlogn). Our naı̈ve cost function that considers all changes to be equally
expensive would set c(t, 0) = 1 for all t ∈ T and c(f, 1) = 1 for all f ∈ F . Hence
the total cost of any path is equal to the number of propositions that need to be
changed under the given conditions.

6.4.2 Meta-policies

Meta-policies contain information about who is allowed to view parts of the policy.
To honor the meta-policies, Know must not provide any feedback option that con-
tains information about propositions that are forbidden by the meta-policy. This
can be achieved by assigning an infinite cost to changing these propositions. As de-
scribed for the “better” cost function above, this effectively disables any changes
in the “protected” propositions by making these changes incur infinite cost. We
describe how the algorithm above, for cost functions, can handle meta-policies.

Each meta-policy determines whether a user can read certain nodes in the policy’s
OBDD. Let D ⊂ A be the set of nodes forbidden by the meta-policy. For each d ∈ D,
we assign infinite cost to the edge that effects a change in the current value of d.
This does two things: first, it prevents shortest path algorithms from exploring a
change in d and hence does not return any feedback options that require a change
in d. Second, since this proposition d cannot be changed, it will not appear within
a feedback option, which includes only those propositions that must be changed.
Since no atomic proposition that is precluded by the meta-policy appears in any
feedback option, the feedback given to the user honors the meta-policy. We assume
that all nodes corresponding to a particular atomic proposition a are protected by
the same meta-policy, allowing us to perform such a transformation. Finding effi-
cient ways of computing consistent feedback where references to the same atomic
proposition are protected by different meta-policies is left to future work.

6.4.3 Implementation

We built a prototype of the Know system, and, in this section, we describe the imple-
mentation and results from a preliminary evaluation. We present results of Know
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running with an example access control policy for videoconferencing equipment
located in a kiosk within a multi-purpose business center.

The system access policy is represented as an OBDD, which is then transformed
into a weighted graph that is specific to access requests. An appropriate cost func-
tion, along with the system meta-policy, is used to assign weights to the edges.
Finding the k shortest paths to the 1-node of the OBDD gives us k sets of assign-
ments to the variables that will satisfy the access control rules, and thus, describe k

situations under which the particular operation is allowed.

The first step is to generate an OBDD from the system access control policy. We
use the BuDDy [LN99] library, which uses heuristics for optimizing the generated
OBDDs. The end result of this is an OBDD that represents all allowable ways to
perform a particular action (or access a particular resource). If the requested action
is permitted, Know is not needed. If not, Know attempts to find alternative paths in
the OBDD that would permit the operation, i.e., paths in the OBDD from the root
to the 1-node.

Alternative paths are found by using the Eppstein [Epp94; Gra] algorithm to find
the k shortest paths from the root to the 1-node in this OBDD. Weights are assigned
to the edges of the OBDD graph based on the cost function and the current values
of the user roles and context variables. Selecting a suitable cost function is site-
specific—the weights assigned to the different changes will depend on the nature of
tasks that are normally performed by users of the system. We provide results from
the two cost functions described earlier—the naı̈ve cost function (which counts
the number of changes required) and the “useful” cost function (which treats role
changes as more difficult to achieve than context changes).

Know then outputs the necessary changes that must occur to satisfy the alternative
paths. It is up to the user to choose between these suggestions, and to retry the
request after following the suggestion.

We illustrate this entire process with its application to a sample policy that governs
the access to videoconferencing devices in the business center of a hotel. In addi-
tion to computers, the business center also contains devices such as printers, fax
machines, cameras for videoconferencing and so on. The business center is located
in the conference hall, and hotel guests and other members who have signed up
are normally allowed to use the devices as per the security policy. The conference
hall is also rented out for activities such as meetings, conferences, or receptions,
during which time use is restricted to participants of this activity, as per the policy
configuration by the organizers. Users present their credentials to enter the busi-
ness center, in the form of a smartcard (a conference badge or a hotel room key) and
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the system uses this information to restrict access and provide useful feedback. We
present here the rules that affect access control to the camera for the videoconfer-
encing system.

The basic policy is as follows:

• When no activity is scheduled for the room, supervisors, hotel guests or other
registered users can use the videoconferencing equipment during the busi-
ness day. Visitors are also allowed to use the facilities if an operator is present.
Hotel guests may also use the system during non-business hours, but others
may not.

• When an activity (such as a videoconference) is scheduled, only registered
activity participants and supervisors are allowed to use the system.

• Use of the videocamera is disallowed for regular participants if the video-
conferencing activity being undertaken in the conference center is labeled as
confidential. However, the meeting supervisor may still turn on the video-
camera if all participants have the required security clearance.

• Maintenance activities are performed by designated personnel.

• Finally, a high ambient temperature indicates some problem with the air-
conditioning system, and camera use is prohibited until temperature reaches
the allowed range. Similarly, overcrowding the room will violate the fire
safety codes and cause access to the camera to be denied.

The meta-policy that governs feedback contains the following rules:

• Information about confidential activities is only provided to the meeting su-
pervisor. Thus an unauthorized user trying to access the videocamera during
a confidential activity will not be informed that a confidential activity is go-
ing on, but just that access is denied at that time. Similarly, feedback about
the presence of uncleared users is only given to the meeting supervisor.

• Information about maintenance activities is not provided to other users.

The access control rules for this policy above are presented in Figure 6.7. In our im-
plementation, access to the camera C is protected by policy P . Policies P1, . . . , P10

describe the various rules presented above, where P7 and P8 are rules pertaining
to the VideoConference activity. In the interest of brevity, we only present the rules
relevant to the VideoConference activity in Figure 6.7.

This policy states that during a confidential VideoConference, only a Supervisor

can access the camera as long as there are no uncleared users present. During
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Policy:
C : P

P ↔ P1 ∨ . . . ∨ P10

. . .

V C ↔ activity = VideoConference ∧ ¬(A1 ∨ . . . ∨An)
CA ↔ Context.isConfidential = true

RS ↔ User.role = Supervisor

NU ↔ Context.UnclearedUsersPresent = false

NH ↔ Context.cameraOverheated = false

NF ↔ Context.roomFull = false

RP ↔ User.role = Participant

P7 ↔ V C ∧ CA ∧RS ∧NU ∧NH ∧NF

P8 ↔ V C ∧ ¬CA ∧ (RP ∨RS) ∧NH ∧NF

Meta-Policy:
. . .

CA : User.role = Supervisor

Figure 6.7: Example policy used for evaluation

a non-confidential VideoConference, any Participant or Supervisor can access the
camera. The room must never be Overheated or Full during a VideoConference.
The second rule in the meta-policy states that only Supervisors will be made aware
of Confidential activities (or the lack thereof). Hence if an ordinary user is denied
access to a camera, the user will not be told that there is a confidential conference in
progress (this information itself is deemed sensitive). Since there can be only one
activity at any given time, the policy specifies V C ↔ VideoConference∧¬(A1∨ . . .∨
An), where A1, . . . , An are the remaining activities.

The OBDD generated by the above policy has 17 variables and 35 nodes (in con-
trast, a binary decision tree would have at least 217 nodes).

To evaluate Know, we try to access the videocamera under a variety of situations,
and present the suggestions provided by Know using each of the two cost functions
described earlier, which we designate as the “naı̈ve” and the “useful” cost func-
tion. Since the useful cost function just restricts information about role and activity
change, feedback from the useful cost function will just be a (more useful) subset
of the feedback from the naı̈ve cost function. We describe some of the experiments
below for k = 4. The run-time overhead for Know to find these suggestions was
negligible—in the order of milliseconds. Since OBDDs are just a representation of
the access control policy, they can be constructed ahead of time and only need to
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be re-computed if the policy changes. Assigning weights to the edges of the OBDD
is performed each time a request arrives, since the weights depend on the current
values of the context variables and user credentials. Since Know runs only when
access is denied, it has no performance overhead on successful requests. We now
describe the situations and results in detail:

• A Visitor tries to use the camera during business hours, but no Operator

is present. There is no activity in session. With the naı̈ve cost function,
Know suggests that the user come back a) as a HotelGuest b) as a Regis-

teredRoomUser c) when an Operator is present, or d) as a Supervisor. The
useful cost function suppresses the suggestions involving a role change, and
only advises the user to come back when an Operator is present. This simple
example illustrates the basic functionality of Know.

• If a HotelGuest tries to use the equipment during working hours when the
room is too hot and there is no activity in session, Know correctly suggests
that the user try again a) when room is not Overheated b) when room is not
Overheated and it is out of business hours and c) when room is not Over-

heated and as a RegisteredRoomUser instead of a HotelGuest, or d) when
room is not Overheated, as a Supervisor, instead of a HotelGuest. The useful
cost function only offers the first two suggestions because it does not recom-
mend role changes. Clearly, the only change required is for the temperature to
be reduced, but Know does not presently restrict suggestions that are subsets
of others. This may be useful in some situations.

Maintenance operations are allowed even in overheated conditions, and a
straightforward search through the policy might have offered the suggestion
to try coming back as a MaintenanceWorker. However, the system meta-
policy forbids the disclosure of information about maintenance permissions,
so this option is correctly ignored by Know.

• During a Confidential videoconferencing activity and regular working hours,
if a Participant tries to access the videocamera when users without the re-
quired security clearance are present, the naı̈ve cost function suggests the
user come back a) as a HotelGuest when no activity is in progress, b) as a
RoomUser when no activity is in progress, c) as a Visitor when no activity is
in progress, or d) as a Supervisor when no activity is in progress. The useful
cost function does not offer any feedback, because there is no useful option
for the Participant.

One possible suggestion is to inform the user that this operation is not permit-
ted during a confidential activity and to suggest re-trying when no confiden-
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tial activity is being undertaken, but the system meta-policy precludes any
information about confidential activities from being revealed, so this sugges-
tion is not offered. Note that it is possible for users to correlate feedback from
different sessions to infer the existence of hidden atomic propositions. For ex-
ample, the presence or absence of a confidential activity results in differing
feedback. Care must be taken while writing the policies and meta-policies
to prevent the leakage of the identity (e.g., confidential activity) of the atomic
proposition.

• If a Supervisor tries to use the camera when the room is reserved for a con-
fidential VideoConference and uncleared users are present, the uniform cost
function suggests that the user come back a) after changing the activity type
to be non-confidential b) when no uncleared users are present, c) when there
is no activity scheduled, or d) as a Participant after changing the activity type
to be non-confidential. The useful cost function suggests the first three op-
tions. Note how the Supervisor is given feedback regarding Confidential ac-
tivities, as opposed to a Participant in the previous scenario.

While the above examples are fairly simple, they validate our hypothesis that Know
can provide useful information about alternatives when access is denied, that it can
do so without compromising privacy or confidentiality requirements of the secu-
rity policies, and that this can be achieved with negligible performance overheads.
Know provides a useful framework for further studies on cost functions and usabil-
ity.

6.5 Conclusion

Human factors are important for the correct use of security mechanisms. They
are particularly important in ubiqutious computing environments, because these
environments are expected to be non-intrusive. The Gaia access control system
was designed with usability in mind. We identify two aspects of the Gaia access
control System where usability concerns are important. An important, and under-
studied, aspect is usability for administrators of such environments. We performed
user studies on an administrative tool designed for the Gaia access control system
to evaluate its effectiveness. The user studies indicated that visualization tools to
display the state of the configuration would be useful, as well as other methods for
feedback to administrators about the results of their actions.

For users of the space, the dynamic environment and permissions that change with
system context can be confusing to end-users. To help with this, we developed a
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framework to provide users with feedback about access control decisions. Know is
an initial attempt to balance the requirements of feedback and policy protection.
Our results indicate that this is a feasible approach. Useful feedback can be pro-
vided at reasonable cost, while maintaining policy confidentiality.

While the feedback system does not reveal any information that is protected by
the meta-policy, we are concerned that having to configure meta-policies as well as
policies may make the system administrator’s job more difficult. We plan to study
this further and identify meta-policy guidelines for administrators, based on the
properties they wish to provide.
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7 Conclusion

We have presented and evaluated an access control system for Active Spaces. We
now draw some overall conclusions and outline future work. In Section 7.1, we
present a summary of the thesis research. Section 7.2 enumerates the contributions
of the thesis work. Finally, Section 7.3 places the research in context, points out
some of the remaining problems and avenues for future research.

7.1 Summary

Ubiquitous computing environments promise exciting new applications, but pose
new security challenges, which must be addressed before these environments can
be widely deployed. Access control is a basic security mechanism that is required
if a system wants to provide any security guarantees. In this dissertation, we have
described an access control architecture for a class of ubiquitous computing envi-
ronments known as Active Spaces.

Active Spaces are physical spaces that contain a variety of heterogeneous com-
puting and communication devices, with software infrastructure to integrate these
resources into a unified and programmable environment that users can interact
with. The main challenges posed by the Active Space environment for access con-
trol are due to the context-sensitive and dynamic, heterogeneous and device-rich
nature of the environment. These environments are also typically used in differ-
ent ways from traditional distributed computing environments—groups of users
typically collaborate in using the space for particular applications, rather than a
personal computing mode of usage. Another important difference is in the nature
of users—as computing becomes more pervasive, it is no longer feasible to expect
users to undergo specialized training to use these systems, so the “naı̈ve user” is
much more common. Making these systems easy-to-use is important if they are to
become truly ubiquitous. Usability is especially important for security systems, as
misconfigured security mechanisms have been responsible for a variety of security
compromises in computer systems.

Access control is a basic security mechanism, and required to provide any other
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security guarantees. As new applications for Active Space environments are still
being developed, the modes of usage may change further, requiring that access
control be flexible enough to support their requirements. The main requirements
for access control in such ubiquitous computing environments, therefore, are:

• Support for collaborative usage patterns prevalent in such environments.

• Ability to incorporate context into the access control decision.

• Easy-to-use, for both end-users and security administrators.

• Flexibility, to support a variety of access control requirements for different
applications.

• Implementability on a heterogeneous platform, with widely-varying resource
availabilities.

We have presented a model that addresses the above requirements, and devel-
oped a prototype implementation within the Gaia framework. Our model extends
the Role-Based Access Control model with three types of roles to simplify policy
configuration and administration. System roles are akin to the roles used in tra-
ditional RBAC, representing a user’s permissions in the organization. Within an
Active Space, a user’s system role gets mapped into a space role, representing a
subset of permissions that are valid within that particular space. Application roles
are used to represent application-specific sets of permissions, and simplify policy
management in Active Spaces, since Active Spaces are more commonly used for
specific applications than for general-purpose computing. Both system roles and
application roles are mapped into space roles within a particular Active Space, and
access control is enforced in terms of the space roles.

We also introduce the notion of space modes to represent the physical context of the
space, and support different types of collaboration. The three different modes for
group usage of the space—shared, collaborative and supervised—represent differ-
ent types of activities. Shared mode is for users sharing the space without neces-
sarily working together or trusting each other. Collaborative mode allows a group
of collaborating users to share permissions for the duration of a particular activity.
Supervised mode is a form of limited delegation, and allows users to perform ac-
tions in the presence of a supervisor that they would not be permitted to on their
own.

We evaluate this system on the criteria of expressivity, performance and usability.
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7.1.1 Expressivity

Since new types of applications are still being developed for ubiquitous comput-
ing environments, access control models need to be flexible, so as to support these
emerging modes of usage. At the very least, mandatory and discretionary access con-
trols are required to control access to the shared space resources and user-owned
devices that temporarily join an Active Space, respectively. Our model supports
both these modes. Active Spaces operate in more decentralized ways than tradi-
tional systems. Policy specification may need to combine the centralized organiza-
tional security policy with the local space policy, or the space MAC policy may need
to be combined with the DAC policy for devices brought in by individual users.

The model also allows policies to be specified per application; this is useful because
Active Spaces tend to be used for particular activities, and user permissions depend
on the current system context and activity. Expressing the policy in this way is a
more natural fit for such environments.

To summarize, our model supports discretionary and mandatory access control
policies, can incorporate contextual information, and is aware of modes of collab-
oration. This has been sufficient to express the access control requirements for our
Active Space; we argue that it is flexible enough for future applications as well.

7.1.2 Performance

Since access control only works if all requests for resources are checked before be-
ing allowed to proceed, it can easily become a performance bottleneck. Access
control must be reliable enough and introduce a low enough overhead that it not
disrupt system performance. We designed the Gaia Access Control System with
a goal of having a low run-time overhead. It has been continuously operational
in our prototype smart room for over a year, and has been found to be acceptable
to the user community. We demonstrate scalability using micro-benchmarks that
measure the response time of the access control system as the number of services,
roles and context variables change. We observe that the performance overhead of
the access control system is negligible compared to other operations in the Gaia
system.

7.1.3 Usability

Usability is an important factor in the design of practical security systems, since
user errors often lead to poor security in practice. While usability for end-users is
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increasingly receiving attention, we think that administrative usability is an impor-
tant problem that has not received sufficient attention. Especially in Active Spaces,
with their variety and large number of devices and modes of usage, configuring
security policies may prove to be difficult. To address this, we performed a study
to evaluate the usability of the access control model from a security administra-
tor’s point of view. The results indicate that the system is comprehensible with
some training, but better administrative tools would help. Specifically, the studies
highlighted the need for information visualization, and context-sensitive help in
administrative tools.

The context-dependent varying of permissions can make access control decisions
confusing to users of the system. To improve usability for them, we developed
Know, a framework to provide feedback about access control decisions when per-
mission is denied. Since the access control system has knowledge about the system
policy and the current context, as well as access to the user credentials, providing
suggestions about alternative ways to access system resources is relatively straight-
forward and can be useful. A challenge is to provide this feedback while maintain-
ing the confidentiality requirements of the policy, which we handle by means of
meta-policies that can restrict access to the policies themselves.

7.2 Contributions

The main contribution of this thesis is the design of an access control system for a
class of ubiquitous computing environments. The specific contributions are:

• An access control model that incorporates system context, and can support a
variety of policies, including mandatory and discretionary access control.

• Identification of, and support for, the access control requirements for a vari-
ety of collaborative modes of usage for such ubiquitous computing environ-
ments.

• An evaluation of a prototype implementation, on the basis of performance
and usability.

• A technique for providing feedback about access control to end-users, to im-
prove the usability of the system without compromising system confidential-
ity requirments.

• A user study that identified requirements for the design of security adminis-
tration tools.
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7.3 Future work

Ubiquitous computing covers a wide range of systems and applications, from ad hoc
applications with very little infrastructure to equipment-intensive immersive vir-
tual reality environments. This diversity in resource capability—power, network
bandwidth and/or CPU—makes it difficult to generalize about such environments.
This thesis research focuses on a subset of these environments—”smart” spaces, or
physical spaces with the computing infrastructure to unify all the hardware into an
interactive, programmable “Active Space”. We have built an access control system
for these environments and demonstrated its feasibility with a proof-of-concept im-
plementation. In this section, we point out some related questions that were raised
by this work, and are suitable for further research.

As computing environments get more decentralized, security policy configuration
and administration becomes a problem. Ubiqutious computing environments need
to compose policies obtained from different sources that have authority for the dif-
ferent components in the environment. This becomes particularly important in the
area of privacy policies, which are important for ubiquitous computing. Automat-
ically evaluating whether a space complies with a user’s privacy policies, and vice
versa, before starting applications, would be a useful property. While our work
allows for policy composition in limited ways, a more general composition frame-
work would be useful.

Access control depends on authentication and the proper use of credentials. In tra-
ditional systems, the management of these credentials is relatively straightforward.
In ubiquituous computing systems, users may not have a terminal session associ-
ated with them, and associating credentials with users automatically is a challenge.
In our environment, this is solved with the use of location-tracking and/or per-
sonal storage, but techniques for binding credentials to users in other environments
need to be researched.

One of the problems with role-based access control is to identify which roles a user
activates in a particular session. The principle of least privilege dictates that the
“lowest” role be selected, but in practice, this often proves too restrictive, ending up
with users activating all their roles or presenting all their credentials. While some
of the work in trust negotiation deals with the question of presenting credentials
in a way that user privacy is not compromised, role activation is still a problem in
practical security systems.

Usability seems to be a major issue with the design of practical security systems;
this is widely recognized today as one of the “grand challenges” for designing se-
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curity systems [BLL+04]. More user studies to evaluate the usability of the security
system would be useful.

The Know system investigates “useful” feedback; user studies to evaluate the us-
ability of the feedback, and research on mechanisms for feedback in Active Spaces
would be useful. We are exploring further avenues where feedback would be use-
ful, as well as what privacy/confidentiality properties can be maintained while
providing feedback. We use meta-policies for protecting the policy, and are in the
process of identifying guidelines for the creation of such meta-policies and security
properties that can be guaranteed.
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Appendix A: ACS Interface
Specification

/*

* File: ACS.idl

* Author: Geetanjali Sampemane, geta@cs.uiuc.edu

* Description: Gaia Access Control Service interface description

*/

struct Credential {

string name;

string primary_role;

sequence<string> roles;

string addrString;

};

struct Permission {

string method;

sequence<string> roles; // Or maybe IP addresses

};

struct ServicePolicy {

string name;

sequence<string> Permission;

};

interface ACS {

/**

* Check if access is allowed

*

* @param owner the owner of the layout file

* @return true/false if access is allowed/denied

* Various options control what happens in the case

* of undefined methods/services
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*/

boolean isAllowed(in Credential cr, in string service,

in string method, in string addrString);

/**

* Called when a user enters or leaves the space

*

* @param cr User credential

*

* @return Status true/false for success/failure

*/

boolean enterSpace(in Credential cr);

boolean leaveSpace(in Credential cr);

/**

*

* Mode change requests: can ask to switch to any of the

* group modes -- ‘‘shared’’, ‘‘super’’ or ‘‘collab’’. Assumes

* that the proper authorization for super/collab has occurred.

*

*

* @return Status true/false for success/failure

*/

boolean switchMode(in string target_mode)

/**

* Reads an Access List for a service from a file

*

* @param service Name of the service

* @param filename Name of the file containing the new policy

*

* @return true/false Success/failure

*/

boolean readAList(in string service, in string filename);

/**

* Loads an new Access Control policy for a service.

*

* @param service Name of the service
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* @param policy Struct containing the policy

*

* @return true/false Success/failure

*/

boolean readPolicy(in string service, in ServicePolicy policy);

/**

* Dumps the current AccessLists (of all services or a particular

* service) in memory to stdout

*/

void dumpSpace();

void dumpAList(in string service);

};
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Appendix B: Cognitive
Walkthrough materials

These materials were used for a Cognitive Walkthrough conducted by Yong Liu,
Geetanjali Sampemane and Kay Connelly. Analysts were given a fully-functional
prototype of the administrative tool. They explored this prototype, walking through
the steps required to complete tasks in each of the scenarios listed below, trying to
identify usability problems. An online help document was implemented in the
prototype and available for use.

B.1 List of scenarios

1. Add a new user to AS system (Goal A)

2. Add a new system role to AS system (Goal B)

3. Add a new application role to AS system (Goal C)

4. Add a new application to AS system (Goal D)

5. Add a new space to AS system (Goal E)

6. Map a user to specific system role (Goal F)

7. Assign a new permission to system role (Goal G)

8. Assign a new permission to application role (Goal H)

9. Install a new application to specific space (Goal I)

10. List current user-system role mappings in AS system (Goal J)

11. List permissions assigned to specific system role in AS system (Goal K)

12. List permissions assigned to specific application roles in AS system (Goal L)

13. List applications installed in specific space in AS system (Goal M)

14. Add a new space role to current space (Goal N)

15. Map a system role to specific space role (Goal O)

16. Map an application role to specific space role (Goal P)
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17. List all role mappings (user-system role-space role-application role) in current
space (Goal Q)

18. List all applications and corresponding methods in current space (Goal R)

19. List permissions assigned to specific space role in current space (Goal S)

B.2 Checklist provided to analysts

A checklist was provided to help the analysis and evaluation of the prototype. .

Examine in General:

1. Will the user try to achieve the right effect?

The user may try to achieve the right effect:

• by experience with this system or similar systems

• if this is a new system replacing an old system, and the goal was part of
the task on the previous system

• because the system tells them, for example through a modal dialogue

2. What knowledge is needed to achieve the right effect? Will the user have this
knowledge?

To use a system requires knowledge of the task domain and the system sup-
porting the task. There are four types of knowledge: procedural, conceptual,
knowledge about the current system state and knowledge about the objects
manipulated by the task.

The user may have the knowledge

• by experience with this system or similar systems

• by experience with the task with other systems

• because the system provides the necessary information

Examine the actions needed to satisfy the goal:

3 Will the user notice that the correct action is available?

The user may notice that the correct action is available

• by experience with this system or similar systems

• if they see a representation of an action, for example a button
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4 Will the user associate the correct action with the goal they are trying to
achieve?

The user may make the association:

• by experience with this system or similar systems

• if there is some connection between the goal they are achieving and the
action

• all other actions or choices look wrong

If the correct action is performed, examine the feedback:

5 Will the user perceive the feedback?

The user may perceive the feedback

• by experience with this system or similar systems

• if they are focusing on the area of the screen which provides the feedback

• if the feedback can not be ignored, for example audio

6 Will the user understand the feedback?

There is no guarantee that the user will understand the feedback if it is per-
ceived. The user may understand the feedback

• by experience with this system or similar systems

• if the feedback is unambiguous

7 Will the user see that progress is being made towards solution of their task in
relation to their goal?

The user may perceive progress

• by experience with this system or similar systems

• because they recognize a connection between the system response and
their goal
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Appendix C: Usability Test
materials

The following are the materials used for conducting a usability test of an admin-
istrative tool for the Gaia access control system. The main purpose of the test is
to predict the expected performance of an actual system (or space) administrator
using the software and to remedy serious problems prior to deploying it. The us-
ability test will measure the time to complete tasks and will identify errors and
difficulties involved in using the prototype of the GUI. Simulated tasks include
adding new roles, changing role-mappings and assigning new permissions to a
role.

The specific questions that need to be answered:

1. Are all terms appearing on the GUI intuitive?

2. Are users able to recognize the tricky operations when adding a new appli-
cation?

3. Are users able to recognize the key operation (add a new space role) when
establishing new system-role to application-role mappings in a space?

C.1 Background questionnaire

Participants were asked to fill out a short questionnaire to gather background in-
formation.

Name:

Please answer the questions below in order to help us understand your background
and experience.

1. Have you ever heard of Active Spaces?

2. Have you participated in the Gaia project?

3. If yes, please specify which component(s) you have worked with.

4. Do you know what Role Based Access Control is?
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5. If yes, please specify how much you know about this model.

6. Are you familiar with the Gaia access control system?

7. If yes, specify how much you know about this sub-system of GAIA.

C.2 Orientation

Participants received a verbal introduction and orientation to the test, explaining
the purpose and objective of the test and what was expected of them.

We are here today to test how easy it is to use the Active Space RBAC
system with a GUI. You will be performing some typical tasks with this
GUI, and I’d like you to perform as you normally would. For example,
try to work at the same speed and with the same attention to detail that
you normally do. Do your best, but don’t be all that concerned with
results. This is a test of the Active Space Access Control system, which
is still in prototype form, and it may not work as you expect. You may
ask questions at any time, but I may not be able to answer some of
them, since this is a study of the software and the information provided
by it, and we need to see how it works with a person such as yourself
working independently.

During today’s session, I will also be asking you to complete some
forms and answer some questions. My only role here today is to dis-
cover both the flaws and advantages of this product from your perspec-
tive. So don’t answer questions based on what you think I may want to
hear. I need to know exactly what you think.

While you are working, I will be sitting nearby taking some notes and
timings. In addition, the session will be videotaped for the benefit of
future analysis of this usability test.

Do you have any questions?

If not, then let us begin:

C.3 Terminology test

A terminology test was then administered, to evaluate whether the terms were
understood before using the tool. Users were asked to define terms such as “user”,
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“system role”, “space role” and other terms used in the administrative model.

C.4 Performance test

Participants were asked to carry out three tasks and were observed (and video-
taped) while doing so.

MTC Maximum Time to Complete
SCC Successful Completion Criteria

Task Scenario A

Tom is a new comer to the Active Space system. He is a graduate student and will
work in Computer Lab1. Tom needs a PDFViewer program to read papers in the
lab, but now there is no such program in that room. As the system administrator,
you need to make some configurations so that Tom can be signed up as a valid user
and work with a PDFViewer in his lab. You will use “AS RBAC System Configu-
ration Tool” to accomplish your task. Signal me when you feel you are done. Any
questions before we begin?

Task Number: A1
Task: Add a new user “Tom”.
SCC: “Tom” appears in “Candidate User” list.
MTC: 1 min.

Task Number: A2
Task: Set user “Tom” to system role “student”.
SCC: “Tom” disappears from “Candidate User” list and appears in

the “User” list with “Student” highlighted in “System Role”
MTC: 2 min.

Task Number: A3
Task: Add application “PDFViewer” to space “Computer Lab 1”.
SCC: “PDFViewer” disappears from the “Candidate Application” list

and appears in the “Application” list, with “Computer Lab 1”
highlighted in “Space”.

MTC: 2 min.
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Task Number: A4
Task: Assign the permission “PDFViewer:Read” to system role “Student”.
SCC: “PDFViewer:Read” disappears from the “Candidate Permission” list

and appears in the “Permission” list for “Student” in “System Role”.
MTC: 3 min.

Task Scenario B

Your department has bought a new application “MediaPlayer” and decided to use
it in the Auditorium. As the system administrator, you need to install this applica-
tion into the Active Space system. This application has two functions: “Play” (for
speakers in the room to use) and “Watch” (for listeners in the room to use). Within
the Auditorium, only the faculty members should be able to “Play” this applica-
tion, but all the people in the department should be able to “Watch” it. Use the
“AS RBAC System Configuration Tool” to make the necessary configurations and
install “MediaPlayer” into the Auditorium. Signal me when you feel you are done.
Any questions before we begin?

Task Number: B1
Task: Add a new application “MediaPlayer”.
SCC: “MediaPlayer” appears in the “Candidate Application” list

and all its functions appear in the “Candidate Permission” list.
MTC: 2 min.

Task Number B2
Task: Assign the permission “MediaPlayer.Play” to application role “Speaker”.
SCC: “MediaPlayer.Play” disappears from the “Candidate Permission” list

and appears in the “Permission” list
MTC: 2.0 min

Task Number B3
Task: Assign the permission “MediaPlayer.Watch”

to application role “Listener”.
SCC: “MediaPlayer.Watch” disappears from the “Candidate Permission” list

and appears in the “Permission” list
MTC: 2.0 min

Task Number B4
Task: Add the application “MediaPlayer” to space “Auditorium”.
SCC: “MediaPlayer” disappears from the “Candidate Application” list and

appears in the “Application” list while “Auditorium” highlighted in “Space”.
MTC: 2.0 min
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Task Number B5
Task: Add the permission “MediaPlayer.Play” to system role “Faculty”.
SCC: “MediaPlayer.Play” disappears from the “Candidate Permission” list and

appears in the “Permission” list while “Faculty” in “System Role”.
MTC: 2.0 min

Task Number B6
Task: Add the permission “MediaPlayer.Watch” to all system roles.
SCC: “MediaPlayer.Watch” disappears from the “Candidate Permission” list and

appears in the “Permission” list for each system role in “System Role”.
MTC: 3 min

Task Scenario C

Now suppose you are a space administrator in the Active Space RBAC system. In
your space, you do not want a faculty member to be both a space role “listener” and
a space role “speaker” Another rule is that, the space role “listener” in your space
can only listen, and the space role “speaker” can only speak. But some faculty
members need to both listen and speak in some circumstances. You need to make
some configurations so as to satisfy those faculty members without breaking the
rules. You are supposed to create only one new role in your space. After that, find
out names of the people who can both listen and speak in your space now. You
will use “AS RBAC Space Configuration Tool” to accomplish your task. Signal me
when you feel you are done. Any questions before we begin?

Task Number C1
Task: Add a new space role “Whatever”.
SCC: “Whatever” appears in the “Space Roles” list.
MTC: 3 min

Task Number C2
Task: Set Application role “Listener” to space role “Whatever”.
SCC: “Listener” disappears from the “Candidate App Role” list and appears in

the “Application Role” list, while “Whatever” highlighted in “Space Role”.
MTC: 2 min

Task Number C3
Task: Set application role “Speaker” to space role “Whatever”
SCC: “Speaker disappears from the “Candidate App Role” list and appears in

the “Application Role” list, while “Whatever” highlighted in “Space Role”.
MTC: 2 min
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Task Number C4
Task: Set system role “Faculty to space role “Whatever”.
SCC: “Faculty disappears from the “Candidate Sys Role” list and appears in

the “System Role” list, while “Whatever” highlighted in “Space Role”.
MTC: 2 min

C.5 Post-test questionnaire

Particpants were asked to fill out a preference questionnaire pertaining to subjec-
tive perceptions of usability of the tool.

Please answer the following questions based on your experience using the Active
Space RBAC GUI. Where appropriate, we would appreciate if you would explain
your answers in the space provided below the questions.

1. Overall, I found the Active Space RBAC GUI easy to use. (Please check one)

Strongly disagree

Disagree

Neither agree nor disagree

Agree

Strongly agree

2. I found the following aspects of the Active Space RBAC GUI particularly easy
to use. (Please list from 0-3 aspects.)

A

B

C

3. I found the following aspects of the Active Space RBAC GUI particularly
difficult to use. (Please list from 0-3 aspects.)

A

B

C

4. I found the terminology of the Active Space RBAC GUI clear and precise.

Strongly disagree
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Disagree

Neither agree nor disagree

Agree

Strongly agree

5. Using the following rating sheet, please circle the number nearest the term
that most closely matches your feeling about the Active Space RBAC GUI.

Simple 1 2 3 4 5 Complex
Easy-to-use 1 2 3 4 5 Difficult-to-use
Friendly 1 2 3 4 5 Unfriendly
Professional 1 2 3 4 5 Unprofessional
I like 1 2 3 4 5 I dislike

6. Please add any comments in the space provided that you feel will help us to
evaluate the Active Space RBAC GUI.

C.6 Evaluation measures

The following evaluation measures were collected and calculated:

• The average time to complete each task and each scenario across all partici-
pants.

• The percentage of participants who finished each task successfully versus
those who had errors from which they could not recover.

• Error classification: each error was classified and the source of each class of
errors indicated.

• Percentage of participants who gave the correct definition of the terminology
test one.

• Percentage of participants who gave the correct definition of the terminology
test two.

• Comparison of terminology test one and two scores for each definition.

• Participant rankings of usability of the administrative tool.
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