
Lessons Learned:
A Security Analysis of the Internet Chess Club

John Black Martin Cochran Ryan Gardner
University of Colorado

Department of Computer Science UCB 430
Boulder, CO 80309 USA

jrblack@cs.colorado.edu, Martin.Cochran@colorado.edu, ryan.gardner@colorado.edu

Abstract

The Internet Chess Club (ICC) is a popular online chess
server with more than 30,000 members worldwide including
various celebrities and the best chess players in the world.
Although the ICC website assures its users that the security
protocol used between client and server provides sufficient
security for sensitive information to be transmitted (such as
credit card numbers), we show this is not true. In partic-
ular we show how a passive adversary can easily read all
communications with a trivial amount of computation, and
how an active adversary can gain virtually unlimited pow-
ers over an ICC user. We also show simple methods for de-
feating the timestamping mechanism used by ICC. For each
problem we uncover, we suggest repairs and draw conclu-
sions on how to best avoid repeating these types of problems
in the future.

1. Introduction

Even after several examples of how easy it is to go wrong
when inventing security protocols from scratch, we still find
instances of widely-deployed protocols with fundamental
vulnerabilities. This paper takes a very well-known internet
service, the “Internet Chess Club,” and conducts a security
analysis showing that it in fact has deep security flaws. For
each of the problems we uncover, we recommend ways to
avoid repeating the same mistake again, and list the lessons
one should take from our analysis.

BACKGROUND. Originally the the Internet Chess Server
(ICS) was a free open-source server that allowed users on
the Internet to play chess. The architecture was as shown in
Figure 1; clients established a TCP/IP connection to a spec-
ified port on the server, and the server arranged matches

between players. Each move a player made was transmit-
ted (in the clear) to an ICS server, which would then relay
that move to the opponent. The server enforced the rules of
chess, recorded the position of the game after each move,
adjusted the ratings of the players according to the outcome
of the game, and so forth.

Serious chess players use a pair of clocks to enforce
the requirement that players move in a reasonable amount
of time: suppose Alice is playing Bob; at the beginning
of a game, each player is allocated some number of min-
utes. When Alice is thinking, her time ticks down; after
she moves, Bob begins thinking as his time ticks down. If
either clock reaches zero before the game ends, the player
who has run out of time forfeits. (We are ignoring several
details here, but this is sufficient for our purposes.)

The ICS server also managed the clocks: when Alice
moved, Bob would not only receive Alice’s move but also
learn how much time she had taken. If either player ran
overtime, the server would record the game as a loss for
that player.

ICS had a number of problems. First, the server was
quite buggy and would crash frequently. Also, playing fast
games (say, 5 minutes per player or faster) was impracti-
cal since the network latency between client and server was
charged to that player’s clock. This meant that if Alice
were averaging 2 seconds round trip from her machine to
the server, she would be charged 2 extra seconds, on aver-
age, for each move she made. In a fast game, this is a very
significant disadvantage. If Alice were in Europe and the
server were in the United States, fast games were simply
unplayable as they presented too large a handicap for Alice.

IMPROVING THE SYSTEM. In 1992, a new manager took
over running ICS and he set about fixing the many problems
it had. Soon thereafter, the bugs began disappearing, and the
server was more stable. Additionally, “move timestamping”
was introduced.



Figure 1. The original ICS configuration: clients made a TCP/IP connection to a port on a server. The ICS server
enforced the rules of chess and maintained the state of each player’s clock. In this configuration, network lag would be
charged to the players’ clocks.

Move timestamping is a nice idea that aims to remove
the problems mentioned above regarding network lag. The
basic idea is as follows (see Figure 2): when Alice receives
a move from Bob, a local process running on Alice’s ma-
chine records the time Bob’s move arrived. Then, after Al-
ice makes her move, it records the actual time Alice took;
this is the time reported to the server, and this is the amount
of time charged to Alice’s clock. (Note that the timestamp
process could be run on a separate machine, but then Al-
ice is not compensated for lag between her machine and the
timestamping machine.)

Of course ICS members immediately asked the obvi-
ous security question: couldn’t one fake the timestamp and
thereby be charged for less time than was actually used?
ICS responded that two measures went toward prevent-
ing this: (1) the source code for the timestamping process
would not be released, and (2) all communication to and
from the server was encrypted (implying that Alice could
not simply alter the outgoing packets to indicate that less
time had been used). As we shall see, there are problems
with both of these measures.

THE INTERNET CHESS CLUB. As a result of the improved
server and the introduction of timestamping, ICS grew in
popularity, and over a period of time a membership fee was
introduced for those wishing full services, while still allow-
ing guests to play for free. The server was renamed the
“Internet Chess Club” (ICC) [9], and it is this service which
exists today. Membership for the world’s best players is
free, the server is quite reliable, and the site administrators
provide high-quality professional service to ICC members.
As a result, most of the world’s best chessmasters play on
ICC, thus attracting more paying members to join as well.

Although free alternatives exist, ICC is by far the best
option for serious chessplayers around the world. It boasts
over 30,000 members worldwide, with hundreds of Grand-
master and International Master members. It is claimed
that Madonna, Nicolas Cage, Will Smith, Sting, as well
as World Chess Champion Gary Kasparov have all played
chess on ICC [18, page 111]. For a fee, anyone can play

against very strong masters, take lessons, subscribe to lec-
tures, participate in simultaneous exhibitions, play in tour-
naments, and so forth. ICC has been written up in various
newspapers and magazines, all concluding it is the place to
play chess for the serious player. A recent book on Internet
chess does likewise [18].

RESULTS. The thrust of this paper is to examine the security
aspects of ICC and draw lessons from what we have learned.
We analyze two distinct domains: the timestamping mech-
anism and the communication protocol. More specifically,

• We show a simple way to circumvent the move times-
tamping mechanism by modifying the binary directly
or (with more effort) by decompiling the timestamp
process thereby gaining source code for a compatible
timestamper.

• We suggest ways to make it more difficult to achieve
this kind of attack, and we give further suggestions on
how to prevent or detect cheating in this way.

• We analyze the three components of the network secu-
rity protocol used by ICC: key establishment, crpyto-
graphic mode of operation, and the underlying block-
cipher. We show that all three are severely flawed, and
exhibit attacks on each.

• We suggest simple ways of fixing the security proto-
cols using well-known techniques and draw conclu-
sions about the risk of using custom-written crypto-
graphic mechanisms.

RELATED WORK. We are not the first to describe secu-
rity flaws in a widely-used piece of network software. Re-
cent examples include Goldberg and Wagner’s break of the
Netscape browser’s random number generator [8], the break
of the WEP protocol and its use of RC4 [4, 7, 19], and more
recently the flaws exposed in the Diebold electronic voting
system [11], flaws in Gnu Privacy Guard [13], and short-
comings of WinZip’s encryption method [10].



Figure 2. The ICC configuration: clients communicate through a timestamp process which records the arrival-time of
incoming moves and computes the elapsed time for a player’s move before transmitting it to the server. The timestamp
process can be run on a different machine, but it is most often on the local machine. Some clients have the timestamp
process built-in; this is the case with the Blitzin Windows client but not with any of the Unix clients.

THE LESSON. The lesson here is an old one: people, even
very smart people, should not design their own security sys-
tems and expect them to be secure. It takes a lot of expe-
rience to get it right, and sometimes even the security ex-
perts themselves make mistakes. In each of the systems
mentioned above, the security protocols were designed by
non-experts and each was broken usually without a great
deal of effort. For ICC, the security protocol was designed
by a well-known and talented computer scientist, Professor
Daniel Sleator of Carnegie Mellon University.

Our conclusion, therefore, is that development teams
should never undertake the creation of custom crypto-
graphic mechanisms for any reason. This is in spite of the
fact that there exist textbooks that recommend otherwise
(see, for example, [21]). Instead, well-known and well-
analyzed primitives should be employed. This is a well-
agreed upon tenet among security specialists, but one which
has still not been widely accepted in practice.

Berkeley professor David Wagner has broken sev-
eral widely-used network security protocols, including the
Netscape browser in 1996 [8] and the IEEE 802.11 WEP
protocol in 2001 [4]. He posted the following on the news-
group sci.crypt in October 2002:

What makes you think you can invent a good
cipher if you have no expertise in the subject?
Maybe you can, but it’s not terribly likely. Imag-
ine how you would react if your doctor told you
“You have appendicitis, a disease that is life-
threatening if not treated. We have a time-tested
cure that cures 99% of all patients with no notice-
able side-effects, but I’m not going to give you
that: I’m going to give you a new experimental
treatment my cousin dreamed up last week. No,
my cousin has no medical training. No, I have no
evidence that the new treatment will work, and
it’s never been tested or analyzed in depth–but
I’m going to give it to you anyway because my
cousin thinks it is good stuff.” You’d find another

doctor, I hope. Rational people leave medical care
to the medical experts. The medical experts have
a much better track record than the quacks.

STRUCTURE OF THIS PAPER. We now embark upon a
systematic analysis of the ICC. We begin by studying the
timestamping mechanism and not the vulnerabilities we dis-
covered. We point out various techniques that would have
made our attacks harder to mount. We then proceed to
analyze the cryptographic mechanisms used by ICC and
once again draw conclusions about how our resulting at-
tacks could have effectively been averted.

2. A Security Analysis of ICC: Overview

Security on ICC is important in two respects: (1) times-
tamping because gaining a significant advantage means
winning games, which in turn allows one to win monetary
prizes in tournaments commonly offered on ICC. ICC does
strive to detect players who cheat by using chess-playing
computers, but they are currently incapable of detecting
timestamp-cheaters. Instead there seems to be a popular
misconception that timestamp is impossible to cheat [18,
pp. 53–54]. (2) Since ICC encourages members to send se-
cure information using their network protocol, the protocol
needs to be correct.

We show that the encryption mechanism used by ICC
is flawed in a variety of ways: there is no authentication
whatsoever, and an attacker can freely flip bits of his choice
in the underlying plaintext without any knowledge of the
key. The blockcipher used has several differential weak-
nesses and is unsuitable for use as a random number gen-
erator (which is how it is used). The mode of operation
is insecure and can be broken with a few bytes of known-
plaintext. And, worst of all, the key exchange protocol is
done insecurely, enabling a passive eavesdropper to collect
all necessary key material at ICC connection-time and then
record everything sent between client and server, including



credit card information, ICC passwords, etc. (Despite the
fact they they should not, many people probably use the
same password for ICC as they have for their bank, Pay-
pal, and other important accounts. Combine this with the
public viewability of many chess players’ email addresses
from their profiles, and an attack could easily take over a
member’s Paypal account.)

An active attacker could do even more harm: a malicious
man-in-the-middle could alter moves to and from the server,
lie about clocks and board positions, spoof messages from
the administrators, and so forth. It would probably not be
hard to convince a user to reveal sensitive information if the
attacker were to masquerade as an ICC administrator.

SECURITY MODELS. Note that there are distinct security
models being used for each setting above: in the timestamp
model, Alice herself is the adversary. She is trying to con-
vince the server that she has used less time than she actually
used. She controls the client machine and all the software
running on it. This model is similar to the DRM security
model1 where achieving security is notoriously difficult. As
we discuss further in Section 4, solutions to this problem are
problematic.

In the communication model, where encryption is being
used, Alice and the server are the communicating parties
and the adversary is some outside party who is attempting
to passively eavesdrop (to collect credit card numbers or
listen in on Alice’s interaction) or to actively corrupt Alice’s
session (to change her choice of move, give her a false board
position, or impersonate ICC administrators in order to coax
sensitive information from her). Here solutions are well-
known, and we suggest some simple ones in Section 4.

3. A Dishonest Timestamp Client

ICC’s attempt to avert timestamp cheaters was to release
only the binary for the program and to encrypt (but not au-
thenticate) its output. ICC personnel undoubtedly knew that
it was not too hard to circumvent these precautions, but they
needed a simple, cost-effective, secure solution to the prob-
lem of network lag, and this is the approach chosen. We
now examine the results.

WITHHOLDING THE SOURCE. ICC chose to withhold the
source for the timestamp program; this is reasonable: if the
source were freely distributed, it would be a very simple
matter to modify the program to cheat in arbitrary ways.
Controlling the source code is a common way for many
companies to attempt to retain control over their code. Of
course this works only to some extent: reverse engineering

1DRM stands for “Digital Rights Management,” a technology which
attempts to prevent users from copying software, music, video, and other
content.

a binary entails some amount of work, but for small pro-
grams it is quite reasonable. We decided to reverse engi-
neer a piece of ICC code because it was quite easy to do so,
thanks to the way Linux is supported for ICC members.

REVERSE ENGINEERING THE LINUX CLIENT. By far
the most popular client for ICC runs on Microsoft Win-
dows and is called “Blitzin.” It is about 2.15 megabytes
in size, and the timestamping (and encryption) is built-in.
Given that our analysis tools consisted primarily of a de-
bugger, we opted instead to examine the Linux timestamp
program. The Linux program is only 27 kilobytes and
is separate from the graphical clients that use it. More-
over, the Linux binary has symbols intact. This means
that program labels for static variables and function names
were listed within the binary and Linux programs such as
nm or objdump would list helpful names like encrypt,
decrypt, set base time, and so forth. It also meant
that when using our debugger of choice, gdb, these sym-
bols would be listed when disassembling code or setting
breakpoints. It would have made our job a good deal harder
had ICC run the Linux program strip in order to remove
symbols from the binary before distributing it.

Lesson #1: If you are going to attempt to
hide a program’s functionality by withholding the
source code, at least strip symbols from the object
code.

Another attempt to make reverse engineering harder is to
use a program obfuscator. Although this has been shown
to be impossible in a general sense [1], game producers
often use such techniques in an attempt to slow down the
piracy of their products, and some attempts have been made
(with mixed results) to build a theory of practical obfusca-
tion techniques [5].

Lesson #2: If you are going to attempt to hide
a program’s functionality, use an automated ob-
fuscation program. (This is not a perfect solution,
but has some measure of effectiveness.)

REVERSE ENGINEERING. Given the small size of the
Linux timestamping client, we decided to reverse engineer
it as a test to see how hard this would be. The presence of
symbols and the lack of any obfuscation made the job quite
doable: the task required about 65 hours of work. With our
reverse-engineered client, sophisticated rules can be estab-
lished for deducting time without arousing much suspicion
from ICC administrators. The most natural idea is to sub-
tract some constant amount of time from the time actually
used, giving the server the appearance that the average lag
between it and the client is some number of seconds greater
than it really is.



LESSONS TO BE LEARNED. ICC undoubtedly knew that
it was not too hard to make a dishonest timestamp client.
They were faced with trying to make Internet Chess a fairer
experience without going to extraordinary lengths.

In order to prevent cheating, we would have to remove
control of the timestamp process from the adversary (ie,
the player). This immediately leads to problems: if we
move the timestamp functionality upstream (ie, toward the
server), then the user pays for network lag between his ma-
chine and the timestamper. Even if a trusted ISP were to of-
fer timestamping service (which might be useful in several
contexts other than Internet Chess), it would be only a par-
tial solution: lag from the client machine to the ISP would
be charged against the player, and most likely many small
ISPs would probably not offer the service. Also, it would
probably not be hard for Alice to pretend she is an ISP and
timestamp packets herself such that upstream routers would
leave them alone.

Since rearchitecting the Internet is both infeasible and
falls short of a full solution, we are faced with keeping the
timestamping functionality close to the user. In order to
prevent Alice from tampering with the timestamp, it seems
that using secure hardware is the only real solution. The
idea is to put a card into the bus of Alice’s computer that
computes the elapsed time (with its own clock) and uses
proper encryption and authentication to produce a message
for the ICC server. (The encryption is to prevent upstream
viewing of an incoming move by a confederate of Alice who
then relays the move to her.) The problem, of course, is
that such cards cost money and requiring every ICC user to
purchase such a card would likely be prohibitive.

Lesson #3: For some applications where the user
himself controls the machine where secure code
is run, the only solution may be to employ (rela-
tively expensive) tamper-proof hardware.

4. Cryptanalysis

In the previous section we showed how to simply defeat
the timestamp security of ICC, and reached the somewhat
unsatisfactory conclusion that secure hardware may be the
only good solution to the problem. In this section we exam-
ine the cryptographic methods used by the ICC client and
show that they are easily attacked. In this case we are able
to offer straightforward and well-known ways to repair the
defects.

OVERVIEW. There are two main components to the
ICC cryptographic protocol: (1) key establishment and
(2) encryption. Key establishment is done only once
at session start-up time using a protocol between client
and server which is described later. The goal of key

establishment is to share two 64-bit strings called the
send encryptor key and the receive encryptor
key. These keys are used by a symmetric encryption scheme
with the send encryptor key of the client matching the
receive encryptor key of the server and vice-versa.

The encryption protocol consists of a mode of opera-
tion over a custom blockcipher. It is used after key es-
tablishment to encrypt and decrypt messages between the
client and server. Note that no authentication is attempted
in the protocol and, as we shall see, it is trivial to manipu-
late the plaintext because the mode is essentially a one-time
pad [12]. This defect is particularly relevant to timestamp-
ing, since the main goal in installing the encryption protocol
was to prevent timestamp tampering.

4.1. Key Establishment

OVERVIEW. Key establishment works as follows: at session
start-up the client and server each choose a pseudo-random
64-bit string. The server and client then exchange these seed
values. Then the server and client each perform a deter-
ministic process (involving the blockcipher we will discuss
shortly) which depends only on the two exchanged seeds
(see Figure 3). This means that obtaining the seeds and
understanding the key derivation process enables a passive
eavesdropper to easily decrypt all subsequent communica-
tion. An active adversary can mount a man-in-the-middle
attack or even impersonate the ICC server in order to ex-
tract information from the user.

Lesson #4: For key exchange to be secure, asym-
metric techniques must be used (such as Diffie-
Hellman key exchange [6]), and even this needs
to be authenticated. Simply exchanging keying
information in the clear, as ICC does, essentially
removes any hope of security against even a pas-
sive attacker.

AN ICC SNIFFER. We coded a simple “ICC sniffer” using
the freely-available pcap library to extract packets from
the network. Our sniffer extracts the two seeds as they are
exchanged between client and server during the key estab-
lishment protocol and then dumps all subsequent communi-
cation to the screen. This of course requires that the sniffer
understand the encryption and decryption procedures, but
these were reverse engineered from the Linux timestamp
client. (Extracting just the code relevant to the encryption
and decryption routines required about 25 hours.) We did
not write any code for mounting an active attack, though
this would not be hard. Man-in-the-middle attacks can be
mounted on insecure connections via standard tricks like
ARP cache poisoning [16] and DNS spoofing.



Figure 3. The ICC Key Establishment Protocol: two pseudo-random 64-bit strings are exchanged between client
and server. A deterministic process then computes symmetric sender and receiver keys on each end. An encrypted test
message “Darooha was here” is then sent using the derived keys. (“Darooha” is the ICC designer’s nickname.)

REMEDIES. Users wishing to pay online should be required
to submit membership fees through a web-based payment
gateway using SSL/TLS. This would at least protect credit-
card information for ICC members.

In order to prevent all passive and active attacks, we must
repair the protocol. The obvious solution is to use a proper
key exchange based on Diffie-Hellman [6] or RSA [17].
Freely-available libraries such as OpenSSL [20] could be
used to quickly insert this functionality (at the cost of ex-
panding the size of the client binary).

Unfortunately, fixing just the key exchange protocol is
insufficient. There still is no authentication, and the mode
of operation and the blockcipher still have serious defects
which we now describe.

4.2. The ICC Mode of Operation

OVERVIEW. The ICC Mode of Operation uses the blockci-
pher (described next) to produce a pseudo-random seed to
two linear congruential generators (LCGs). These two gen-
erators each produce 100 bytes of output, and these bytes
are XORed to form a pad which is used for encryption and
decryption [12, page 21]. It is well-known that LCGs are
not cryptographically strong and they should not be used to
generate pads [12, pp. 170–187]. One should therefore be
suspicious of a technique that XORs together two LCG out-
puts for use as a pad. And indeed we show that the ICC
mode which employs this tack does in fact not work. We
are able to recover the entire pad given about 10 bytes of
pad.

THE MODE. Let si denote the i-th byte of a string s where
we count from left-to-right starting at 0. Let ⊕ denote the
XOR operation on same-length strings. For an n-byte mes-
sage m the ICC mode produces ciphertext c by computing
c = m⊕ r where r is a pseudo-random string of n bytes.
Each ri is generated by XORing together two bytes out-
put by two LCGs (see Figure 4). Specifically, ri = yi ⊕ zi

where

wi = 17wi−1 mod 2413871 and yi = wi mod 28

xi = 3xi−1 + 1 mod 43060573 and zi = xi mod 28.

Every 100 bytes we reset i to 0 and re-seed w0 and x0 to
new values generated by the blockcipher. For the purposes
of our attack, these seeds can be arbitrary.

THE ATTACK. Our attack produces all 100 relevant xi and
wi values given that 10 or so consecutive bytes of a given
message are known. This seems reasonable given the con-
sistency of the messages sent by ICC. The attack has ele-
ments of both brute force and cleverness, but mostly of the
former. The attack runs in about 1.1 seconds on a laptop
with an AMD XP 2400+ processor.

Note that the attack is not general: changing the con-
stants in the LCGs to different values can make this at-
tack computationally infeasible. We believe the general ap-
proach of XORing together the output of two LCGs cannot
be right, but for the purposes of this paper we focus on the
LCGs used by ICC.

We start by choosing some i such that we know
mi · · ·mi+9. This allows us to determine ri · · · ri+9. We



Figure 4. The ICC Mode of Operation: 64 bits are generated by enciphering a counter under the sender’s blockcipher
key. The first 32 are sent to LCG1 and the other 32 to LCG2. The LCG’s are iterated 100 times and their lowest bytes
are XORed to produce an encryption pad which is XORed with the message M to produce the ciphertext C.

will try to guess yi outright. This means an outer loop
guessing the values in [0, 2413870]. Upon a guess gi of yi,
the algorithm computes gi, ..., gi+9 and the corresponding
guesses for zi, which we will call hi, ..., hi+9. Let xh

j (resp.
wh

j ) denote the 24 most significant bytes of xj (resp. wj )
such that xj = 28xh

j + zj (resp. wj = 28wh
j + yj). Statis-

tically, we expect the following relation to hold for about 1
out of every 3 values of j:

xj < (43060573− 1)/3.

This implies that

zj+1 ≡ 3xj +1 ≡ 3(28xh
j +zj)+1 ≡ 3zj +1 (mod 28).

We will check the values hi, . . . , hi+9 for this property.
With 10 known values of yi, when we find the correct val-
ues zi, . . . , zi+9, we expect this relation to hold for 3 con-
secutive pairs (the probability that it does not hold for any
pairs is less than 3%–this can be reduced with knowledge of
more characters of M ). When we have not found the cor-
rect values of zi, the expected number of times this happens
is much less.

When we find hj such that hj+1 ≡ 3hj +1 (mod 28),
we will find the next pair (hk, hk+1) such that hk+1 6=
3hk+1 (mod 28). This implies that 3xk+1 ≥ 43060573.
Let us define c = 3k+1−j28xh

j . This implies that one of the
following two cases hold:

hk+1 ≡ 3hk + 1 + c − 43060573 mod 28 (1)

hk+1 ≡ 3hk + 1 + c − 2(43060573) mod 28 (2)

Without loss of generality, consider that (1) has occurred.
Then hk+1 − 3hk − 1 + 43060573 ≡ c (mod 28), but
c ≡ 0 (mod 28), so we will be able to determine be-
tween the first and second cases by examining the val-
ues of hk+1 − 3hk − 1 + 43060573 mod 28 and hk+1 −
3hk − 1 + 2(43060573) mod 28. If neither case held, then
we can be sure that the current guesses for hj are incor-
rect. Alternatively, if one of the cases held we can be sure
that the guesses for hi are correct with probability roughly
(1 − 18/216). 2

We know that 43060573−3hk−1 < c < 2(43060573)−
3hk − 1, which implies that ∼18000 < xh

j < ∼36000. We
can exhaustively check these remaining values to find the
correct one.

Every 100th character will probably not be deciphered
correctly. This is a technical issue having to do with the way
every 100th ri is computed. When wi and xi are re-seeded,
they are not necessarily smaller than the moduli used in the
LCGs. Thus the value 17−1wi+1 mod 2413871 is not nec-
essarily the wi that was used to compute ri. The correct
character can almost always be inferred from context, how-
ever.

The expected number of divisions and multiplications is
about 226 (the loop iterating over values in [0, 2413870] that
computes the gi and hi dominates).

2For purposes of a rough estimate, we consider the probability, given
incorrect hi, . . . , hi+9, that some pair hj , hj+1 satisfies hj+1 ≡ 3hj +
1 (mod 28) to be 9/28. We also consider the probability that the pair
hk, hk+1 satisfies (1) or (2) to be less than 2/28 .



Lesson #5: There are many modes of oper-
ation that are provably-secure and provide pri-
vacy and authentication. See [3] for a survey.
Though it should be mentioned that even here,
implementors need to take care to avoid attacks
based on implementation details such as power
and timing analyses, reaction attacks and so forth.
Once again, we strongly recommend a consulta-
tion with experts in network security protocols to
increase assurance and reduce risk.

4.3. The ICC Blockcipher

OVERVIEW. A blockcipher is a very general cryptographic
object which can be used for a multitude of purposes [12].
A blockcipher is an algorithm which takes two inputs: an
n-bit input message block M and a k-bit key K, and pro-
duces an n-bit output message block C. A necessary re-
quirement is that for any key K, if M and M ′ are distinct
input message blocks then enciphering them yields distinct
output message blocks. This is because blockciphers are of-
ten used for encryption where we must be able to decipher
what we have enciphered. The most well-known blockci-
phers are DES [14] and AES [15].

There are instances where a blockcipher need not be in-
vertible, however. For example, in counter-mode encryp-
tion [12, page 233] we simply fix a key and then input
counter values 0, 1, 2, etc., trusting that their encipherments
are pseudo-random and can be used as pads. The ICC mode
of operation described above is similar: it uses a counter
enciphered by the ICC blockcipher to generate seeds to two
LCGs (and, as we have pointed out, this is not a good prac-
tice).

We now proceed to describe and analyze the ICC block-
cipher. The remainder of this section assumes basic
knowledge about blockcipher construction (see, for exam-
ple [12]).

BLOCKCIPHER DESCRIPTION. Blockcipher S is a 16-
round Feistel blockcipher [12], taking a 64-bit input and a
64-bit key. There is no pre- or post-processing prior to the
Feistel rounds.

The round-function f : {0, 1}
64
×{0, 1}

32
×{0, 1}

32
→

{0, 1}
32 takes a 64-bit key K, a 32-bit round value V , and

the round number r (taken as a 32-bit integer). All arith-
metic is signed and modulo 232. (In other words, computa-
tions are carried out in 32-bit signed registers with the carry
disregarded). For any string X let X [i] denote the i-th least
significant byte of X . The function f is then

f(K, V, r) =

stuff [(V [0] + V [1] + K[r mod 8]) mod 256] + V 2

where stuff is a static table of 256 32-bit values. (The stuff

table is generated once again by LCGs, but this is not rele-
vant for the analysis we conduct below.) Note that only one
byte of key K is used per round and that only the lowest
2 bytes of V are used in indexing stuff . This immediately
suggests that the high bits are not affecting the round func-
tion as much as they perhaps should.

Let S be the blockcipher resulting from iterating f for
16 rounds using the Feistel construction, and let S(K, P )
denote running S with key K and input P .

ANALYSIS. Cipher S has serious flaws. The easiest one
to spot is this: for any plaintext block P , flipping the high
bit of P merely results in flipping the high bit of S(K, P ),
independent of the key. We state this more formally by first
proving a simple property of the round function:

Proposition 1 Let B = 231, and notice that for a 32-
bit quantity V , writing V ⊕B denotes flipping the high-
bit of V . Then for any values of K, V , and r, we have
f(K, V, r) = f(K, V ⊕B, r).

Proof: Let K be arbitrary and fixed. Since the index value
to stuff depends only on the lowest two bytes of V , clearly
V ⊕B will produce the same index. We therefore focus on
the squaring operation.

Since arithmetic is signed, B is interpreted as −231 and
therefore V ⊕B can be thought of as V − 231 where V
is taken as signed integer. Squaring this quantity

(V − 231)2 ≡ V 2 − 232V + 262 ≡ V 2 (mod 232).

Therefore flipping the high bit of V and squaring is the same
as squaring V itself when working modulo 232, and there-
fore f produces the same value overall.

This invariant propagates throughout the cipher: con-
sider two 64-bit inputs P = (X, Y ) and P ∗ = (X ⊕B, Y )
where the quantities in the parentheses are 32-bit val-
ues. Because of the above invariant on f , we see that if
S(K, P ) = (X ′, Y ′) then S(K, P ∗) = (X ′ ⊕B, Y ′) in-
dependent of the choice of K. In other words, flipping the
most significant bit of P results in flipping the most signif-
icant bit of its ciphertext, regardless of what key is used. It
is clear that P ∗ = (X, Y ⊕B) has analogous behavior. In
the language of Biham and Shamir, we have a probability 1
differential characteristic [2].

This means that S can be distinguished from a random
permutation with exactly two chosen plaintexts. It also
means that S is not a very good random number genera-
tor (which is the purpose it is being used for here). It can be
shown that when the counter is as little as 216, bytes 0,1,4,
and 5 of S(K, 216) will be the same as those in S(K, 0)
independent of K.



In short, the cipher does a poor job diffusing minor
changes in plaintexts. Its “avalanche effect” is insufficient,
and therefore the cipher is weak. It should not be used in
any cryptographic setting.

Lesson #6: There are numerous public-domain
blockciphers available whose security is believed
to be very strong. Most commercial implemen-
tations now use AES [15] given that it is now an
internationally-recognized standard. No signifi-
cant flaws have been discovered in AES since its
introduction several years ago, and in this sense
it is far superior to the ICC blockcipher described
above.

5. Conclusion and Open Problems

We have scrutinized the security aspects of ICC and un-
covered several problems. The timestamping mechanism is
easily circumvented, allowing malicious users to cheat at
chess by unfairly gaining time on the clock.

We have also analyzed the ICC network security protocol
and shown it is flawed in numerous ways enabling passive
eavesdroppers to trivially listen in on communications and
enabling active adversaries to mount severe attacks on ICC
users. The important lesson we may take from this is that
it is very hard to devise security protocols which work. It
seems that whenever a non-expert invents his own, even if
he is very clever, it is often broken. This has long been a
message espoused by the security community, but the battle
has not yet been won.

6. Acknowledgements

We would like to thank David Wagner, Yoshi Kohno,
Jing Deng, and Douglas Sicker for their comments and sug-
gestions. Thanks also to Cindy Cohn and Jason Schultz of
the Electronic Frontier Foundation for looking over the pa-
per early on. John Black’s and Martin Cochran’s work was
supported by NSF CAREER-0240000 and a gift from the
Boettcher Foundation. Ryan Gardner’s work was supported
by NSF REU-0244168.

References

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sa-
hai, S. P. Vadhan, and K. Yang. On the (im)possibility of ob-
fuscating programs. In Advances in Cryptology – CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science,
pages 1–18. Springer-Verlag, 2001.

[2] E. Biham and A. Shamir. A Differential Cryptanalysis of the
Data Encryption Standard. Springer-Verlag, 1993.

[3] J. Black. Authenticated encryption, 2003. Preprint available
at www.cs.colorado.edu/˜jrblack.

[4] N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile
communications: The insecurity of 802.11. In MOBICOM,
pages 180–189. ACM, 2001.

[5] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot.
White-box cryptography and an AES implementation. In
H. Heys and K. Nyberg, editors, Selected Areas in Cryp-
tography — SAC 2002, volume 2595 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[6] W. Diffie and M. E. Hellman. New directions in cryptog-
raphy. IEEE Trans. Inform. Theory, IT-22:644–654, Nov.
1976.

[7] S. R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in
the key scheduling algorithm of RC4. In S. Vaudenay and
A. Youssef, editors, Selected Areas in Cryptography — SAC
2001, Lecture Notes in Computer Science. Springer-Verlag,
2001.

[8] I. Goldberg and D. Wagner. Randomness and the Netscape
browser, Jan. 1996. Dr. Dobbs Journal.

[9] Internet Chess Club. See ICC website at
www.chessclub.com.

[10] T. Kohno. Analysis of the WinZip encryption method. In
11th ACM Conference on Computer and Communications
Security–CCS 2004. ACM Press, 2004.

[11] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach.
Analysis of an electronic voting system. In IEEE Symposium
on Security and Privacy 2004. IEEE Press, 2004.

[12] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996.

[13] P. Q. Nguyen. Can we trust cryptographic software? Cryt-
pographic flaws in GNU Privacy Guard v1.2.3. In Advances
in Cryptology – Eurocrypt 2004, volume 3027 of Lec-
ture Notes in Computer Science, pages 555–570. Springer-
Verlag, 2004.

[14] NIST. Data Encryption Standard (FIPS 46-2), 1988.
[15] NIST. Advanced Encryption Standard (FIPS 197), 2001.
[16] A. Ornaghi and M. Valleri. Ettercap. A pro-

gram for man-in-the-middle attacks on Ethernets; see
ettercap.sourceforge.net.

[17] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Commun. ACM, 21(2):120–126, 1978.

[18] R. Schmaltz. The Complete Chess Server Guide. Schachzen-
trale Rattmann, 2004. ISBN: 3-88086-180-3.

[19] A. Stubblefield, J. Ioannidis, and A. Rubin. Using the
Fluhrer, Mantin, and Shamir attack to break WEP. In Pro-
ceedings of Network and Distributed System Security Sym-
posium 2002 (NDSS’02), San Diego, CA, February 2002.

[20] J. Viega, M. Messier, and P. Chandra. Network Security with
OpenSSL. O’Reilly, 2002. See also the OpenSSL website at
www.openssl.org.

[21] Y. Zheng and S. Akhtar. Networks for Computer Scientists
and Engineers. Oxford University Press, 2002. ISBN: 0-19-
511398-5.


