
Automatic Reassembly of Document Fragments
via Context Based Statistical Models

Kulesh Shanmugasundaram
kulesh@isis.poly.edu

Nasir Memon
memon@poly.edu

Department of Computer and Information Science
Polytechnic University
Brooklyn, NY 11201

Abstract

Reassembly of fragmented objects from a collection of
randomly mixed fragments is a common problem in classi-
cal forensics. In this paper we address the digital forensic
equivalent, i.e., reassembly of document fragments, using
statistical modelling tools applied in data compression. We
propose a general process model for automatically analyz-
ing a collection fragments to reconstruct the original docu-
ment by placing the fragments in proper order. Probabilities
are assigned to the likelihood that two given fragments are
adjacent in the original using context modelling techniques
in data compression. The problem of finding the optimal
ordering is shown to be equivalent to finding a maximum
weight Hamiltonian path in a complete graph. Heuristics
are designed and explored and implementation results pro-
vided which demonstrate the validity of the proposed tech-
nique.

1. Introduction

Reassembly of fragments of objects from a collection
of randomly mixed fragments is a problem that arises in
several applied disciplines, such as forensics, archaeology,
and failure analysis. This problem is well studied in these
disciplines and several tools have been developed to auto-
mate the tedious reassembly process [10]. The digital foren-
sic equivalent of the problem –which we callreassembling
scattered documents–, however, is yet to be explored.

Digital evidence by nature is easily scattered and a foren-
sic analyst may come across scattered evidence in a vari-
ety of situations. A forensic analyst who comes across the
problem of recovering deleted files often faces the diffi-
cult task of reassembling file fragments from a collection
of randomly scattered data blocks on a storage media. This
is especially true with the FAT16 and FAT32 filesystems,

which due to the popularity of the Windows operating sys-
tem, are perhaps still the most widely used file systems
on personal computers. Furthermore, due to the ubiquitous
presence of Windows and easier implementation considera-
tions, the FAT file systems has been adopted in many con-
sumer storage media devices, such as compact flash cards
used in digital cameras and USB mini-storage devices. The
FAT filesystem however is not very efficient in maintaining
continuity of data blocks on the disk. Performance degra-
dation due to file fragmentation is a common problem in
many FAT systems. Due to fragmentation, when a file is
stored data blocks could be scattered across the disk. With-
out adequate file table information it is difficult to put the
fragments back together in their original order. Often criti-
cal file table information is lost because they are overwritten
with new entries. In fact, the most widely used disk foren-
sics tools like TCT[18],dd utility, The Sleuth Kit[7], and
Encase[3] can recover data blocks from deleted files auto-
matically. However, when the data blocks are not contigu-
ous these tools cannot reassemble the blocks in the correct
order to reproduce the original file without the proper file ta-
ble entries. The job of reassembling these fragments is usu-
ally a tedious manual job carried out by a forensic analyst.

Another situation where a forensic analyst come across
scattered evidence is the swap file. The system swap file is
one of the critical areas where lot of useful forensic infor-
mation can be gathered. The swap file contains critical in-
formation about the latest events that occurred on a com-
puter. Therefore, reconstructing contents of the swap file
is vital from a forensic standpoint. In order to achieve bet-
ter performance, operating systems maintain swap file state
and addressing information in page-tables stored only in
volatile memory. When computers are secured for eviden-
tial purposes they are simply unplugged and sent to a foren-
sic lab. Unfortunately contents of volatile memory are usu-
ally lost beyond recovery during evidence collection. With-
out the addressing information from the page-table it is dif-

ficult to rebuild contents off a swap file. Again, a forensic
analyst is left with a collection of randomly scattered pages
of memory.

One of the most popular and naive approach to hiding
evidence is to store them in slack space in the filesystem.
Files are assigned certain number of disk blocks for storage.
However, not all files fit exactly into the allocated blocks.
In most cases files end up using only a portion of their last
block. The unused space in this last block is known as slack
space. Modifying the contents of slack space does not af-
fect the integrity of data stored in the filesystem because the
read operation does not read data in slack space. A crimi-
nal can modify a file hiding program to choose the blocks
on which files are hidden based on a sequence of numbers
generated using a password. Knowing the password he can
reconstruct the original document, whereas a forensic ana-
lyst is left with randomly mixed fragments of a document
which will need to be reassembled.

Finally, ubiquitous networking and growing adop-
tion of peer-to-peer systems give anyone easy access
to computers around the world. There are many peer-
to-peer systems which enable users to store data on
a network of computers for easy, reliable access any-
time, anywhere.Freenet[4], Gnutella[5] and M-o-o-t[12]
are some of the better known systems used by mil-
lions of users around the world and many others, such as
OceanStore[9], Chord[17] andPastry[16], are in develop-
ment at research laboratories. These systems are designed
to provide reliable, distributed, and sometimes anony-
mous storage networks. A criminal can use these very sys-
tems to hide software tools and documents that might
be useful for his prosecution, just as easily as any other
user can save a file. Most peer-to-peer systems asso-
ciate a unique key, either assigned by the user or generated
automatically, with each document they store. Hence, a per-
son can split a document into fragments and store each
fragment in a peer-to-peer system using a sequence of se-
cret phrases as keys, such that he can easily splice the
fragments together knowing the proper sequence of se-
cret phrases. For instance, in Freenet one can assign each
fragment a unique URL. Since URLs are user friendly key-
words it is easy to recall the proper sequence to retrieve and
splice the fragments together. It is, however, difficult to re-
construct the original document without the knowledge of
the proper sequence even if the keywords are known.

From the above discussion, it is clear that digital evi-
dence can easily take a variety of forms and be scattered
into hundreds of fragments making reassembly a daunting
task for a human analyst. To address this problem we pro-
pose a general process model and present a specific solution
to reassembling scattered evidence. Assuming that the nec-
essary evidence is collected entirely, the proposed model
has three steps:

1. Preprocessing:Encrypting or compressing digital ev-
idence removes structural details that can assist an an-
alyst in reassembling the evidence. During preprocess-
ing, evidence has to be cryptanalyzed and transformed
to its original form. Some cryptographic schemes de-
rive their keys based on user passwords. Since users
tend to choose dictionary based passwords it is quite
feasible to attack the password and obtain the key re-
gardless of the size of the key. Besides, brute force at-
tacks on even some of the sophisticated cryptographic
algorithms, such as DES, are shown to be feasible[6].
Note that a forensic analyst may not be too constrained
on time, making cryptanalysis a feasible process.

2. Collating: Although, in this paper, we consider re-
assembling a single document, in reality evidence is
usually a collection of mixed fragments of several doc-
uments of different types. To reassemble the evidence
efficiently fragments that belong to a document must
be grouped together. A hierarchical approach to collat-
ing can be used to effectively group similar fragments
together. Fragments can be initially grouped by super-
ficial characteristics, such as binary or plain-text docu-
ment, and later sophisticated text-categorization tech-
niques along with special knowledge about the frag-
ments can be used to further refine the results.

3. Reassembling:The final step in the process is to either
reassemble the document to its original form or to pro-
vide enough information about the original form to re-
duce the work of a forensic analyst. Ideally, we would
like to obtain the proper sequence of fragments that
resembles the original document. Even if the process
identifies a small number of potential orderings, from
which the forensic analyst can derive the proper order-
ing, it would result in considerable savings in time and
effort to the analyst.

In this paper we focus on the final step, that is, reassem-
bling a document given preprocessed fragments of that doc-
ument. The rest of this paper is organized as follows: in the
following section we describe the problem formally and in-
troduce a general technique for document reassembly. Sec-
tion 3 presents a specific realization of the general technique
and initial experimental results and we conclude in section
4 with a discussion on future work.

2. The Fragment Reassembly Problem

In this section we formulate the document fragment re-
assembly problem in a more rigorous manner and describe
a general approach for a solution to the problem.

2.1. Statement of the Problem

The problem of reassembly of scattered document can
be stated as follows: suppose we have a set{A0, A1 . . . An}
of fragments of a documentA. We would like to compute
a permutationπ such thatA = Aπ(0)||Aπ(1)|| . . . Aπ(n),
where|| denotes the concatenation operator. In other words,
we would like to determine the order in which fragments
Ai need to be concatenated to yield the original document
A. We assume fragments are recovered without loss of data,
that is, concatenation of fragments in the proper order yields
the original document intact.

Note that in order to determine the correct fragment re-
ordering, we need to identify fragment pairs that are adja-
cent in the original document. One simple technique to do
this, is to use a dictionary of the underlying language of the
document. With this approach, a fragmentAj would be con-
sidered to be a likely candidate fragment to followAi if the
word that straddles the boundaries ofAi andAj is found
in the dictionary. For example, suppose fragmentAi ends
with the phrase “The quick bro” and fragmentAj , Ak be-
gin with the phrase “wn fox jumps...” and “over lazy dog...”
respectively. It is clear thatAj is a better candidate to follow
Ai thanAk as the word that straddles the boundary of frag-
mentsAi, Aj forms a dictionary word, whereas the word
that straddles the boundary of fragmentsAi, Ak does not.

However, a dictionary-based approach is language spe-
cific and it is therefore not feasible for the variety of docu-
ments a forensic analyst may come across in the field. Fur-
thermore, for non-textual files, like executables, a dictionary
may not be readily available or easy to construct. Finally, if
more than one dictionary matches are found then how does
a forensic analyst select between the two?

To quantify the likelihood of adjacency a linguist may
assigncandidate probabilitiesC(i,j), representing the prob-
ability that the fragmentAj follows Ai, based on syntac-
tic and semantic analysis for each pair of fragments. Once
these probabilities are assigned, the permutation of the frag-
ments that leads to correct reassembly, among all possible
permutations, is likely to maximize the product of candidate
probabilities of adjacent fragments. This observation gives
us a technique to identify the correct reassembly with high
probability. More formally, we want to compute the permu-
tationπ such that the value

n−1∏

i=0

C(π(i), π(i + 1)) (1)

is maximized over all possible permutationsπ of degreen.
This permutation is most likely to be the one that leads to
correct reconstruction of the document. Note that maximiz-
ing the product in equation (1) is equivalent to maximizing

the sum
n−1∑

i=0

− log C(π(i), π(i + 1)) (2)

The problem of finding a permutation that maximizes
the sum in equation (2) can also be abstracted as a graph
problem. To do this we take the set of all candidate prob-
abilities (Ci,j) to form an adjacency matrix of a complete
weighted graph ofn vertices, where vertexi represents frag-
menti and the edge weights quantify the candidate proba-
bility of two corresponding fragments being adjacent. The
proper sequenceπ is a path in this graph that traverses all
the nodes and maximizes the sum of candidate probabilities
along that path. The problem of finding this path is equiv-
alent to finding a maximum weight Hamiltonian path in a
complete graph (See Figure 1) and the optimum solution to
the problem turns out to be intractable[2]. However there
are many heuristics known in the literature and we employ
one such heuristic as discussed in Section 3.2.

A

B

C

D

E

0.73

0.95

0.30

0.95

0.50

0.05

0.01

0.03

0.85

0.02

Figure 1. A Complete Graph of Five Frag-
ments & Hamiltonian Path (ACBED) that Max-
imizes the Weight (0.95 + 0.73 + 0.95 + 0.85 =
3.48)

It should be noted that the optimal solution may not nec-
essarily result in reconstruction of the original document.
However, if candidate probabilities have been properly as-
signed, then the optimal solution should have a large num-
ber of fragments in or almost in the right place. Hence,
it would be perhaps better for an automated document re-
assembly tool to present to the forensic analyst a small num-
ber of most likely reorderings, and based on which the cor-
rect reordering can be manually arrived at. The question that
remains is how do we assign candidate probabilities for pair
of fragments being adjacent, in an efficient and meaningful

manner? We address this question in the following subsec-
tion by using context-based statistical models.

2.2. Context-Based Statistical Models

The model for assigning candidate probabilities for a
pair of fragments needs to be independent of language and
format. Data compression literature explores many power-
ful statistical modelling techniques to build data models to
effectively compress data. The modern data compression
paradigm, first presented in [14], divides the compression
process into two components:modellingandcoding. Mod-
elling is the process of constructing statistical representa-
tions of input data and coding is the process of mapping in-
formation generated by statistical representations to bit se-
quences to produce compressed data. Modelling represents
the critical step in a data compression system and over the
years a variety of modelling techniques have been devised.

Modelling techniques essentially build a statisti-
cal model of the input to predict the occurrence prob-
abilities of symbols. Specifically, given a realization
x1, x2, . . . , xm of a finite sequence of random vari-
ablesX1, X2, . . . , Xm over a discrete alphabetA, a model
essentially assigns a conditional probability mass func-
tion for the current symbol (event) based on previously
processed symbols [15]. Inon-line applications, the se-
quencex1, x2, . . . , xm is processed in asequentialman-
ner, with the symbolxi being encoded immediately before
the symbolxi+1. In this case we need to estimate the dis-
tributions

p(Xi+1 = xi+1|X1 = x1, . . . , Xi = xi), 1 ≤ i < m (3)

since the average number of bits needed to encode the real-
izationx1, . . . , xm online is bounded below by

m−1∑

i=0

H(Xi+1|X1, X2, . . . , Xi). (4)

whereH(·) is the Shannon (conditional) entropy function.
Coding techniques that can achieve rates close to the opti-
mal are known [14].

The conditional distribution for the r.v.Xi+1 in Equation
(3) is best estimated (in principle) by using the entire past
sequence,Xj , j = 1 . . . i. However, in practice, knowledge
about the statistics of the source sequence is nowhere as
complete. Practical compression techniques usually impose
some structural limitations on the source sequence to ar-
rive at a model that can realistically represent the sequence.
A particularly popular model that has been widely used is a
context model[13].

A context model assumes that the distribution of the cur-
rent symbol only depends on somelimited contextin which

it occurs. In particular, associated with a context model is
a finite set ofcontextsor conditioning eventsC along with
a context determining ruleor function that maps the firsti
symbols (0 ≤ i < N2) of the source sequence to some con-
text C ∈ C. The symbolxi+1 is then said to appear in the
contextC. An nth−order context model usesn previous
symbols in order to estimate the probability of the next sym-
bol. However, a context model may be a blended model in
which it incorporates probability estimation based on sev-
eral different orders.

Usually the number of distinct contexts (i.e. the size of
the setC) is much smaller than the length of the source se-
quence. Associated with each contextC is a probability
distributionp(x|C) that is used to encode pixelXj when
its context isC. This pdf can be estimated by maintaining
counts of symbol occurrences within each context or by es-
timating the parameters of an assumed pdf.

Context models are especially intuitive for text compres-
sion as the probability of occurrence of a letter clearly de-
pends on its context, i.e. the immediately preceding letters.
For example, the probability of symbol ‘u’ in a document
written in English may be1/10. However, if the preced-
ing symbol was ‘q’ then probability of ‘u’ can go up to
9/10, because ‘u’ follows ‘q’ in most English words. The
idea of context consisting of few previous symbols is in-
tuitive for models representing natural languages. Empiri-
cal results, however, show context modelling provides bet-
ter models for compressing not only natural language but
also a variety of other data formats including images, and
executables [1].

2.3. Our Approach

Now we have all the pieces required to describe a gen-
eral approach to reassembling document fragments. First
we build ann−order context model for a given document
by accumulating the context models of individual fragments
into a single model. Using this model, for any ordered pair
of fragments consider a sliding window of sizen. Place the
window at the end of the first fragment and slide the win-
dow one position at a time into next fragment, at each po-
sition estimating the probability of the upcoming character
(n + 1) by using the characters in the window as the cur-
rent context and using the context model obtained from the
total pool of fragments for the purpose of probability esti-
mation. (See Figure 2) Continuing this process ford subse-
quent characters, whered ≤ n, gives the candidate proba-
bility for the fragment pair as given in equation (1). Repeat-
ing the process for all fragments results in a complete graph
where the edges quantify candidate probabilities of the ad-
jacency of corresponding nodes in the original document.
We then use a heuristic solution to compute a small number
of near-optimal reorderings of the fragments. The actual re-

ordering is likely to be contained in this set or at worst can
be easily derived from this set by a forensic analyst.

Note that even if the analyst can identify a subsequence
of any of these reorderings to be correct, she can combine
the fragments that belong to the subsequence to form a unit
fragment and repeat the process. At every iteration if the an-
alyst can successfully find correct subsequences which can
be merged, then the process will eventually converge to the
original document.

abracada
 bracdada

Sliding Window

Size=4

Fragment-1
 Fragment-2

Figure 2. Sliding Window of Size 4

3. Implementation & Experiments

In this section we describe an implementation of our
approach which employs a well known context modelling
technique known as Prediction by Partial Matching (PPM)
to build a context model and compute candidate probabili-
ties of the possible adjacency of two document fragments.
Also we use an alpha-beta pruning heuristic to solve the
Hamiltonian path problem and compute a small set of near-
optimal candidate reorderings. We present experimental re-
sults with different types of data which demonstrate the va-
lidity of our approach.

3.1. Prediction by Partial Matching

Prediction by partial matching or PPM, is a finite or-
der context modelling technique first introduced in 1984
by Cleary & Witten and has become a benchmark for loss-
less data compression techniques[1]. PPM employs a suite
of fixed-order context models, from0 up to some pre-
determined maximumk, to predict the upcoming charac-
ters. For eachi−order context model statistics are kept of
all symbols that have followed everyi−length subsequence
observed so far in the input and number of times that each
has occurred. Prediction probabilities are computed from
these statistics in the following way: From each model,
0−order tok−order, a separate predicted probability dis-
tribution is obtained and effectively combined into a sin-
gle one. The largest-order model is the one, by default, used
to initially predict the symbol. However, if a novel sym-
bol is encountered an “escape” symbol is returned and a

smaller model is used for prediction. The process contin-
ues until one of the fixed-order models predicts the upcom-
ing symbol. To ensure this process terminates a model is as-
sumed to be present (below0−order) with all symbols in
the coding alphabet. (Note that we don’t need this order be-
cause the model already knows the entire alphabet and will
never encounter a novel symbol.) This mechanism effec-
tively blends the prediction probabilities of different order
models together in a proportion that depends on the values
used for escape probabilities.

In our model, each fragment of the document is individ-
ually processed by PPM and the resulting statistics are com-
bined to form a single model. Assuming there is no data loss
during evidence collection, we believe the resulting model
is a good statistical representation of the original document.
Suppose we used ani−order PPM model then we can use
a sliding window of sizei or less and predict the upcom-
ing symbol as discussed in Section 2.3. Prediction proba-
bilities of each model are combined into a single probabil-
ity using PPMC method as described in[11]. The resulting
probability is the candidate probability of adjacency for a
pair of fragments.

3.2. Tree Pruning

As discussed in Section 2.2, the problem of finding the
optimal solution to the Hamiltonian path is intractable. As-
suming we know the first fragment of a document we can
represent all the paths in the underlying graph by a tree (See
Figure 3). The assumption that we can identify the first frag-
ment is practical because most files have headers at the be-
ginning that can uniquely identify the filetype.

Finding the optimal solution in this tree simply means
examining each path in the tree in Figure 3 and finding the
one that maximizes the sum of candidate probabilities along
that path. However, as we can see, the tree expands expo-
nentially as the number of levels increase. In our case the
number of levels equals the number of fragments, which
can run into the hundreds. One approach to make the prob-
lem tractable is to prune this tree at every stage of expan-
sion by removing paths that do not appear to be promising.
Another way to look at this is that we prune the tree at ev-
ery level by keeping only the most promising paths such
that in the end we obtain a set of near optimal heuristic so-
lutions. The pruning approach we adopt uses this approach
and is adopted fromα-β pruning used in game theory[8].

By pruning we try to avoid examining paths that we be-
lieve may not contribute enough to our solution. A naive
approach to pruning the tree is to choose a node with max-
imum candidate probability at each level. However, such a
greedy method could lead to poor solutions. Nevertheless,
the greedy method can be extended to look not only at cur-
rent level but also atβ levels deep and choose a node at cur-

A

D
C

B

B
 C
 D

B
 D
 C
B

C
B
D
C
D

Figure 3. A Tree of Four Fragments with Path
(A,D) Pruned

rent level that maximizes the sum of candidate probabilities.
In addition, instead of choosing a single node at each level,
which limits our results to a single sequence, we chooseα
best matches at each level resulting inα best sequences. We
employed thisα-β tree pruning approach in our implemen-
tation and report the results obtained below.

3.3. Experiments & Results

This section presents experimental results and discussion
of the results. We used the following collection of docu-
ments in our experiments:

Type Samples
Log Files Log, history files of various users
Source Code C, C++, Java, Lisp source code
Executables Executable, object code
Binary Files MS Office documents, PDF
Unformatted Text Unformatted plain-text, chat tran-

scripts
Random Text Encrypted, compressed files

Table 1. Documents Used in the Experiments

Each document in the collection was randomly split into
several pieces (100 - 200) and a context model was built
for each document. This model was used along with prun-
ing to identify the most promising reorderings. Accuracy of
reassembly was measured by the number of adjacent frag-
ments in the reassembled documents that are in fact adjacent
in the original document. Figure 4 presents the average ac-

curacy of reassembly process for each document type and
Figure 5 presents the average compression ratio for each
type, which is an indicator of the structure of documents.

0

10

20

30

40

50

60

70

Logs Source Code Binary Code Binary Docs Raw Text Encrypt/Compress

R
ea

ss
em

bl
ed

 F
ra

gm
en

ts
 (

%
)

Figure 4. Average Reassembly of Fragments
in a Single Pass

Log files and other operating system related files are re-
assembled more accurately as they have more structure and
data is often repeated in a predictable manner. Likewise,
source code has standard keywords and when broken along
these keywords a matching fragment is easily found. Bi-
nary code and binary documents, however, have less pre-
dictable patterns and most binary files seem to have ‘file
holes’, where large regions are filled with ‘0’s. When two
or more fragments are split along these file holes they have
multiple candidates for the adjacent fragment as their candi-
date probabilities are uniformly distributed. In this case, in-
stead of breaking ties arbitrarily fragments are chosen by
increasing the value ofβ, which helps choose the most
likely fragment among the competing fragments by look-
ing further down the path. In addition to file holes, some
binary documents have compressed regions, such as inline
images, which further affects their accurate reassembly. Un-
formatted plain-text and chat transcripts also proved to be
difficult to reassemble since the transcripts contain unpre-
dictable words and fragments are split along large portions
of empty spaces. Figure 5 shows the average compression
ratio of sample document types and as we compare this to
Figure 4 it is clear that more structure a document has bet-
ter the accuracy of reassembly.

Table 2 presents most accurate reassembly in top-n, that
is (α ∈ {5, 10, 15, 20}), candidate reorderings.

At first sight the numbers in Table 2 may appear to be
low. However, it should be noted that a forensic analyst can
examine the topα potential orderings by our system and
identify proper subsequences within them, That is, subse-

0

1

2

3

4

5

6

7

8

9

Logs Source Code Binary Code Binary Docs Raw Text Encrypt/Compress

C
om

pr
es

si
on

 R
at

io

Figure 5. Compression Ratio of Various Doc-
ument Types

Type Top 5 Top 10 Top 15 Top 20
Log Files 57.7% 58.0% 58.7% 68.0%
Executables 30.0% 30.7% 33.4% 33.4%
Binary Files 23.4% 24.6% 28.4% 28.4%
Unformatted 26.4% 28.3% 29.0% 31.0%

Table 2. Reassembled Document Fragments
in Top {5, 10, 15, 20} Candidates in a Single
Pass

quences that correspond to proper reassembly. The frag-
ments in these subsequences can then be recombined into
unit fragments and the entire reassembly process reiterated.
This iteration process will eventually converge on to the
proper reordering with much less effort than if she were to
perform the entire task manually. The following table lists
the average number of iterations required to reconstruct var-
ious document types. It can be seen that even with unfor-
matted files and binary files, about 10 iterations are suffi-
cient to converge to the correct reordering. For a data set
with more than a hundred fragments for each file, this is a
reasonably small effort compared to any manual analysis.

In general smaller order contexts (3 to 5) performed well
for various document types. Figure 6 illustrates the opti-
mal context orders for log files, source code, and executable
files. Increasing the size of the context had no effect in most
cases.

When candidate probabilities are distributed properly,
that is a fragment’s candidate probability to another is sig-
nificantly larger than for rest of the fragments, increasingα
andβ yields better results. When candidate probabilities are
uniformly distributed, that is each fragment is equally prob-

Type Iterations
Log Files 4
Source Code 6
Executables 9
Binary Files 10
Unformatted 10

Table 3. Iterations Required to Reconstruct
the Entire Document

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8 9 10

R
ea

ss
em

bl
ed

 F
ra

gm
en

ts
 (

%
)

Context Model Order

Logs
Source Code
Binary Code

Figure 6. Influence of Context Orders in Re-
assembly of Various Document Types

able candidate to be adjacent fragment to others, tweaking
α, β has no influence on the results. We believe preprocess-
ing heuristics are s vital part of the process and will further
enhance the accuracy of reassembly. Furthermore, domain
knowledge of binary documents and code, such as valid in-
structions or valid tags, and can be incorporated into the
model to more accurately compute candidate probabilities.

4. Conclusion

Digital evidence by nature is easily scattered and a foren-
sic analyst may come across scattered evidence in a variety
of situations. For example, a forensic analyst who comes
across the problem of recovering deleted files often faces
the difficult task of reassembling file fragments from a col-
lection of randomly scattered data blocks on a storage me-
dia. In this paper, we introduce a general framework for re-
assembling scattered evidence using context based statisti-
cal models. We formulate the problem of reconstructing the
most likely reordering of the fragments as a graph problem
and showed that computing the optimal solution involves
solving the maximum weight Hamiltonian Path problem

which is known to be intractable. We then proposed a tree-
pruning heuristic to compute a set of near-optimal solutions.
We implemented our framework using PPM, a well known
context modelling technique in the data compression litera-
ture, and show that our approach gives promising results.

Further investigation is necessary to establish effective
preprocessing heuristics for various document types. Al-
though we would like to have the reassembly process to
be independent of document types incorporating meta in-
formation, such as the syntax of a language or instruction
set of a program, about a certain document type into an-
other level of abstraction will help us reassemble the doc-
ument more accurately. Since images are often implicated
in criminal investigations than other types of documents we
are currently investigating reassembling of various image
formats from fragments. Also, we are planning to investi-
gate methods to collate fragments of documents from mixed
fragments of several document types using text classifica-
tion methods.

References

[1] J. G. Cleary and W. J. Teahan. Unbounded length context for
ppm. The Computer Journal, 1997.

[2] T. H. Cormen and e. a. Leiserson C. E. Introduction to algo-
rithms. MIT Press, 2001.

[3] G. S. I. Encase. http://www.encase.com/.
[4] Freenet. http://freenetproject.org/.
[5] Gnutella. http://gnutella.wego.com/.
[6] I. Hamer and P. Chow. Des cracking on the transmogrifier

2a.Cryptographic Hardware and Embedded Systems, LNCS
1717, Springer-Verlag,, pages 13–24, 1999.

[7] T. S. Kit. http://www.sleuthkit.org/.
[8] D. E. Knuth and R. W. Moore. An analysis of alpha-beta

pruning.Artificial Intelligence, pages 293–326, 1975.
[9] J. Kubiatowicz and D. e. a. Bindel. Oceanstore: An architec-

ture for global-scale persistent storage.Proceedings of the
Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000.

[10] H. C. G. Leitao and J. Stolfi. A multi-scale mehtod for the
re-assembly of fragmented objects.Proc. British Machine
Vision Conference - BMVC 2000, 2:705–714, 2000.

[11] A. Moffat. Implementing the ppm data compression scheme.
IEEE Transactions on Communications, 1990.

[12] M. o-o t. http://www.m-o-o-t.org/.
[13] J. J. Rissanen. A universal data compression system.IEEE

Transactions on Information Theory, 29(5):656–664, 1983.
[14] J. J. Rissanen and G. G. Langdon. Arithmetic coding.IBM

J. Res. Dev., 23(2):149–162, 1979.
[15] J. J. Rissanen and G. G. Langdon. Universal modelling and

coding. IEEE Transactions on Information Theory, 1981.
[16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer sys-
tems. IFIP/ACM International Conference on Distributed
Systems Platforms, pages 329–350, 2001.

[17] I. Stoica and R. e. a. Morris. Chord: A scalable peer-to-peer
lookup service for internet applications.ACM SIGCOMM
2001, pages 149–160, 2001.

[18] T. C. T. (TCT). http://www.porcupine.org/forensics/tct.html.

