
A publication by Fraunhofer IESE

A Multi-View Tool for Checking the Security
Semantics of Router Configurations

Authors:
Holger Peine
Reinhard Schwarz

Submitted for publication in
Proceedings fo the Annual Computer
Security and Applications Conference

IESE-Report No. 064.03/E
Version 1.0
December 2003

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Executive Summary

Routers are critical components of IP networks, but hardly any tool support for
analyzing their security exists to date. We have developed such a tool, named
Crocodile, that tracks the security implications of related configuration directives
that may be scattered all over the router’s configuration, instead of analyzing
only isolated configuration clauses like other tools do. Our tool offers several
novel evaluation capabilities and presents its findings as a collection of multi-
view displays, enabling the user to focus on selected aspects, and to navigate
deeper and deeper into specific details. We demonstrate the practical use of
CROCODILE, and a comparison with the well-known RAT tool illustrates
CROCODILE’s remarkable capabilities.
vCopyright  Fraunhofer IESE 2003

vi Copyright  Fraunhofer IESE 2003

Table of Contents

1 Router configuration and security checking 1
1.1 A tool for analyzing router security 1
1.2 Cisco Routers and IOS 2

2 CROCODILE architecture and operation 3
2.1 Components 3
2.2 Operation 4
2.3 Construction of custom checker modules 4
2.4 Result database 5

3 Practical Use 6
3.1 Task-specific displays 6
3.2 Typical defects uncovered 6
3.3 Differential display mode 8
3.4 Available checker modules 8
3.4.1 CompoundPatterns 8
3.4.2 Connectivity 10
3.4.3 IngressEgress 10
3.4.4 AAA 10
3.4.5 Logging 11
3.4.6 Passwords 11
3.4.7 SNMP 12
3.4.8 NTP 12
3.4.9 RATemulation 12
3.5 Access control list analysis 12

4 Related Work 14
4.1 RAT 14
4.2 Equant router tool 16
4.3 Firewall Analysis Tools 17

5 Conclusions and Outlook 18

6 References 20
viiCopyright  Fraunhofer IESE 2003

viii Copyright  Fraunhofer IESE 2003

Router configuration and
security checking
1 Router configuration and security checking

Today, all but the smallest enterprises are connected to the Internet and use IP
networks internally, too. Routers play a fundamental role in such networks as
they relay (or deliberately do not relay) IP packets between source and destina-
tion hosts. Modern routers do not only perform relaying functions, but also fil-
tering, separation, encryption and monitoring of data streams. Furthermore,
they provide various management interfaces for configuration, (remote) mainte-
nance, and monitoring. All these functions potentially affect the availability,
integrity, and confidentiality of data connections, thus making routers highly
security-critical network components.

However, configuring a router is a difficult and error-prone task. The available
configuration languages are complex and often badly documented, and errors
are hard to spot. Therefore, tool support to uncover hidden vulnerabilities in
router configurations is highly welcome, as tools improve efficiency and effec-
tiveness as well as objectivity and repeatability of router security checks. How-
ever, few such tools exist to date, and the existing ones work at a rather low
level of abstraction and with very limited evaluation capabilities.

1.1 A tool for analyzing router security

CROCODILE1 is a router security checker we have developed with support by
Deutsche Telekom [1]. It parses a router configuration file (i.e., a text file with a
sequence of configuration clauses), checks for potential vulnerabilities, and gen-
erates rich HTML evaluation reports. Many trivial errors and inconsistencies that
would easily escape the human eye are uncovered, none of which would be
flagged by the router itself; however, CROCODILE’s capabilities go far beyond
such purely syntactic analysis:

• CROCODILE performs a semantic analysis of the configuration including, for
example, the order or the omission of clauses, and their meaning in context.
This is only possible because the tool analyzes the configuration as a whole,
instead of each line in isolation.

• The often confusing wealth of evaluation results is presented using various
task-specific displays. For example, the tool offers an annotated overview, a

1 "Cisco ROuter COnfiguration DILigent Evaluator"
1Copyright  Fraunhofer IESE 2003

Router configuration and
security checking
differential display relative to an earlier version of the configuration (see
Section 3.3), detailed analyses, statistical data, and convenient hyperlinks to
vendor documentation. A particularly useful and innovative detail analysis is
the computation of the sets of packets effectively accepted ("whiteset") or
rejected ("blackset") by the access control list protecting a router interface
(see Section 3.5).

• Findings are logically grouped to various analysis views, with a view gathering
all findings conceptually relating to a certain configuration aspect as defined
by the user (e.g., authentication or logging). The clauses covered by a view
may be scattered across the configuration, and one clause may contribute to
several views. Findings may also be attached to a view as a whole. During
inspection, the user may focus on any particular view. The view-based pre-
sentation makes the reasoning behind the router configuration easier to con-
ceive, and consequently makes errors and vulnerabilities more transparent.

CROCODILE thus relieves the user from cumbersome low-level work and raises
router configuration to a semantic level where the human expert is more ade-
quately supported. None of the router security tools known to us has compara-
ble capabilities.

1.2 Cisco Routers and IOS

CROCODILE is currently geared towards routers from Cisco Systems, the market
leader, running the IOS operating system [2]. However, thanks to the modular
design of the tool framework, vendor-specific modules could easily be replaced
in order to support any text-based configuration format, even including types of
devices other than routers.

Correct use of IOS poses a difficult task to the network administrator. The
options provided by this operating system are numerous and complicated, and
new IOS versions appear frequently. Furthermore, the syntax of IOS clauses is
not very expressive, hardly intuitive, occasionally ambiguous, and often poorly
documented. Finally, IOS further increases the administrator’s burden by silently
ignoring erroneous clauses instead of printing an error message. These adversi-
ties have greatly complicated the development of CROCODILE, but the user can
now profit from the effort expended in developing the tool, and the knowledge
embodied therein.
2 Copyright  Fraunhofer IESE 2003

CROCODILE architecture and
operation
2 CROCODILE architecture and operation

Besides the run-time functionality of the logical views and the task-specific dis-
plays, CROCODILE is an extensible framework providing all functionality useful
for general text-based security checking, while encapsulating specific areas of
security evaluation in independent checker modules. Further design goals
include the configurability of the checker modules in order to adapt to local pol-
icies, and portability, realized by implementing CROCODILE in Perl1 without
using any additional libraries.

2.1 Components

The tool is basically composed of three types of components: A pattern match-
ing module (parser), an arbitrary number of checker modules, and a database
and display module. Each checker module covers one logical aspect of router
security with all the required checking logic. The parser provides the checker
modules with input data relevant for the module’s analyses. The display module
generates complex but convenient hypertext documents from the findings.
Figure 1 shows the interplay of these components.

Figure 1: Structure and operation of Structure and operation of CROCODILE

1 Perl is freely available for all common operating systems (see, e.g., http://www.perl.org).

Checker ModuleChecker ModuleChecker Module

Pattern HandlerPattern HandlerPattern Handler

Parser

find call
Router
Config
(ASCII)

Results Database
Output GenerationXML

Results
(HTML)

Results
(HTML)

Results
(HTML)

Checker ModuleChecker ModuleChecker Module

Pattern HandlerPattern HandlerPattern Handler

Parser

find call
Router
Config
(ASCII)

Results Database
Output GenerationXML

Results
(HTML)

Results
(HTML)

Results
(HTML)

Results
(HTML)

Results
(HTML)

Results
(HTML)
3Copyright  Fraunhofer IESE 2003

CROCODILE architecture and
operation
2.2 Operation

The tool’s basic operation is as follows: The parser initially polls all configured
checker modules, retrieving from each module a set of text patterns this module
is interested in. These patterns are described in Backus-Naur-Form, comparable
to the format that appears in the Cisco documentation [2], providing the usual
operators of sequence, alternative, repetition, and negation. Pattern macros
may be defined for convenience. (An example of such pattern and macro speci-
fications is shown in Figure 3 in Section 3.4.1).

The parser then proceeds to read an IOS router configuration file in text format,
parses it line by line, and tries to find lines matching one of the patterns regis-
tered by the modules. Whenever a matching pattern is found in the configura-
tion, the parser notifies all checker modules that had registered this pattern, and
supplies the matching line in various formats to each module.

When a module receives such a notification, it executes a pattern handler associ-
ated with this pattern. Such a handler is a method of the checker module that
contains all checking and evaluation steps to be performed on each occurrence
of this pattern. This may include using information gained from previous handler
invocations (even handlers in other modules), thus building a comprehensive
view spanning more than one line.

The invocation of each handler returns a checking result, and possibly additional
comments. All such findings are stored in structured format in an internal data-
base.

After all lines of the input file have been processed in this way, the parser polls
each module once more for its overall conclusions. The polling enables the mod-
ules to construct an integrated view of the aspects interesting to them from the
sum of all previous parser notifications.

After the parser run is finished, the complete result database is stored as a file in
XML format. These raw data are then used to generate various integrated HTML
hypertext reports viewable with any conventional web browser.

CROCODILE is currently delivered with a collection of standard checker modules
that cover fundamental security aspects of router configurations. These modules
will be described in Section 3.4.

2.3 Construction of custom checker modules

Users do not normally come into contact with the interface between the parser
and the checker modules, even when they construct their own checker mod-
ules. The interplay results automatically, as all checker modules are derived from
4 Copyright  Fraunhofer IESE 2003

CROCODILE architecture and
operation
a common base class Module which provides all the machinery to interface
with the rest of the system. Constructing a customized checker module thus
more or less reduces to only three tasks:

1. Specify the patterns to be analyzed in Backus-Naur format.

2. Write one handler per pattern to analyze the text fragments found and
reported by the parser.

3. [optional] Write a postprocessing handler to draw the overall conclusions
from all findings of this module.

2.4 Result database

All checker modules store their results in structured format in an internal result
database. The most important concepts in this respect are annotations and
views.

Annotations are comments about a certain property of the router configuration.
Every annotation bears a severity tag, with tag values ranging from OKAY,
INFO, CHECK, WARN to ALERT. This tag indicates whether the annotation
refers to a positive, neutral, unclear, negative, or even critical finding. The sever-
ity of a finding is indicated in the hypertext output by a corresponding color.

Views gather all findings referring to a common aspect of the configuration. The
handler programmer may freely define the name and meaning of a view and
assign every finding to one or more views. Views help to focus subsequent result
display on selected aspects. Examples for common views include 'User Authenti-
cation', 'Logging', or 'Accounting'.

Besides annotations and views, suggestions (e.g., fixes), references to other
findings or external resources, and data dumps may be stored in the database. A
simple programming interface for all these result types is available to the handler
programmer. Each such result item may pertain either to a line, an IOS configu-
ration mode1, a logical view, or to the configuration as a whole.

1 A configuration mode is a scoping concept of the IOS command shell, gathering a number of IOS com-
mands all pertaining to, for example, a specific router interface ("interface mode") or serial line ("line
mode").
5Copyright  Fraunhofer IESE 2003

Practical Use
3 Practical Use

CROCODILE is very easy to install: The software archive file is unpacked to an
arbitrary directory, and may be directly started from there, provided that a Perl
run-time environment is present. All output generated by CROCODILE is stored
below the installation directory, and the tool can be removed simply by deleting
the installation directory. CROCODILE is invoked by supplying the name of an
IOS router configuration file, and produces its output without further user inter-
action as a subdirectory of HTML files ready for viewing.

3.1 Task-specific displays

CROCODILE provides different displays of the evaluation results including over-
views, statistics, and topic-oriented perspectives in the form of the views
described above. The displays are enriched by hyperlinks to related displays and
supplementary information such as automatically generated Internet links to
corresponding entries of the Cisco IOS Command Reference. Starting from an
overview display, the user can navigate deeper and deeper into specific aspects,
with the displayed scope shrinking and the level of detail increasing. The user
may focus on a particular topic by selecting the corresponding view. Coloring is
used to indicate the severity assigned to each finding. Figure 2 shows two typi-
cal examples of such displays, with the one in the background pertaining to the
configuration as a whole, and the upper one focussing on a specific configura-
tion line (line 19 in this case).

3.2 Typical defects uncovered

Feeding the tool with the router configuration file that is available for an online
demonstration on the CROCODILE homepage, our checker found, among oth-
ers, the following exemplary problems:

• potentially dangerous services that have been left activated, and missed
opportunities to activate useful additional security functions (e.g., password
protection, encryption, authentication)

• strongly encrypted passwords that are reused in weakly encrypted format
(thus providing almost plaintext for the strongly encrypted secret)

• incomplete configuration of complex router features (e.g., authentication
based on RADIUS, but with no RADIUS server being specified)
6 Copyright  Fraunhofer IESE 2003

Practical Use
Figure 2: Two CROCODILE displays at different levels of detail

• an assignment of an undefined access control list to an interface (leaving the
interface silently unprotected)

• an access control list that is defined but never used (probably due to a typing
mistake: chances are that the misspelled access control list actually exists but
provides inadequate protection)

• access control lists that contain superfluous ("dead") rules (not an immediate
danger, but an indication that the router administrator did not fully compre-
hend the implications of the configured properties) — see Section 3.5

• an ingress/egress interface (i.e., a connection to a foreign, potentially hostile
network) that fails to satisfy the user-defined minimum relaying (whitelist)
and filtering (blacklist) requirements — see Section 3.5

• a line interface failing user-defined blacklist and whitelist restrictions
7Copyright  Fraunhofer IESE 2003

Practical Use
• an inadequately high reporting threshold for logging (thus excluding access
control list events that are explicitly required to be logged).

Note that most of these findings require an evaluation of the combined effects
of multiple configuration clauses. This type of analysis cannot be achieved by
mere pattern matching — i.e., by checking the structural equivalence to pre-
defined clause templates at the syntax level — but requires an assessment of the
semantics of the configuration as a whole.

Figure 2 shows the evaluation profile of a demonstration run. For more details
about the configuration under test there and the results of its evaluation, we
refer the reader to the CROCODILE homepage at www.iese.fraunhofer.de/croc-
odile.

3.3 Differential display mode

A special type of reporting is the differential display of two analysis results. Dif-
ferential display mode emphasizes the effects of changes relative to an earlier
configuration — all findings not affected by these changes are faded out in the
display. This is very useful in practice, as the user will usually not "fix" all find-
ings, but leave some settings as they are for reasons not visible in the configura-
tion file. It would be a considerable nuisance to be presented the same irrelevant
findings again and again. CROCODILE can restrict its evaluation to only the dif-
ferences between two versions of a configuration, producing an evaluation pro-
file display and a side-by-side overview display that make immediately obvious
where the configuration was changed and whether the change was for the bet-
ter or for the worse.

3.4 Available checker modules

CROCODILE currently comes with the following checker modules:

3.4.1 CompoundPatterns

The most fundamental checker module delivered with CROCODILE is the Com-
poundPatterns module. It supports user-defined evaluation criteria for the
(non-)existence of certain IOS configuration clauses. The user may specify arbi-
trary syntax patterns and, for each pattern, assign a severity to (1) the occur-
rence of this pattern in the configuration and (2) the omission of the pattern.
Depending on the user’s choice, CROCODILE will generate an OKAY, INFO,
CHECK, WARN, or ALERT message in each case. A pattern may be either a
basic pattern referring to a single configuration clause, or a compound consist-
ing of several basic patterns linked, for example, by logical AND, OR, XOR, NOT,
8 Copyright  Fraunhofer IESE 2003

Practical Use
or IF-THEN-ELSE operators. CompoundPatterns recognizes the IOS configura-
tion modes (e.g., 'interface mode', 'line mode', 'router mode'), and patterns
may be restricted to be valid in certain IOS modes only. CompoundPatterns
presents its findings in a CROCODILE view of the same name.

Figure 3 shows an example of typical macro and compound pattern specifica-
tions. The first compound pattern requires that for all interfaces except 'Loop-
back' or 'Null' interfaces, the interface must be either disabled ("shutdown"), or
else the Cisco Discovery Protocol (CDP) must be disabled — either local to the
interface context ("no cdp enable"), or at global level for all interfaces("no cdp
run"). If this condition is met, CROCODILE generates an OKAY message ('o');
otherwise, a WARN message ('w') is issued.

Figure 3: Compound pattern specifications

Of course this simple specification format covers only those evaluation criteria
that can be recognized without extracting and accumulating state information
from the configuration clauses that match the compound pattern. Typical evalu-
ation problems covered by CompoundPatterns are, for example, checking that
(un)desired services and modes are explicitly (de)activated, that certain com-
mands are assigned the required level of privilege, or that passwords are
assigned and sufficiently securely encrypted.

Relationships that require comparisons between specific attributes of multiple
pattern instances cannot be expressed in compound pattern syntax, for exam-
ple, that an arbitrary name found in use has been properly defined elsewhere.
However, this deliberate restriction yields a very intuitive way to describe many
simple properties of a configuration. Our experience has shown that Com-
poundPatterns contributes significantly to a large evaluation coverage. Never-
theless, an analysis of the complex aspects of a router configuration needs to
dig deeper than this. To this end, CROCODILE provides the more specific mod-

INTERFACE ::= { int | interface }

INTERFACE !Loopback !Null ... {

ow if (NOT shutdown) {

no cdp enable | Global(no cdp run)

}

} INTERFACE ...

line Vty ... {

ow no exec | access-class NUM in

oc logging synchronous

} line ...
9Copyright  Fraunhofer IESE 2003

Practical Use
ules described next, which offer advanced capabilities at the expense of less flex-
ibility in module configuration.

3.4.2 Connectivity

This module extracts from the configuration information about the topology of
the router’s network neighborhood with its surrounding subnets and nodes.
While it does report irregularities and potential weaknesses, the focus of this
module is not on security checking, but on extracting and deriving topology
information for later processing by other modules or for manual inspection. Cur-
rently, the reconstructed topology data are listed in textual form, but a graphical
output format for human users is under development. Taking the case of an
interface as an example of the extracted information, the module would list
which IP protocols are routed through this interface as inbound and outbound
traffic to and from which subnets or hosts. Connectivity presents most of its
findings in CROCODILE views for 'Lines and Interfaces' and 'Nodes and Subnets'
.

3.4.3 IngressEgress

This module verifies that the configuration of access control lists (ACLs), line
interfaces, and network interfaces conforms to the desired behavior as specified
by the CROCODILE user. The user may specify blacksets and whitesets for these
objects, and the IngressEgress module will list any violations found in the ACL
relative to these sets, as well as perform other analyses as described in
Section 3.5. Figure 4 shows an example of a user-defined egress restriction.
Note that format and order of independent egress clauses is irrelevant: Ingres-
sEgress computes the precise meaning — i.e., blackset and whiteset — of the
specification, and checks whether the evaluation target is at least as restrictive
as the blackset, and open at least for the whiteset. The module presents its find-
ings in various CROCODILE views for 'Ingress/Egress' in general, for 'Accesslists',
and for 'Lines and Interfaces'.

3.4.4 AAA

The authentication/authorization/accounting (AAA) functionality of IOS is cen-
tral to securing access to a router. The AAA module checks the consistency,
completeness and security of the authentication and authorization settings
(accounting is not yet assessed), including the order of clauses, the consistency
of definition and use of mechanisms, the use of insecure or deprecated features,
the use of IOS commands that are incompatible with AAA, as well as use and
security of passwords and of external authentication server accesses. The evalu-
ation of AAA is a complex task, and numerous non-AAA features like interface,
10 Copyright  Fraunhofer IESE 2003

Practical Use
line, user, and server commands have to be taken into account for this analysis.
The module feeds its findings into the view 'AAA' of the 'Authentication &
Authorization' display.

Figure 4: IngressEgress specification

3.4.5 Logging

IOS supports five modes of logging relevant events at different severity levels
(e.g., console logging, syslog, SNMP traps), which may be used in any combina-
tion. The Logging module checks and lists the activation level of logging
modes, remote logging servers involved, and configured attributes such as time
stamps, bandwidth limitations, or buffer sizes. The module validates the consis-
tency of all these settings. Logging collects its findings in a CROCODILE view of
the same name.

3.4.6 Passwords

Several passwords may be specified for an IOS router, such as login passwords,
enable passwords, or FTP passwords, optionally restricted to certain IOS
"enabling levels" only. Each password may be encrypted using either a crypto-
graphically weak or strong mechanism. The Passwords module checks and lists
the general and level-specific activation of passwords, checks for trivial or
weakly encrypted passwords, and whether strongly encrypted passwords are
reused in weakly encrypted format. The module presents its findings in the
'Passwords and Secrets' view of the 'Authentication & Authorization' display.

INGRESS_EGRESS_INTERFACE ::= Serial {1|2}

NETMASK ::= 0.0.0.255

LOCALNET ::= 157.106.153.0 NETMASK

! RFC1918 outbound address filtering

interface INGRESS_EGRESS_INTERFACE out {

deny ip any 10.0.0.0 0.255.255.255

deny ip any 127.0.0.0 0.255.255.255

deny ip any 172.16.0.0 0.15.255.255

deny ip any 192.168.0. 0 0.0.255.255

permit ip LOCALNET any

}

11Copyright  Fraunhofer IESE 2003

Practical Use
3.4.7 SNMP

The Simple Network Management Protocol (SNMP) is a protocol for the remote
retrieval and manipulation of numerous router parameters pertaining to net-
work management. In particular SNMPv3 supports multiple mechanisms for
authentication, authorization, and accounting. CROCODILE checks the router
for SNMP issues like full use of the available security features, easily guessed
community strings, protection by access control lists and SNMP view restrictions,
and (de)activation of certain SNMP traps (i.e., asynchronous notification mes-
sages). SNMP collects its findings in a CROCODILE view of the same name.

3.4.8 NTP

The Network Time Protocol (NTP) supports the synchronization of system clocks
among network components, which is useful for monitoring and error handling.
Among other things, the NTP checker module evaluates NTP access control lists,
checks and lists the declared and used authentication keys, and performs cross-
checks between the configured NTP commands and these security settings. Fur-
thermore, the potential NTP client hosts are listed for each router interface. NTP
collects its findings in a CROCODILE view of the same name.

3.4.9 RATemulation

Another module, which is somewhat out of line with the others in that it does
not cover a security aspect of its own, is a module that emulates the Router
Audit Tool (RAT). Section 4.1 describes RAT and our emulation module in more
detail.

3.5 Access control list analysis

A unique feature of CROCODILE is the symbolic representation and processing
of access control lists (ACLs) and their associated blacksets and whitesets, that
is, the sets of packets that can (not) pass through an ACL. In IOS an ACL is spec-
ified as an ordered sequence of 'permit' and 'deny' rules. Each rule refers to
packets with a specific combination of protocol type (e.g., IP, TCP, UDP, ICMP,
IGMP), origin address, destination address, and maybe some additional packet
attributes. Conceptually, the router applies an ACL to a given IP packet by
sequentially comparing the packet to each ACL rule; the first rule that matches
the packet determines whether the packet is accepted (’permit’ rule) or rejected
(’deny’ rule). Obviously, the order of rules is significant here. If none of the
ACL’s rules matches the packet, the packet is silently discarded. This ACL for-
malism is simple yet flexible.
12 Copyright  Fraunhofer IESE 2003

Practical Use
Unfortunately, ACLs tend to grow over time, and the growth is often rather
unsystematical. Therefore, it is often infeasible for a human to determine the
exact whiteset and blackset of a real-world ACL, and thus errors in the filtering
behavior of a router are easily missed. Note, for example, that if an ACL rule
appears too late in the rule sequence it may be unreachable for any matching IP
packet — the rule may unintentionally become a dead clause. Note also that an
intended ACL effect may be achieved in many different, syntactically unrelated
ways, which makes two ACLs virtually incomparable for the human expert with-
out knowing their blacksets and whitesets. CROCODILE computes blacksets and
whitesets independently of a specific ordering or format of ACL and routing
clauses, and uses them for a number of consistency and security checks:

• ACL rules whose packet domain intersects with that of earlier rules must be
reconsidered when removing or reordering ACL clauses. CROCODILE indi-
cates such dependent rules along with the set of rules they depend on.

• Rules which could be removed without any effect (dead rules) are flagged,
along with the set of earlier rules whose combined effect "killed" them by
"shading" the rule’s whole packet domain. Such a dead rule is a hint that the
creator of the ACL originally intended a different effect than that actually
resulting.

• The IngressEgress checker module (see Section 3.4.3) employs the blackset
and whiteset computation when verifying that a given ACL (or, more gener-
ally, an interface specification in combination with associated routes and
ACLs) does indeed amount to (at least) the relaying and filtering effect that
the user stipulated.

• For a complex ACL with many rules, the corresponding blackset and whiteset
may become so fragmented that manual inspection of all fragments is no
longer feasible. CROCODILE’s 'blackwhite.pl' utility can be used in such cases
to interactively narrow the scope of the set computations from full generality
(i.e., all IP packets) to arbitrary subsets of IP packets — for example to "ICMP
packets originating from remote addresses" or "TCP packets belonging to
not-yet-established connections" only: Such blackset and whiteset projec-
tions are much easier to comprehend and to verify.
13Copyright  Fraunhofer IESE 2003

Related Work
4 Related Work

Few tools are available for router security checking, none of them, remarkably,
by the router vendors. The well-known RAT (Router Audit Tool) [3] and one
lesser known tool by Equant Communications [4] are the only serious contend-
ers known to us. Also technically interesting are some tools aimed at firewalls
rather than routers, which analyze packet filtering behavior in a way that is com-
parable to CROCODILE’s functions in this area.

4.1 RAT

RAT version 2.0 is a joint development of several partners, including the U.S.
National Security Agency (NSA), UUNET, and the SANS Institute. Like <Small-
Caps>Crocodile, RAT is implemented in the Perl programming language. The
tool is freely available from the Center for Internet Security [3].

RAT checks router configurations against configurable checking rules mirroring
NSA recommendations [5]. A RAT rule consists of a pattern, which is declared as
either required or forbidden. The rule is considered a PASS or FAIL depending
on whether or not the corresponding pattern appears in the configuration text.

RAT’s evaluation result is a list of all checking rules, each marked either as
passed or as failed. Checking rules may be enriched by attributes such as a rule
weight reflecting their importance, plaintext descriptions and explanations, and
possibly a fix suggestion — that is, a sequence of IOS commands for correcting
the failed configuration clause. These data are added to the evaluation report in
the form of hyperlinks and support the user in understanding the findings. In
CROCODILE terms, RAT thus offers three types of displays: (1) weighted PASS/
FAIL statistics; (2) an explanation of the checking rules; (3) a sketch of possible
corrections.

Similar to CROCODILE, RAT patterns may also be specified relative to certain IOS
configuration modes. For example, they may be restricted to certain interface or
line contexts. However, RAT does not support individual pattern handlers.1 And

1 Instead of a pattern (a Perl regular expression in RAT), a so-called callout (an arbitrary Perl function) may
be specified in order to make a PASS/FAIL decision. However, the RAT distribution contains only rudi-
mentary callouts, and the callout interface is not meant for user customizations. Even callouts cannot
produce any analysis results beyond the binary PASS/FAIL decision.
14 Copyright  Fraunhofer IESE 2003

Related Work
in contrast to CROCODILE’s compound patterns, RAT is essentially restricted to
basic patterns. That is, evaluation criteria based on the interplay of multiple
unrelated configuration lines cannot be handled with RAT’s simple pattern-
matching approach.

RAT thus lacks the abilities for analyzing the deeper semantics of several related,
but scattered IOS configuration clauses. This becomes clear when taking a closer
look at the test run discussed in Section 3.2 that included a standard RAT evalu-
ation1, depicted in Figure 2:

• In the example shown, line 19 passed the RAT rule "IOS – user password
quality". In fact, in the local context of line 19 the password 'f4p01' is rea-
sonably secure. The reason why this password should be rejected is because
it is identical to the strongly encrypted enable secret in line 17 and only
weakly encrypted, thus compromising the strong encryption by pointing a
potential password cracker to the required plaintext.

• Another typical weakness of the RAT approach shows in ingress/egress
checking. The RAT distribution contains a rule "IOS – ingress filter definition"
that tries to check for RFC2827-compliant ingress filtering [6]. This rule, how-
ever, performs simple pattern matching of an ACL template containing the
required clauses in predefined ordering and format. Consequently, RAT will
report a "false positive" (i.e., a wrong FAIL decision) if the configuration
happens to contain the required IOS clauses, but in a different order, or if it
contains different clauses that nevertheless amount to equivalent filtering.
RAT may even report a "false negative" (i.e., a wrong PASS decision) if the
required sequence of ACL rules occurs in the configuration, but is made
unreachable by a preceding, conflicting rule such as "permit ip any any" —
a worst-case example. RAT cannot recognize this type of problems, because
RAT rules only assess the structure, not the meaning of an IOS configuration.

These shortcomings come as no surprise when noting that the analysis capabili-
ties of RAT correspond exactly to those of CROCODILE’s CompoundPatterns
checker (restricted to only basic patterns without any compounds)— a versatile,
but rather shallow module. Admittedly, CompoundPatterns refrains from
attributing its rules and delivering further explanations about the interpretation
of its findings (which other modules certainly do); however, this restriction was
deliberately chosen for this particular module in order to keep the effort for
specifying user-defined evaluation criteria at a minimum, and the rule syntax
simple.

1 To apply the rule set of the RAT 2.0 distribution, we used our RAT emulation module, see below
15Copyright  Fraunhofer IESE 2003

Related Work
On the whole, RAT compared to CROCODILE offers relatively weak, but richly
documented checking rules. In fact, CROCODILE is able to benefit from RAT’s
elaborated rule sets, in particular from the links to further reading that are
embedded in these rule specifications: A special checker module — RATemula-
tion — takes RAT rule descriptions as input and faithfully applies the specified
evaluation criteria to the IOS configuration under test. In addition to customary
<SmallCaps>Crocodile views, which (among other findings) contain the
extracted RAT links, the emulation module produces reports equivalent to those
of original RAT. This offers a migration path for former RAT users and also dem-
onstrates the superiority of the CROCODILE framework. Note, however, that the
available RAT checking rules do not improve CROCODILE’s depth of analysis,
but merely complement the "More Information" sections of CROCODILE’s
views.

4.2 Equant router tool

Information on the router security tool developed by Equant [4] is scarce1, and
the tool — presumably named conf_validation — does not appear to be avail-
able to the public. The Equant tool offers numerous small-scale tests compara-
ble in scope to the capabilities of CROCODILE’s CompoundPatterns module,
equipped with only basic patterns; however, its most striking feature seems to
be the analysis of the interplay of the rules of an ACL. In this respect, the tool
surpasses the single-lines analysis of RAT: Within the rules of each ACL, the tool
compares all possible pairs of rules and checks if they are contradictory, or if one
of them is redundant. However, the complete whiteset and blackset resulting
from the combined effect of all rules is never computed; accordingly, most of
the security checks described in Section 3.5 are not available.

With R denoting the set of packets matching an ACL rule r, the tool recognizes
a rule ri as redundant relative to a rule rj, if Ri ⊆ Rj and both rules are of the
same type ('permit' or 'deny', respectively). Such a rule is not directly harmful,
but should be removed for the sake of clarity. Note, however, that only those
rules are recognized as redundant whose effect is a sub-effect of only one other
rule in this ACL. That is, if the effect of a rule is implied only by the combined
effect of two or more other rules, the redundancy is not recognized. In contrast,
our approach yields the complete set of redundant rules.

Rules ri , rj (i < j) are recognized as inconsistent if Rj ⊆ Ri and one of them is a
"deny", the other a "permit" rule. In this case, the net effect of rj is void, prob-

1 We tried to contact the authors but received no reply.
16 Copyright  Fraunhofer IESE 2003

Related Work
ably contrary to the intention of its author. CROCODILE recognizes this, too,
and flags such rules as dead.

4.3 Firewall Analysis Tools

Firewall analysis tools analyze ACLs and routing tables, which is only one of the
many facets of CROCODILE.

The Lumeta Firewall Analyzer (LFA) [7] simulates a firewall’s filtering behavior for
all possible IP packets and produces HTML output showing what packets from
and to what hosts and services this firewall configuration will or will not let pass.
In this respect, LFA’s processing of firewall rules is very similar to CROCODILE’s
processing of a router ACL. The LFA output offers the passed and dropped
packets indexed by service and by host (or host group), separated in inbound
and outbound direction. This is conceptually rather similar to the functionality of
CROCODILE, though more conveniently presented.

LFA works by translating configuration files for firewalls from vendor-specific
format to a common intermediate configuration language, and also draws on
the firewall’s routing table in order to determine what subnets are behind the
firewall’s network interfaces (this is comparable to CROCODILE’s Connectivity
module). While CROCODILE explicitly computes the blackset and whiteset of an
ACL, LFA seems to build its picture of the filtering behavior by successively prob-
ing individual combinations of source, destination, and service (which may in
turn contain wildcards). However, dead rules (as in <SmallCaps>Crocodile) can-
not be discovered in this way. Unfortunately, a detailed comparison of the two
approaches, in particular regarding performance, coverage, and generality, is
not possible based on the information currently available. The public availability
of the LFA tool is unclear — it is mentioned, but not marketed in any way on the
Lumeta web site.

Another tool for ACL analysis is based on translating ACL rules to logical clauses
in a Prolog-like language, which are then used by an inference engine to answer
questions about the filtering effect of this ACL [8]. The clauses gained from the
ACLs are enriched by general logical clauses encoding typical routing concepts
such as the accessibility of certain subnets or services. Queries may also be
posed using these additional concepts. Users may even program their own logi-
cal clauses, which makes the tool extensible in a way similar to CROCODILE.

Even if the tool seems rather immature on the whole and there is apparently no
experience with complex real-world ACLs yet, the approach is nevertheless
rather interesting conceptually. Encoding application-specific rules in a Prolog-
like language may be more natural for certain problems than using Perl; how-
ever, it is also less flexible, as the rules no longer operate on the original router
configuration description, but on the predefined set of logical atoms. The per-
17Copyright  Fraunhofer IESE 2003

Conclusions and Outlook
formance of such an inference-based approach seems critical; the authors make
no statements about this, and they have apparently tested their tool with only
relatively simple ACLs (10–20 rules) so far. The dissection of overlapping ACLs
rules mentioned only in passing raises additional concerns about the perfor-
mance of this approach.

Another tool to interactively query the filtering effect of an ACL is presented in
[9], which again answers questions about accepted and rejected IP packets.
Redundant rules are flagged, though not inconsistent ones. Furthermore, the
differential blackset and whiteset of two versions of an ACL may be computed.
Extending the tool by higher-level concepts as is possible with [8] or CROCODILE
is not supported. The bit vector representation used for ACLs makes formulating
queries and interpreting results rather cumbersome; this approach may be more
appropriate for a router compiling ACL rules to a more efficiently evaluated
form than for a human user, who thinks rather at the level of subnets and ser-
vices than at the level of bit vectors.

5 Conclusions and Outlook

CROCODILE is an easily extended and flexible tool supporting the human expert
in the security analysis of router configurations. It relieves the user of cumber-
some details and grades all its findings according to their severity while adding
many other useful pieces of information. The tool presents a wealth of informa-
tion in various topic-specific views.

We have analyzed various practical configurations, originating, however, from
only two external user organizations (both with trained staff) so far. CROCODILE
has found irregularities in most of these configurations — frequently even grave
errors such as references to undefined ACLs! Configuration defects thus seem
to be the norm rather than the exception, and security breaches often remain
undiscovered for long times. The fact that the checker modules existing so far
have uncovered many problems overlooked even by trained staff underlines the
validity of our approach.

CROCODILE offers truly novel functionality in various places, particularly regard-
ing the features building on the global view of the router configuration and on
the blackset and whiteset analysis. Nevertheless, in spite of all its functionality,
18 Copyright  Fraunhofer IESE 2003

Conclusions and Outlook
CROCODILE cannot replace the human expert — the mere customization of the
configurable checker modules requires context knowledge that is not available
to a tool. Interpreting all details of the evaluation results will always require the
expertise of a networking specialist. Fully automated corrections were thus
never a goal of CROCODILE.

The development of CROCODILE continues, including the creation of new
checker modules for additional evaluation areas. Further development will be
driven by user demand. However, a large, but fixed inventory of checker mod-
ules seems less important than the simple extensibility of the CROCODILE frame-
work enabled by the framework’s inheritance mechanisms. CROCODILE’s appli-
cation programmer interface provides substantial support for the further
extension of checking capabilities, most prominently

• a clean "plug in" interface for new checker modules, supplying each module
with only the relevant pieces of information, based on BNF pattern specifica-
tions;

• an internal database for storing findings, cross references, fix suggestions,
and other useful information in structured format, with a simple yet versatile
interface for checker modules;

• a hypertext report generator that presents the contents of the database in
uniform style and groups related findings as logical views connected via
hyperlinks;

• a differential display mode that automatically applies to any (new) module —
including the RAT emulation module.

By defining suitable patterns and handlers, the CROCODILE approach may even
be extended to the security checking of other text-based configuration descrip-
tions — ranging from routers by other vendors over firewalls to general network
services.

Information about the current status of CROCODILE is available on the home-
page at www.iese.fraunhofer.de/crocodile, which includes an online demon-
stration and a detailed manual in German and English version.
19Copyright  Fraunhofer IESE 2003

References
6 References

[1] S. Groß, R. Schwarz, Ein Werkzeug zur Sicherheitsüberprüfung von Cisco
IOS Routerkonfigurationen, IESE Report Nr. 078/01D, Fraunhofer IESE,
Kaiserslautern, Germany, December 2001.

[2] Cisco Systems Inc., Cisco IOS 12.0 Configuration Fundamentals, Cisco
Press, 1999.

[3] Center for Internet Security, Router Audit Tool, March 2003. http://
www.cisecurity.org

[4] D. Valois, C. Llorens, "Identification of Security Holes in Router Configura-
tions", Proceedings of the 14th Annual Computer Security Incident Han-
dling Conference (FIRST 2002),Hilton Waikoloa Village, Hawaii, June 24-
28, 2002.
http://www.first.org/events/progconf/2002/d4-04-valois-paper.pdf

[5] National Security Agency: Router Security Configuration Guide. February
2003.
http://www.nsa.gov/snac/cisco

[6] P. Ferguson, D. Senie, Network Ingress Filtering – Defeating Denial of Ser-
vice Attacks which employ IP Source Address Spoofing, RFC 2827, The
Internet Society, May 2000.
http://www.ietf.org/rfc/rfc2827.txt

[7] A. Wool, "Architecting the Lumeta Firewall Analyzer", Proceedings of the
10th USENIX Security Symposium, Washington, D.C., August 13-17, 2001
http://www.usenix.org/events/sec01/wool.html

[8] P. Eronen, J. Zitting, An expert system for analyzing firewall rules, Pro-
ceedings of the 6th Nordic Workshop on Secure IT Systems
(NordSec2001), Copenhagen, Denmark, 2001.
http://www.cs.hut.fi/~peronen/publications

[9] S. Hazelhurst, Algorithms for Analysing Firewall and Router Access Lists,
Tech. Report TR-Wits-CS-99-5, University of the Witwatersrand, South
Africa, July, 1999.
http://citeseer.nj.nec.com/hazelhurst99algorithm.htm
20 Copyright  Fraunhofer IESE 2003

Copyright 2003, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: A Multi-View Tool for
Checking the Security
Semantics of Router Con-
figurations

Date: December 2003
Report: IESE-062.03/E
Status: Final
Distribution: Public

	A Multi-View Tool for Checking the Security Semantics of Router Configurations
	Executive Summary
	Table of Contents
	1 Router configuration and security checking
	2 CROCODILE architecture and operation
	3 Practical Use
	4 Related Work
	5 Conclusions and Outlook
	6 References

