
mSSL: Extending SSL to Support Data Sharing Among Collaborative Clients

Jun Li and Xun Kang
University of Oregon

Department of Computer and Information Science
{lijun, kangxun}@cs.uoregon.edu

Abstract

Client-server applications often do not scale well when a
large number of clients access a single server. To solve this,
a new trend is to allow a client to download data from other
peer clients, in addition to from the server directly. This
paradigm, which we call the hybrid peer-to-peer paradigm,
is friendly to the server’s scalability, but also faces new se-
curity challenges. For example, how can the server authen-
ticate its clients and support data confidentiality? How can
a client trust the data downloaded from other clients? What
if a client refuses to acknowledge the service it received or
overstates the service it offered?

In this paper, we present a protocol, called mSSL, that
provides a set of security functions to enable secure sharing
of the data of a server among its clients. In addition to
access control and confidentiality support, mSSL provides
an original design on supporting data integrity and proof of
service in this new context. Our evaluation further shows
that mSSL has a reasonable overhead.

1 Introduction

While conventionally a client needs to directly request
data from a server, a new trend is to allow multiple clients,
such as thousands of clients of a web server, to share data
among themselves in a peer-to-peer fashion [3, 21, 8, 20].
This creates a hybrid peer-to-peer paradigm that involves
both client-server and peer-to-peer communications. If a
client has downloaded some blocks of data from a server,
other clients can obtain those blocks from this client, rather
than the original server. This mechanism can potentially
prevent a server from being overloaded when serving a large
number of clients, and enable even an under-provisioned
site to provide a scalable data service.

Accompanying this trend, however, are new security
challenges that conventional client-server approaches such
as SSL [17] cannot easily address. Especially, how can a
server allow peer-to-peer data sharing without weakening

client authentication and access control? When a client re-
trieves data, whether from a server or its peer clients, can the
integrity of the data always be guaranteed? How can data
confidentiality be supported? And, if a client provides data
to another client, can the former provide a non-repudiable
proof of its data provision service? Such questions can be
easily raised if the hybrid peer-to-peer paradigm is used
to distribute software packages, sell large multimedia files,
share critical information among participants, or other ap-
plications that face various security issues.

Corresponding to the conventional SSL service that
protects client-server connections, we propose to build a
mSSL service that protects both client-server and client-
client communications in the hybrid peer-to-peer paradigm.
mSSL provides a set of functions that enable secure sharing
of a server’s data among its clients and support applications
that sit on top of mSSL. Both conventional security issues
such as client authentication, data integrity, and data confi-
dentiality and new security issues such as proof of service
will all be addressed in this new context. Our solutions to
data integrity and proof of service are especially new.

One important goal of mSSL is that, while allowing
clients to share data traditionally downloaded directly from
a server, the security should not be weakened compared to
the traditional client-server model, or only weakened to a
minimal degree if at all. Unlike a client-server environ-
ment, a server does not directly control all the data flow.
A client may have to decide whether to provide data to an-
other client, or may need to verify the data received from
another. Also unlike a pure peer-to-peer environment, secu-
rity solutions for the hybrid peer-to-peer paradigm can take
advantage of the existence of a server, enabling a potential
integrated “centralized plus distributed” approach.

We have also evaluated the performance of mSSL. The
security functionalities provided by mSSL may be used in
different combinations for different applications, and the
success of mSSL will depend on its efficacy under all those
combinations. Of particular concern is the overhead in-
troduced by mSSL and how much an application could be
slowed down by mSSL.

The rest of this paper is organized as follows. We illus-
trate the design of mSSL in Sections 2, 3 and 4, focusing
on the major security functionalities mSSL provides. We
then discuss several key issues in Section 5. In Section 6
we evaluate the performance of mSSL. Section 7 describes
the related work. We conclude the paper in Section 8.

2 Design

The goal of mSSL is to provide a light-weight, scalable,
robust, and flexible security protocol to provide a suite of
security functionalities for applications running using the
hybrid peer-to-peer paradigm. mSSL can also be used as
a library of function calls or regarded as a middleware ser-
vice. These security functionalities include: (1) client au-
thentication to ensure that only authenticated clients can ob-
tain a server’s data, whether or not directly from the server,
(2) data integrity to protect the integrity of the data whether
the data is received directly from the server or indirectly
from other clients, (3) data confidentiality to encrypt data
for confidentiality, and (4) proof of service to allow a client
to prove to the server that it has provided specific data-
sharing service to other clients.

mSSL supports two different access modes for a client to
obtain its server’s data: direct access and indirect access. In
both modes, the client will first create an SSL secure chan-
nel between itself and the server and then authenticate itself
(for instance using its account name and password or us-
ing an identity certificate). If in the direct access mode, the
client will then directly receive a copy of the requested data
from the server; but if in the indirect access mode, the client
will obtain necessary information from the server and then
turn to other peer clients to receive the data. mSSL in direct
access mode is essentially the same as SSL, and it is mSSL
in indirect access mode that we will focus on.

In the following, we call a client who provides data to
others a provider. A client who receives data from provider
clients is called a recipient. We also interchangeably use the
terms data, data object, and file.

In the rest of this section, we describe the straightforward
design in mSSL for client authentication and confidentiality.
Then in Sections 3 and 4, we illustrate our design for data
integrity and proof of service, the two security functionali-
ties that highlight our contributions for security in this hy-
brid peer-to-peer paradigm.

2.1 Client Authentication

mSSL implements a ticket-based solution to ensure that
only authenticated clients may access a data object, no mat-
ter where the data object is located. In both direct and indi-
rect modes, a client must first contact its server and authen-
ticate itself through a SSL channel. Once the server decides

that the client is allowed to obtain the data (such as after a
client paid for purchasing an audio file), the server will then
either directly transfer the data to the client, or provide a
ticket for the client to contact other peer clients.

The ticket proves that the server authorizes this particular
client to download data from other clients, who can verify
the ticket and authenticate the client in question before pro-
viding data to this client. The ticket typically includes the
id of the client requesting a data object, the id of the data
object, the time that the ticket is issued, the validity period
of the ticket, and a sequence number. The server also uses
its private key to sign the ticket so that any provider that
knows the server’s public key can verify the ticket.

2.2 Confidentiality

In order to ensure that only authenticated clients can ac-
cess data, confidentiality is necessary. mSSL adopts an
object-key-based approach. Every data object can be as-
sociated with an object key for encrypting or decrypting the
data object. An object key can have a life time and be re-
placed when it expires. Essentially an object-oriented ap-
proach, this scheme is able to enforce a fine-grained access
control at the data object level. A server can encrypt any
data object just once in advance for all potential clients, in-
stead of once per client.

When a client c requests a data object O in its encrypted
form ko{O} from a server S, S can issue O’s object key
ko to c immediately after authenticating c’s request (or after
c finishes downloading ko{O}). After c receives ko{O}
from either c’s peers or S, c can use ko to decrypt ko{O}.
Note that the distribution of ko is protected by kc, a secret
key established between c and S over their SSL channel.
Figure 1 shows this procedure in indirect access mode.

c }k{

O }{ko

o

)c established(k

k

c p

Establish SSL channel

4

3 Ticket T

S with confidentiality
Request data object O 2

1

Ticket T

Figure 1. Confidentiality through mSSL (indi-
rect access mode)

3 Integrity

We now discuss how mSSL allows a client to verify the
integrity of its server’s data, whether the data is directly re-
ceived from the server or indirectly from some providers.

A simple solution is to ask the server to sign the whole
data object. Unfortunately, if the signature validation fails,
the whole data object must be retransmitted. When the data
object is large, this can be a serious problem. Instead, mSSL
allows the client to verify the integrity at the block level,
assuming every data object can be divided into blocks. A
client does not have to wait until it receives all the blocks of
a data object before verifying the integrity. If it detects an
invalid block, it can request a retransmission of that single
block immediately.

In the following, after presenting two straightforward but
flawed approaches, we show how Merkle hash tree can be
used in a new way to provide mSSL’s block-based integrity
solution.

3.1 Straightforward Approaches and Their
Drawbacks

One approach is to bundle a signature with every block
of an object. A server signs every block by encrypting a
strong one-way hash of the block. To determine the in-
tegrity of a newly received block, a client checks whether
decrypting the block signature would lead to the correct
hash of the block. However, encryption and decryption per
block will lead to a high computational overhead.

Another approach is to build a signed superblock for a
data object. It contains the hash value of every block of
the object and a signature of the whole superblock. The
superblock will be transmitted first before transmitting data
blocks. After a client receives an authentic superblock of a
data object, it then uses the hash values from the superblock
to verify the integrity of each block that it later receives.

However, a superblock can be very large, leading to a
high startup latency. For a data object with 2m blocks,
assuming every block’s hash value is 16 bytes (all mod-
ern hash algorithms produce hash values of 16 bytes and
higher) and the superblock’s signature is also 16 bytes, its
superblock will be (16 ∗ 2m + 16) bytes. A 1GB file with
1KB block size will have a superblock with (16M + 16)
bytes. As the size of a data object increases, the size of
its superblock increases linearly. A large superblock can
cause a significant delay before a client receives the very
first block, which would not be acceptable to applications
in which users prefer prompt response, such as multimedia
streaming. Moreover, if the superblock itself is corrupted,
the retransmission can also be costly. Note that although in-
creasing the block size can reduce the size of a superblock,
the retransmission cost of individual blocks will increase.

3.2 The Merkle Hash Tree of a Data Object

We assume a data object O is divided into 2m blocks,
and its binary Merkle hash tree is M(O). The height of
M(O) is then m + 1, with the root at level 0 and leaf nodes
at level m. Figure 2 shows an example tree.

(signed)

4321 8765 bbbbbbbb

HHHHHHHH1 6 875432

HHHH

HH

783412 56

5814

H18

Figure 2. Merkle hash tree of a data object
with 8 blocks. The authentication path of
block b1 is < H2, H34, H58 >.

We first introduce notations for representing a node or its
value on M(O):

H l: A node at level l.
H l

i : The node at level l that is the ith node counting
from left. (Note the first node is H l

1)
Hi: The ith leaf node counting from the left, i.e. Hm

i .
Hab: The node which is the root of the subtree con-

taining leaf nodes Ha through Hb (inclusive).

We can calculate M(O) from the bottom up using a one-
way hash function f as follows: (1) Leaf nodes. For every
block bi (i = 1, ..., 2m), Hi = f(bi). (2) Non-leaf nodes.
For every two sibling nodes H l

2i−1 and H l
2i, the value of

their parent H l−1

i is f(H l
2i−1,H

l
2i). (If a node H l

2i−1 has
no sibling, its parent H l−1

i is H l
2i−1.) Applying the parent

calculation process recursively, we will obtain the value of
every non-leaf node, including H0, the value of the root
node. (3) root. H0 is signed by the server, but note that all
other hash values are not signed.

3.3 Conventional Integrity Verification Based on
The Merkle Hash Tree of a Data Object

To verify the integrity of every block of the data ob-
ject O, a client will first request the signed value of tree
M(O)’s root, H0. Once it receives a block b, the client
will also request to receive b’s authentication path A(b) =
〈Hm,Hm−1, ...,H1〉. A(b) contains exactly one particu-
lar hash value from every level of M(O), where Hi−1 is

the sibling of Hi’s parent. Hi−1 is also called Hi’s uncle.
With A(b), the procedure in Section 3.2 can be used to cal-
culate H0. If block b is modified (or any values on A(b) is
modified), the calculated H0 will not equal the signed root
H0, leading to the detection of an integrity violation. The
client can then request the retransmission of block b.

With this solution, a client does not have to download
all the hash values beforehand as in the superblock-based
solution, nor does it need to perform expensive encryption
or decryption operations. However, this solution can lead to
a high traffic overhead. For a data object with 2m blocks,
every block’s authentication path will have m hash values.
Assuming each hash value is 16 bytes, the total amount of
overhead traffic will then be 16m ∗ 2m bytes, 16m

|b| of the
data traffic (|b| is the number of bytes of a block).

3.4 mSSL’s On-demand Data Integrity Solution
via Integrity Path

mSSL’s integrity solution optimizes both the on-demand
requests of integrity verification information, and the ver-
ification procedure. In fact, when a client needs to obtain
an authentication path A(b) of a newly downloaded block
b, it may not need to download every hash value h∈A(b).
For a given hash value h∈A(b), if h∈A(b′) where b′ is an-
other block and has been verified earlier, h must be already
available locally. For example, in Figure 2, the authentica-
tion path of block b1 and b2 are A1 = 〈H2,H34,H58〉 and
A2 = 〈H1,H34,H58〉, respectively. If a client received b1

first and then verified its integrity by obtaining A1, it does
not need to download H34 and H58 again when verifying
b2. Moreover, certain hash values will have to be calculated
during the local block integrity verification process, and can
become available for verification along other authentication
paths. Using the same example, when verifying b1’s in-
tegrity, H1 (as well as H12 and H14) will be calculated.
Therefore, when verifying b2 along A2, there is no need to
download H1 either.

In contrast to the authentication path concept, we now in-
troduce a concept called mSSL integrity path for optimized
block integrity verification. A block’s mSSL integrity path
consists of all those hash values from this block’s authenti-
cation path that are not locally available. To determine what
are these hash values, we introduce Theorem 1 below:

Theorem 1 If h is locally available at a recipient client r,
then h’s uncle uncle(h) is also locally available.

We omit the proof of Theorem 1 to save space. Now,
suppose a block b’s authentication path A(b) is A(b) =
〈Hm,Hm−1, ...,H1〉, and denote b’s mSSL integrity path
mip(b). If H l−1 is locally available, but H l is not, then
according to Theorem 1, we know H l−1,H l, · · · ,H1 are
all locally available, and none of Hm,Hm−1, · · · ,H l are.

Thus, mip(b) = 〈Hm,Hm−1, · · · ,H l〉, with a total of
|mip(b)| = m − l + 1 hash values. |mip(b)| is also the
number of levels needed to be downloaded in order to have
a complete authentication path.

The integrity path concept greatly simplifies the on-
demand request process. When a client receives block b

from a server or a provider, it can determine mip(b) first and
then send a request for mip(b) to the server or the provider.
Notice that it is sufficient for the request to just contain the
value of |mip(b)| since the provider or the server can easily
determine what mip(b) is. Figure 3 describes this proce-
dure, where a client maintains an object O’s Merkle hash
tree, tc(O), that only keeps locally available hash values.

Once the client receives mip(b), it could further derive
A(b) and apply the procedure from Section 3.3 to verify the
integrity of block b. However, mSSL also optimizes this
verification process. Since H l−1 was locally available, an
earlier integrity verification that involves H l−1 must have
used sibling(H l−1) to calculate all of H l−1’s ancestors (in-
cluding the root), therefore an authentic sibling(H l−1) is
also locally available (sibling(H l−1) is also H l’s parent).
As a result, the verification of block b actually only needs to
compare a newly calculated sibling(H l−1) with the current
sibling(H l−1) to decide if block b is integral; the additional
calculations from level l − 1 up would be repeated calcula-
tions.

cS

4

5

23

M OObtain ()

first firstb , mip(b)

M O

ib
imip(b)using | |

8 Request block , 7

1

imip(b)| |
Determine

6 Verify block
integrity

ct O(() updated)

ct O(() updated)

Verify block
integrity

10

Initialize
t O ()c

, p

b , mip(b)9

Request

ii

Signed root of ()

.

O

Figure 3. mSSL’s integrity solution. Except for
the very first block bfirst, the client c requests
on-demand the integrity path of every block.

4 Proof of Service

4.1 Overview

An obstacle to realizing the benefits of data sharing
among peer clients is whether clients have incentives to
share data. To address this, we assume a simple but generic
economy model: (1) A provider will receive credits for as-
sisting its server. (2) A recipient will pay less for the data
it receives from providers since it does not directly utilize
as much of its server’s resources. (3) By offloading some
tasks to its providers, a server will serve more clients over-
all and thus make more profit, even though it charges each
individual client less.

However, in order to harden such an economy model,
it is critical that a trustworthy, effective proof-of-service
mechanism must be designed. With proof of service, a
client can present to its server a proof of its service to others,
a server can verify whether or not a client has indeed served
other clients as it claims, and a recipient cannot cheat or be
cheated about its reception of data from others.

We describe our approach to providing proofs of ser-
vice below. This approach must ensure trustworthiness of
proofs. Furthermore, given that a large number of clients of
a single server may be involved, the approach must be scal-
able; in particular, the server should not be overloaded and
the traffic and storage overhead should not be high.

Our basic solution is to assume that every data object
is divided into multiple blocks and enforce an interlocking
block-by-block verification mechanism between every pair
of provider and recipient. For every block that a provider
has sent to a recipient, the recipient will verify the integrity
of the block and sends back a non-repudiable acknowledg-
ment to the provider. The provider will verify the acknowl-
edgment before providing the next block. Those verified
acknowledgments can then be used as the proof of the ser-
vice that the provider has offered to other clients.

However, problems may arise in this basic solution.
Clearly, if a provider has to present a separate acknowl-
edgment as the proof for every block it served, there will
be a proof explosion with large files. Also, after receiving a
block from a provider, a recipient may run away without ac-
knowledging the receipt of this block, leaving the provider
unable to have a proof for serving the block. Finally, the
server can be overloaded if clients require the server to com-
pose or verify acknowledgments frequently.

We address these problems. Figure 4 shows the proof-of-
service operations between a provider p and a recipient r.
Basically, in steps 1 and 2, p and r will go through a hand-
shake, including exchanging public key certificates. Then
after r requests block bi (step 3), p will send block bi en-
crypted using a secret block key to r in step 4. In step 5, r

acknowledges its receipts of the encrypted bi and, if needed,

requests another block. p will verify the acknowledgment in
step 6; if verified, in step 7 it sends the block key in its pro-
tected form to r, which can then obtain the block key, use
it to decrypt the encrypted block, and verify the integrity of
the block.

rb
 i b

send() r
i+1 i+1}bk { , i

 r kkr
i }ib{(ack)

6 verify

p

}ikr
i b{

ib
ib

8

verify ’s

decrypt
to obtain ,

integrity

(ack kr
i }ib{)i+1b(req),

 rticket, cert(PUB)

) pcert(PUB2

}kr
i {4

3

5

...

...

7

... , req()

1

i

Figure 4. mSSL’s proof-of-service solution

4.2 Step-wise Explanations and Justifications

In the following, we explain and justify our steps above.
Steps 1 and 2 show the exchange of public key certifi-

cates between p and r. We first make sure that every client
has a certified public key. This is important because clients
in the hybrid peer-to-peer paradigm are often ordinary users
and do not have certified public keys. Noticing that while
running the SSL protocol, the server itself has a certificate
for its own public key, we use the server as a public key CA
(certificate authority) to certify the public keys of its own
clients. A client needs to generate beforehand a key pair by
itself using a public key generation algorithm, then send a
certificate request to the server. The server in turn will gen-
erate a certificate that is signed with the server’s private key
and send it back to the client. As a result, every client can
have its own public key certified by the server, and every
client is also able to verify the certificate of its peers.

As shown in step 4, a secret block key is also used for
encrypting a block. When the provider sends the ith block
bi from a data object oid to a recipient rid, it will generate
a block key kr

i as:

kr
i = f(pid, rid, oid, i, kp) (1)

where f is a one-way hash function and kp is the secret key
shared between the provider and the server. Note the server
can also apply this formula to calculate the block key.

For acknowledging an encrypted block kr
i {bi}, in step 5

the recipient forms the acknowledgment ack(kr
i {bi}):

PRVr{pid, rid, oid, sack, timestamp, d(kr
i {bi})}

(2)
where PRVr is the private key of r for signing the acknowl-
edgment (so that r cannot deny it later), timestamp records
when the acknowledgment is issued, d(kr

i {bi}) is the di-
gest of the encrypted block using a one-way hash function.
Furthermore, the sack field in acknowledgments solves the
proof explosion problem. It is in a format similar to the
SACK options for the TCP protocol [14], and can express
all the blocks that r has received from p, instead of just the
most recent one. For example, it can be [0− 56, 58− 99] to
confirm the reception of the first 100 blocks of a data object
except for block 57.

In step 6, p will verify the acknowledgment to decide
whether or not to provide the block key to the recipient in
step 7. This includes verifying the digest field d(kr

i {bi}) so
that when p presents S this acknowledgment as the proof
of its service, S can verify whether r received the correctly
encrypted last block, i.e., correct block bi encrypted using
correct block key kr

i . Note that the server can use Equation
(1) to calculate kr

i .
In step 7, send(kr

i) is the delivery of the block key in a
protected form:

PRVp{pid, rid, oid, i, PUBr{k
r
i }} (3)

where PRVp is p’s private key, PUBr is r’s public key,
and obviously r—and only r—can use PUBp (p’s public
key) and its own private key to obtain kr

i . Also, if r cannot
decrypt kr

i {bi} , it can forward the protected block key to S

so that S can verify if p sent a bad block key.
In case p did not or could not provide a block key at all

(i.e. no step 7 happening), r can retrieve it by asking S to
apply Equation (1) to calculate the block key. When doing
so, r must send S an acknowledgment as in Equation (2)
so that S knows r has indeed received a correctly encrypted
block from p. Also, the server expects that there is only
one such query for each recipient-provider pair, since the
occurrence of this query means that after this query r would
decide that p should not be relied upon any more.

Finally, in step 8, after the recipient receives the block
key, it can decrypt kr

i {bi} (received in step 4) to obtain bi.
Moreover, it can verify the integrity of bi. Only if bi is
integral will the recipient continue with the provider for the
next block. In case bi appears to be corrupted, r knows that
p cannot present ack(kr

i {bi}) to S as a correct proof of its
service—S knows the correct bi and kr

i .

4.3 Performance and Scalability Considerations

The performance of the proof-of-service protocol can be
further accelerated. We introduce parallelism in handling

multiple blocks concurrently. We require every acknowl-
edgment to include digests of the last m encrypted blocks,
and the server will verify whether the recipient received the
correctly encrypted blocks for last m blocks (instead of just
last one block). Meanwhile, upon the receipt of block key
kr

i and the encrypted block bi+1 (i.e. kr
i+1{bi+1}), r will

first acknowledge the receipt of bi+1 before proceeding to
step 8. With this design, it can repeat this prompt acknowl-
edgment process for the next m− 1 blocks, greatly improv-
ing the performance. In case that block bi is discovered
corrupted, the provider will still not able to have a proof
that it successfully delivered bi—since the proof must show
correct digests of all last m blocks. Here, we want to select
m such that it is small to be scalable, but large enough to
keep high level of parallelism.

Throughout the whole design, the server’s load has been
kept very light. A provider can wait until the end of serving
a recipient to present a single proof of its service toward
this client. Also, the only type of query that a recipient
can issue is to verify or retrieve the block key of a block it
receives from a provider (see discussion on step 7 above),
which happens only once per recipient-provider pair.

5 Discussion

mSSL is configurable to support different needs. In this
section, we first discuss how different security functionali-
ties of mSSL can be combined. We then look at possible at-
tacks against mSSL and suitable countermeasures. Finally,
we look at the limits of mSSL.

5.1 Combining Security Functionalities

Using A, C, I , and P to represent the four primary se-
curity functions that mSSL provides—client authentication,
confidentiality, integrity, and proof of service, below we
show their totally six meaningful combinations.

Considering a data object O at a server S, we first look
at requiring just one of the four:

• A: Some clients are allowed to access O, some are not.
A client thus must authenticate itself.

• I: Every client can obtain O, but needs to ensure the in-
tegrity of O. Here, S offers O for everyone, so no confi-
dentiality or client authentication are needed.

• C: Confidentiality of O is required. If so, A must also be
utilized to make sure the encrypted O is delivered only to
authorized clients. So C implies AC.

• P : Proof of service is required. Note P must be com-
bined with A: a recipient needs a certificate for its pub-
lic key, thus it must first authenticate itself; the server

must also authenticate a provider before it can verify the
provider’s proof of its service to others. P must also be
provided together with I: in the proof of service design, a
recipient needs to verify the integrity of a received block.
On the other hand, P includes its own method of encryp-
tion, thus C is not needed. Therefore, enforcing P implies
enforcing A, I , and P all together, i.e. AIP , but not C.

Now we consider possible combinations of two of the
four functions. A two-function combination cannot have P ,
since P implies AIP . C already implies AC. So the only
new combination possible is AI . Furthermore, the only new
combination with three of the four primaries is AIC. We
will not have a combination of all four, AICP , since P

implies not using C.
Therefore, we have totally six scenarios: A, I , C (i.e.

AC), P (i.e. AIP), AI , and AIC.
Every mSSL application may have its own needs and

thus choose a specific scenario. (Note that except for the
I scenario, every scenario requires A, meaning every client
must authenticate itself to its server.) For example, the
I scenario can be useful when a server is providing criti-
cal public information and all that is needed is to guaran-
tee the integrity of the data. The AIC scenario may be
chosen when encrypted data sharing using C is not suffi-
cient; sometimes even if a recipient can decrypt data from a
provider successfully, it may not trust the provider and still
want to verify the integrity to make sure the data is indeed
unaltered from the server’s original.

5.2 Preventing Attacks

The integrity solution of mSSL can be invoked to ensure
that every block of the data object is authentic, even without
authentication invoked at the server. Since every client can
obtain a signed root value of the Merkle hash tree of the
data object, and the authentication path of every block, any
modification of the block by anyone will cause the block
to fail the integrity verification process. Moreover, mSSL
allows a data object to be transmitted in its encrypted form
to provide confidentiality. The attack against the proof-of-
service scheme is probably the most complicated; we focus
on this attack in the following.

Generally speaking, two types of proof-of-service at-
tacks may occur: individual cheating and colluded cheat-
ing. An individual client may cheat by misreporting the
amount of services it has received or provided. Or, multiple
clients may work in collusion, forging false proofs of ser-
vice together. Both types are for the purpose of obtaining
non-deserved credits from the server.

• Individual Cheating: An individual client can cheat in
the following ways: (1) A provider overstates its service

for extra credit from the server. It claims that it sent an-
other client certain data although it did not. (2) A recipient
deliberately refuses to acknowledge its receipt of specific
data blocks from another provider, so that the provider
cannot show the proof of serving those blocks.

The proof-of-service design in mSSL addresses both
methods of cheating above. For the first type of cheat-
ing, from Section 4 we know that every proof is a signed
acknowledgment from a recipient. A provider does not
know the key other clients use to sign acknowledgments,
so it cannot forge any. For the second type of cheating,
note that if a recipient denies its reception of a data block,
it will not generate an acknowledgment for the block;
without the acknowledgment, it will not be able to receive
the secret block key to decrypt the block. So this cheating
is also not possible.

• Colluded Cheating: In order to obtain extra non-
deserved credits, multiple clients may collude to forge
proofs of services that did not actually take place. We
list several cases here: (1) A provider forges a proof that it
provided itself certain data. (2) While a recipient r sends
acknowledgments to its real provider p1, it also sends
a copy of every acknowledgment to its accomplices a1,
a2,. . . , an. Or, r can just copy the acknowledgment that
confirms the largest number of received blocks. Then a1,
a2,. . . , an can all claim that they delivered certain data
blocks to r, even though they did not at all. (3) Two clients
r and p collude to forge a proof that p provided certain
data to r.

To counteract cases (1) and (2), note the proof-of-service
design of mSSL allows a server to determine whether a
proof is indeed about the service from a specific client p

to another specific client r. A proof must be signed by
the recipient, and it contains the digest of last one or sev-
eral encrypted blocks that a provider has served (Equa-
tion 2), and the encryption uses a key that is specific to the
provider ((Equation 1). In case (1), the server will find out
that it is a proof of self-service; in case (2), the server will
detect that only the proof from p1 is trustworthy.

Case (3) is the most difficult since the server cannot tell
whether or not a service has occurred. If a recipient must
pay for every copy of data it receives, even including re-
dundant copies, an economical countermeasure can be de-
signed. This way, while the colluding provider p may gain
undeserved credit, the colluding recipient r will be penal-
ized since it will be charged for the forged service.

5.3 The limit of mSSL

When a server and a client establish a SSL channel, they
can interact with each other through the channel, includ-
ing allowing the client to provide certain information to the

server. Not necessarily for mSSL: mSSL is designed not for
two-way data transfer, but for securely and efficiently shar-
ing a server’s data among peer clients. Note that mSSL does
not conflict with SSL, and an mSSL application can have its
clients use SSL to interact with a server, and use mSSL to
have those clients share data.

Certain security issues that already exist in the tradi-
tional client-server model are not addressed by mSSL. For
instance, SSL does not guarantee that a client that receives
data from a SSL channel will not divulge the data to others
(this issue could be potentially addressed by various dig-
ital rights management approaches). Neither does mSSL
whereas it aims to ensure that security is not weakened com-
pared to the client-server model.

In addition to the security functionalities presented in
this paper, other functionalities may also be needed. For ex-
ample, a security function that prevents traffic analysis may
be necessary if users are concerned that an attacker may
know that the same encrypted object is being transferred be-
tween clients during different sessions. mSSL is extensible
and more functionalities can be added in the future.

6 Evaluation

6.1 Overview—Goal, Metrics, and Methods

The goal of measuring mSSL is to obtain the overhead
of using mSSL in different scenarios to see whether the
overhead of mSSL is acceptable overall, and to compare
the overhead among different scenarios.

The metrics we used to evaluate mSSL include:

• Server capacity: The number of client requests a server
can successfully process per time unit.

• File downloading time: The latency from the time a client
initiates a connection with a server to the time that the
client receives the whole file.

• Storage overhead: The space a client or a server needs in
order to store mSSL-related information.

• Control traffic volume: The volume of control traffic
when mSSL is in place.

For every metric, we evaluate mSSL under one of the six
scenarios introduced in Section 5.1, plus a none scenario in
which no security functionalities are provided except that
the mSSL infrastructure is in place. The none scenario is
useful to measure the overhead of the mSSL framework. We
thus have a total of seven scenarios for evaluating mSSL:
none, A, I , C (i.e. AC), P (i.e. AIP), AI , and AIC.

We have implemented mSSL in Java and tested it in our
laboratory. Furthermore, we have also implemented a file-
sharing application which can invoke mSSL for its secu-
rity needs. With this application, a client can either directly

download a file from a server, or download it from providers
that have a copy of the file. The client can ask the server for
a list of provider clients, and can become a provider after
it obtains the file. We adopted 3DES (112-bit key length)
for classical cryptography, RSA (1024-bit key length) for
public key cryptography, and MD5 for hashing algorithms.

When mSSL is in direct mode, it will essentially incur
the same cost as SSL. Our evaluation of mSSL will focus
on its indirect access mode when a client needs to down-
load data objects from provider clients. We use experiments
to collect results and perform analysis for server capacity
and file downloading time, and analyze the storage over-
head and control traffic volume through calculations.

6.2 Server Capacity

We measured the server capacity as following. We con-
nected a client machine (a machine running Linux 2.4.20-
20.9smp with dual 2.4 GHz Pentium IV processors and
1 GB memory) and a server machine (an iBook running
OSX with a 700 MHz processor and 384 MB memory)
through a 100 Mbps link. Then for every one of seven sce-
narios to study, we had the client flood the server with file
downloading requests (each with the same security require-
ments), and recorded how many such requests the server
was able to serve over an extended period. To make sure
the server reached full capacity, we made sure that the client
machine was lightly loaded (note that the client machine is
much more powerful than the server machine), the band-
width usage between the two was far from saturated, and
the server’s CPU usage reached 100%.

Figure 5 shows the results. We can see that introduc-
ing new security functionalities does invite extra overhead;
however, such overhead is acceptable. For example, while
under the none scenario, the server capacity averages 465
requests per minute. Adding integrity does not affect the

 0

 100

 200

 300

 400

 500

AIPAICACAIAInone

N
um

be
r

of
 r

eq
ue

st
s

pe
r

m
in

ut
e

Scenarios

Figure 5. Server capacity

server capacity since no extra data-integrity-related opera-
tions are needed at the server. If requiring client authenti-
cation, the server capacity will become approximately 22%
less. Server capacity decreases another 6% if also requiring
confidentiality. Finally, if proof of service is also required,
server capacity will decrease another 13%.

6.3 File Downloading Time

In measuring mSSL’s impact on downloading files from
one or multiple providers, the server is the same machine
as in Section 6.2, and every client is a Dell Latitude D810
machine running Linux 2.6.9-ck3 with a 1.73 GHz Pentium
M processor and 512 MB memory, all connected over a 100
Mbps Ethernet. We have found that increasing the number
of providers of a recipient will linearly increase the down-
loading speed. In the following, we report the measurement
results for the case with one provider, and compare the im-
pact under all different scenarios.

File downloading time includes a startup latency, which
is the time that a client spends in handshaking with the
server before sending out a request for the first block of
a file, and data transferring time, which is the rest of file
downloading time. We report the results for each.

Our measurements show that the startup latency is not
related to the size of a file, but different scenarios will have
different startup latency. Figure 6 shows that compared
to the none scenario, further requiring client authentica-
tion, integrity, confidentiality, or their combinations, will
not cause a measurable increase of the startup latency, but
requiring proof of service will lengthen the startup latency
more significantly.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

AIPAICACAIAInone

S
ta

rt
up

 L
at

en
cy

 (
s)

Scenarios

Figure 6. Startup latency

Unsurprisingly, our measurements also show that data
transferring time is proportional to the size of a file. In the
following, we focus on the difference of data transferring
time between different scenarios.

Figure 7 shows how each basic scenario (which consists
of a single mSSL security function) may slow down the
downloading speed. The impact from adding client authen-
tication and/or confidentiality is almost negligible; except
for a few extra operations, transferring encrypted data or
non-encrypted data does not make a difference in terms of
transferring time, and data encryption and decryption oper-
ations can be done off-line. There is a slight decrease of
downloading speed when adding integrity verification. Re-
call that a recipient needs to request integrity path informa-
tion (Section 3). The proof of service function has a more
significant impact; for example, with this function turned
on, downloading a 32MB file will require 63 seconds com-
pared to the 45 seconds needed in the none scenario.

 0

 10

 20

 30

 40

 50

 60

 70

 80

32M16M8M4M2M1M512k256k128k64k32k

D
at

a
tr

an
sf

er
rin

g
tim

e
(s

)

File size (bytes)

none
I
A
C
P

Figure 7. Data transferring time under basic
scenarios

Figure 8 shows the data transferring time when support-
ing all different combined mSSL security functionalities.
The AIP scenario (i.e. P) is the slowest, and AC is the
fastest, while AI or AIC (equivalent because of offline en-
cryption/decryption) are just slightly slower than AC. The
reasons for the speed differences are similar to above.

6.4 Storage Overhead

While the none scenario will incur the same storage
overhead as in the conventional SSL, more security func-
tionalities lead to extra storage overhead. Assuming the
server is S and a recipient r is obtaining a data object O

from a provider p, extra storage overhead related to each
security function is:

• Client authentication: r needs to store a ticket for O. In
our implementation, a ticket is approximately 160 bytes.

• Integrity: Both p and r need to store the Merkle hash tree
of O. If O is 1 GB, each block is 8 KB, and every hash
value is 16 bytes, the tree will be approximately 4 MB.

 0

 10

 20

 30

 40

 50

 60

 70

 80

32M16M8M4M2M1M512k256k128k64k32k

D
at

a
tr

an
sf

er
rin

g
tim

e
(s

)

File size (bytes)

AC
AI, AIC
AIP

Figure 8. Data transferring time under com-
bined scenarios

• Confidentiality: p needs to store an encrypted copy of O

(unless p encrypts O on the fly) and S needs to store the
decryption key.

• Proof of service: p and r need to store certificates of their
public keys, and p also needs to store necessary acknowl-
edgments from r. Due to the aggregation feature built into
the acknowledgment mechanism, only a small number of
acknowledgments are needed and each acknowledgment
in our implementation is typically 150-200 bytes.

6.5 Volume of Control Traffic

Similarly, while the none scenario will incur the same
volume of control traffic as in the conventional SSL, more
security functionalities lead to extra control traffic. Again,
assuming the server is S and a recipient r is obtaining a
data object O from a provider p, extra traffic purely related
to each of the following is:

• Client authentication: the delivery of a ticket from S to r

and from r to p.

• Integrity: assuming O has n blocks, the extra traffic will
be n−1 hash values from p to r (we omit the proof to save
space) and a small amount of request traffic from r to p.

• Confidentiality: S needs forward the decryption key to r.

• Proof of service: p and r need to send each other a cer-
tificate of their own public keys. r also needs to send an
acknowledgment for each encrypted block of O. p also
needs to send a protected block key to r (see Section 4).
p may also contact S to present the proof of its service,
which will be the size of an acknowledgment (recall it is
typically 150-200 bytes in our implementation). r may

also burden S with a small amount of traffic when r has
trouble with block keys.

6.6 Summary

Our comprehensive cost and performance study of mSSL
shows that in general, more security functionalities lead to
higher storage and traffic overhead while decreasing server
capacity and lengthening file downloading time. But over-
all, the extra overhead it introduces is at a reasonable level
and generally very small.

7 Related Work

Works related to mSSL can be categorized into related
security protocols, related data integrity solutions, and in-
centive mechanisms in peer-to-peer environment.

7.1 Security Protocols

We discuss security protocols that could potentially be
used for the hybrid peer-to-peer paradigm to support func-
tions that mSSL is designed for.

SSL/TLS: SSL [17], or SSL/TLS, provides data encryp-
tion and authentication between a client and a server. It is
the most common security scheme today for securing web-
based services and has also been used for many other ser-
vices. However, SSL is designed to secure point-to-point
communications. To use SSL in securing the sharing of data
from a server among its clients, it must be applied separately
to every client-server and client-client connection, resulting
in a high overhead.

Kerberos: mSSL’s ticket-based authentication mecha-
nism has some similarities with Kerberos. Kerberos allows
a client to contact a trusted third party, a Key Distribution
Center (KDC), to obtain a ticket-granting ticket (TGT), and
then use the TGT to obtain a ticket related to a particular
service. However, designed for this hybrid P2P environ-
ment, mSSL avoids the reliance on a trusted third party. It
allows the server to issue a ticket directly to a client.

Group Management: If all authenticated clients of a
server are treated as a group, some group management tech-
niques could be useful. For example, SDSI [18] uses a sim-
ple PKI to manage memberships and secret communication
among members. Various group key management schemes
have also been designed, such as [23, 12, 7]. However,
these schemes are mainly to support confidential communi-
cation among group members, whereas mSSL must handle
not only confidentiality, but also other security functionali-
ties such as integrity and proof of service.

7.2 Data Integrity Mechanisms

Existing peer-to-peer file-sharing applications provide
data integrity functionalities. PROOFS [21] and Slurpie
[20] recommend the use of MD5 or similar checksum al-
gorithms. BitTorrent [5] adopts a superblock-based mech-
anism, which can have a high startup latency (as we dis-
cussed in Section 3). Solutions based on a Merkle hash
tree have also been proposed for peer-to-peer environments,
such as [6]. Different from those works, mSSL does not re-
quire pre-downloading of hash values, and for each block
a client can just request an integrity path instead of a nor-
mally much longer authentication path. Integrity solutions
also exist in different contexts; for example, TESLA [16]
allows a large number of recipients to check the integrity of
packets being delivered from a single source.

Researchers have also proposed solutions that are com-
plementary to mSSL’s integrity solution, including storage
mechanisms of block-level integrity information (such as
[15]), optimization of Merkle hash trees (such as [22]).

7.3 Offering Proofs of Service

Proof of service in this paper can be regarded as one par-
ticular case of a non-repudiation service. There have been
quite a few non-repudiation schemes designed in different
contexts, focusing on non-repudiation of origin, receipt,
submission, and delivery [10, 13]. Verification of non-
repudiation schemes have also been studied [26, 19, 11].

Proof of service is also similar to the strong fair exchange
of information. In the context of this paper, fairness would
mean for a provider to receive a proof of its service and for
a recipient to receive the desired data. Solutions with a TTP
can be created using an inline TTP (such as [4, 2] where
the TTP is required to mediate every communication be-
tween a sender and a receiver), using an online TTP (such
as [24, 25] where the sender and the receiver can directly
communicate, but still need the TTP to store and fetch in-
formation), and using an offline TTP (such as [1, 9], where
the TTP will be involved only when a problem occurs).

The most closely related to this paper is the fair exchange
with an offline TTP. While leveraging current schemes, our
solution for the hybrid peer-to-peer paradigm has an impor-
tant difference in that a server itself can act as a TTP for
its own provider and recipient clients. This is also an inher-
ent advantage for enforcing fairness. Further note that the
server is also the original source of the data that a provider
offers to a recipient, bringing us another advantage in de-
signing a solution in this hybrid paradigm. If needed, a
server can verify the data without requesting them from
other nodes, thus avoiding a drawback in many TTP-based
solutions, especially when the amount of data is large.

8 Conclusions

As we continue to see the trend that the conventional
client-server communication paradigm is enhanced with
peer-to-peer communications among clients, often with dra-
matic advantages, serious security concerns arise in this hy-
brid communication environment. Compared to receiving
data directly from a server, receiving data from arbitrary,
often less trustworthy peer clients is subject to much higher
security risks. Malicious clients may sneak into the sys-
tem to corrupt the hybrid communications. Data integrity
and data confidentiality are more easily breached. Mecha-
nisms to reward peer clients for sharing data, such as credit-
ing those providing data to others, are also vulnerable since
clients may lie about peer-level service.

We designed and evaluated the mSSL protocol to address
these security concerns. In contrast to the SSL protocol that
protects conventional client-server communications, mSSL
allows clients to share data from their server in a peer-to-
peer fashion with a strong security. It protects both client-
server and client-client communications. Furthermore, to
strengthen the security of a wide range of Internet appli-
cations running with a hybrid communication paradigm,
mSSL provides strong and flexible support for addressing
both conventional security issues, such as client authentica-
tion, data integrity and data confidentiality, and new secu-
rity issues such as proof of service in this special context.

mSSL’s contributions also include its special attention
to designing effective and efficient data integrity protec-
tion and proof-of-service mechanisms. It introduced an “in-
tegrity path” concept to allow prompt, block-level integrity
verification with low communication and computation over-
head. Its proof-of-service mechanism has minimal server
overhead, uses small-sized proofs for the service of a very
large number of blocks, and ensures the service of every
block to be credited accurately. Our evaluation agrees with
our design, and has shown an acceptable overhead under
different scenarios where mSSL might be used.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Asynchronous Pro-
tocols for Optimistic Fair Exchange. In Proceedings of
the IEEE Symposium on Research in Security and Privacy,
pages 86–99, 1998.

[2] A. Bahreman and J. Tygar. Certified Electronic Mail. In
Proc. of Symposium on Network and Distributed Systems Se-
curity, pages 3–19, 1994.

[3] BitTorrent, Inc. BitTorrent. http://bittorrent.com,
2005.

[4] T. Coffey and P. Saidha. Non-Repudiation with Manda-
tory Proof of Receipt. SIGCOMM Comput. Commun. Rev.,
26(1):6–17, 1996.

[5] B. Cohen. Incentives Build Robustness in BitTorrent. Work-
shop on Economics of Peer-to-Peer Systems, 2003.

[6] A. Habib, D. Xu, M. Atallah, B. Bhargava, and J. Chuang.
Verifying Data Integrity in Peer-to-Peer Media Streaming.
In Twelfth Annual Multimedia Computing and Networking
(MMCN ’05), 2005.

[7] Y. Kim, A. Perrig, and G. Tsudik. Tree-Based Group Key
Agreement. ACM Trans. Inf. Syst. Secur., 7(1):60–96, 2004.

[8] K. Kong and D. Ghosal. Mitigating Server-Side Congestion
in the Internet through Pseudoserving. IEEE/ACM Trans.
Netw., 7(4):530–544, 1999.

[9] S. Kremer and O. Markowitch. Optimistic Non-Repudiable
Information Exchange. In Proceedings of the 21st Sympo-
sium on Information Theory in the Benelux, pages 139–146,
Wassenaar, The Netherlands, 2000.

[10] S. Kremer, O. Markowitch, and J. Zhou. An Intensive Sur-
vey of Fair Non-Repudiation Protocols. Computer Commu-
nications, 25(17), 2002.

[11] S. Kremer and J.-F. Raskin. A Game-Based Verification
of Non-Repudiation and Fair Exchange Protocols. Lecture
Notes in Computer Science, 2154:551+, 2001.

[12] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam. Batch
Rekeying for Secure Group Communications. In Proceed-
ings of the 10th International Conference on World Wide
Web, pages 525–534. ACM Press, 2001.

[13] P. Louridas. Some Guidelines for Non-Repudiation Pro-
tocols. SIGCOMM Computer Communication Review,
30(5):29–38, 2000.

[14] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. IETF
RFC 2018: TCP Selective Acknowledgement Options,
1996.

[15] A. Oprea, M. Reiter, and K. Yang. Space-Efficient Block
Storage Integrity. In The 12th Annual Network and Dis-
tributed System Security Symposium, 2005.

[16] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The tesla
broadcast authentication protocol. 5(2):2–13, 2002.

[17] E. Rescorla. SSL and TLS: Designing and Building Secure
Systems. Addison-Wesley, 2000.

[18] R. Rivest and B. Lampson. SDSI: A Simple Distributed Se-
curity Infrastructure. http://theory.lcs.mit.edu/˜cis/sdsi.html,
1996.

[19] S. Schneider. Formal Analysis of a Non-Repudiation Proto-
col. In CSFW ’98: Proceedings of the 11th IEEE Computer
Security Foundations Workshop, page 54, Washington, DC,
USA, 1998.

[20] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A
Cooperative Bulk Data Transfer Protocol. IEEE INFOCOM,
2004.

[21] A. Stavrou, D. Rubenstein, and S. Sahu. A Lightweight,
Robust P2P System to Handle Flash Crowds. In the 10th
ICNP, pages 226–235, 2002.

[22] D. Williams and E. G. Sirer. Optimal Parameter Selection
for Efficient Memory Integrity Verification Using Merkle
Hash Trees. In Proceedings of Network Computing and Ap-
plications, Trusted Network Computing Workshop, 2004.

[23] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group Com-
munications Using Key Graphs. IEEE/ACM Trans. Netw.,
8(1):16–30, 2000.

[24] N. Zhang and Q. Shi. Achieving Non-Repudiation of Re-
ceipt. The Computer Journal, 39(10), 1996.

[25] J. Zhou and D. Gollmann. A Fair Non-Repudiation Proto-
col. In Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 55–61, Oakland, CA, 1996.

[26] J. Zhou and D. Gollmann. Towards Verification of Non-
Repudiation Protocols. In Proceedings of 1998 International
Refinement Workshop and Formal Methods Pacific, pages
370–380, Canberra, Australia, 1998.

