Privacy-Preserving Alert Correlation: A Concept Hierarchy Based Approach *

Dingbang Xu and Peng Ning
Cyber Defense Laboratory
Department of Computer Science
North Carolina State University
{dxu,pning} @ncsu.edu

Abstract

With the increasing security threats from infrastructure
attacks such as worms and distributed denial of service at-
tacks, it is clear that the cooperation among different or-
ganizations is necessary to defend against these attacks.
However, organizations’ privacy concerns for the incident
and security alert data require that sensitive data be sani-
tized before they are shared with other organizations. Such
sanitization process usually has negative impacts on intru-
sion analysis (such as alert correlation). To balance the
privacy requirements and the need for intrusion analysis,
we propose a privacy-preserving alert correlation approach
based on concept hierarchies. Our approach consists of two
phases. The first phase is entropy guided alert sanitization,
where sensitive alert attributes are generalized to high-level
concepts to introduce uncertainty into the dataset with par-
tial semantics. To balance the privacy and the usability of
alert data, we propose to guide the alert sanitization pro-
cess with the entropy or differential entropy of sanitized at-
tributes. The second phase is sanitized alert correlation. We
focus on defining similarity functions between sanitized at-
tributes and building attack scenarios from sanitized alerts.
Our preliminary experimental results demonstrate the effec-
tiveness of the proposed techniques.

1 Introduction

In recent years, the security threats from infrastructure
attacks such as worms and distributed denial of service
attacks are increasing. To defend against these attacks,
the cooperation among different organizations is necessary.
Several organizations such as CERT Coordination Cen-
ter and DShield (http://www.dshield.org/)collect
data (including security incident data) over the Internet, per-
form correlation analysis, and disseminate information to

*The authors would like to thank the anonymous reviewers for their
valuable comments. This work is supported by the National Science Foun-
dation (NSF) under grants ITR-0219315 and CCR-0207297, and by the
U.S. Army Research Office (ARO) under grant DAAD19-02-1-0219.

users and vendors. The security incident data are usually
collected from different companies, organizations or indi-
viduals, and their privacy concerns have to be considered.
To prevent the misuse of incident data, appropriate data san-
itization through which the sensitive information is obfus-
cated is highly preferable. For example, DShield lets audit
log submitters perform partial or complete obfuscation to
destination IP addresses in the datasets, where partial ob-
fuscation changes the first octet of an IP address to decimal
10, and complete obfuscation changes any IP address to a
fixed value 10.0.0.1.

To protect networks and hosts on the Internet, many se-
curity systems such as intrusion detection systems (IDSs)
are widely deployed. However, current IDSs have some
well-known limitations. They usually flag thousands of
alerts per day, among which false alerts are mixed with true
ones. To better understand the security threats, it is nec-
essary to perform alert correlation. Current correlation ap-
proaches can be roughly divided into four categories: (1)
similarity based approaches (e.g., [19, 17]), which perform
clustering analysis through calculating the similarity be-
tween alert attributes, (2) approaches based on pre-defined
attack scenarios (e.g., [5, 9]), which build attack scenarios
through matching alerts to pre-defined scenario templates,
(3) approaches based on prerequisites (pre-conditions) and
consequences (post-conditions) of attacks (e.g., [4, 11]),
which create attack scenarios through matching the con-
sequence of one attack to the prerequisite of another, and
(4) approaches based on multiple information sources (e.g.,
[13, 10, 20]), which correlate alerts from multiple security
systems such as firewalls and IDSs.

Current alert correlation approaches generally assume
all alert data (e.g., destination IP addresses) are available
for analysis, which is true when there are no privacy con-
cerns. However, when multiple organizations provide san-
itized alert and incident data (because of privacy concerns)
for intrusion analysis, alert correlation will be affected due
to the lack of precise data. It is desirable to have techniques
to perform privacy-preserving alert correlation such that the
privacy of participating organizations is preserved, and at
the same time, alert correlation can provide useful results.

To our best knowledge, [7] is the only paper addressing pri-
vacy issues in alert correlation, which uses hash functions
(e.g., MD5) and keyed hash functions (e.g., HMAC-MDS)
to sanitize sensitive data. This approach is effective in de-
tecting some high-volume events (e.g., worms). However,
since hash functions destroy the semantics of alert attributes
(e.g., the loss of topological information due to hashed IP
addresses), the interpretation of correlation results is non-
trivial. In addition, hash functions may be vulnerable to
brute-force attacks due to limited possible values of alert
attributes, and keyed hash functions may introduce difficul-
ties in correlation analysis due to the different keys used by
different organizations.

In this paper, we propose a privacy-preserving alert cor-
relation approach based on concept hierarchies. This ap-
proach works in two phases: entropy guided alert saniti-
zation and sanitized alert correlation. The first phase pro-
tects the privacy of sensitive alert data. We classify alert
attributes into categorical (e.g., IP addresses) and continu-
ous ones (e.g., the total time a process runs), and sanitize
them through concept hierarchies. In a concept hierarchy,
original attribute values are generalized to high-level con-
cepts. For example, IP addresses are generalized to net-
work addresses, and continuous attributes are generalized
to intervals. We replace original attribute values with corre-
sponding high-level concepts, thus introducing uncertainty
while partially maintaining attribute semantics. To balance
the privacy and usability requirements, alert sanitization is
guided by entropy or differential entropy [3] of sanitized
attributes, where the entropy or differential entropy for san-
itization is determined according to the privacy policy.

To understand the security threats, the second phase of
our approach is to correlate sanitized alerts. As we men-
tioned earlier, examining the similarity between alert at-
tributes and building attack scenarios are two focuses in cur-
rent correlation methods. We investigate both problems un-
der the situation where alerts are sanitized. We first exam-
ine similarity functions based on original attribute values,
and then show how to revise them to calculate similarity
between sanitized attributes. To build attack scenarios from
sanitized alerts, we propose an optimistic approach. As
long as it is possible that two sanitized alerts have a causal
relation, we link them together. Hence multiple alerts are
connected through causal relations to form attack scenarios.

The remainder of this paper is organized as follows. Sec-
tion 2 presents techniques on entropy guided alert sanitiza-
tion. Section 3 discusses correlating sanitized alerts. Sec-
tion 4 presents our experimental results. Section 5 discusses
related work, and Section 6 concludes this paper.

2 Entropy Guided Alert Sanitization

Alert Types, Original Alerts and Sanitized Alerts. In-
tuitively, an alert type defines the possible attributes to de-
scribe a type of alerts. Formally, an alert type is a type name

T and a set S of attribute names, where each attribute name
a; € S has an associated domain Dom(a;). (For conve-
nience, we may use type name 7' to represent either the type
name or the corresponding alert type in this paper.) Original
alerts are flagged directly by security systems. Formally, an
original alert t, of type T is a tuple on the attribute names
S, where for each attribute name a; € S, the corresponding
element v; in the tuple is a value in a;’s domain Dom(a;).

Example 1 An FTP_Glob_Expansion alert type has a set
of attribute names {SrcIP, SrcPort, DestIP, DestPort, Start-
Time, EndTime} , where the domain of SrcIP and DestIP is
all possible IP addresses, the domain of SrcPort and Dest-
Port consists of all possible port numbers, and StartTime
and EndTime are possible times an alert begins and ends.

An original alert with type FTP_Glob_Expansion is
given as follows: {SrcIP=10.20.1.1, SrcPort=1042,
DestIP=10.10.1.1, DestPort=21, StartTime =11-10-2004
15:45:10, EndTime =11-10-2004 15:45:10}.

In this paper, the privacy of alerts is related to the original
values of sensitive attributes in individual alerts. To ensure
the privacy of individual alerts, these sensitive original val-
ues should be sanitized. A sanitized alert ts with type T is
a tuple on the attribute name set S, where for some attribute
name a; € S, the corresponding element v; in the tuple
is a transformed value in domain Dom;(a;) (Doms(a;) is
Dom(a;) or a different domain). To continue Example 1, as-
sume DestIP of FTP_Glob_Expansion is sensitive. To san-
itize the original alert, we let Dest/P=10.10.1.0/24 (it is
sanitized to its corresponding /24 network address). All the
other attributes remain unchanged.

In the remainder of this paper, we may use attributes to
represent either attribute names, attribute values or both if
it is clear from the context. Likewise, we may use alerts to
denote either original alerts, sanitized alerts, or both. In the
following, we present concept hierarchy based sanitization
for categorical and continuous attributes, respectively.

2.1 Categorical Attribute Sanitization

Categorical attributes have discrete values. Examples of
categorical attributes are IP addresses and port numbers.
Concept hierarchies abstract specific (low-level) concepts
into general (high-level) ones, which are widely used in data
mining. A concept hierarchy is based on specific-general
relations. Given two concepts c¢; and ¢z (e.g., two attribute
values), where co is more general than c; (or equivalently,
c1 is more specific than c3), we denote the specific-general
relation between c; and co as ¢; < co. As a special case, we
have ¢ < c for any concept c. Given an attribute name with
the corresponding domain, we can define specific-general
relations through grouping a subset of attribute values and
abstracting them into a more general concept. For example,
a block of IP addresses can be organized as a subnet. Thus
given an IP address 10.10.1.5 and a subnet 10.10.1.0/24,
we have 10.10.1.5 < 10.10.1.0/24.

(a) A Concept Hierarchy for IP Addresses

(b) A Concept Hierarchy for CPUProcessingTime

Figure 1. Two Examples of Concept Hierarchies

A concept hierarchy consists of a set of specific-general
relations, and usually is organized as a tree, where leaf
nodes denote the most specific concepts (original attribute
values), and the root node represents the most general con-
cept in this hierarchy. For example, Figure 1(a) shows
a concept hierarchy for IP addresses, where IP addresses
from 10.10.1.0 to 10.10.1.255 and from 10.10.2.0 to
10.10.2.255 are organized into two subnets 10.10.1.0/24
and 10.10.2.0/24, respectively. For each attribute (e.g.,
source IP address), or a set of attributes having the same
domain (e.g., both source and destination IP addresses), we
can build a concept hierarchy based on the attribute domain.
Then we perform alert sanitization by replacing original at-
tribute values with more general values in the hierarchy.

Example 2 To continue Example 1, assume DestIP of
FTP_Glob_Expansion is sensitive. We use the concept hi-
erarchy in Figure 1(a) to perform sanitization. We replace
DestIP=10.10.1.1 with DestIP=10.10.1.0/24. The other at-
tributes remain unchanged.

To balance the privacy and usability of alert data, we
need to design a satisfactory concept hierarchy to perform
sanitization, or choose appropriate general values to replace
original attribute values in a given concept hierarchy. We
propose to guide these processes with entropy [3], an un-
certainty measure for categorical attributes.

We start with calculating the entropy of a sanitized at-
tribute. In a concept hierarchy for a categorical attribute,
given an attribute value v, which is either an original or a
generalized value, we use Node(v) to denote the node hav-
ing value v. Given a general value vy, we use SubTree(vy)
to denote the subtree rooted at Node(v,), and LeafCount(vg)
to denote the number of leaf nodes in SubTree(vy). When
sanitizing a categorical attribute a, an original value v, is
replaced with a general value v, in a concept hierarchy. No-
tice Node(v,) should be a leaf node in SubTree(vy). We de-
note the entropy of attribute a associated with vy as H, (vg),

where H,(vy) = — Ef:ffcwm(vg)p(a = v;)logy pla =
v;). Based on the frequencies of attribute values, we can
compute attribute entropy using the above equation. For

example, if all leaf nodes in SubTree(v,) are equally likely

to be generalized to vg, then for any leaf node value v;,
the probability p(a = v;) = 1/LeafCount(v,), thus we
have H,(vq) = log, LeafCount(vy). To continue Exam-
ple 2 under the assumption of equal probabilities for leaf
nodes, the entropy of DestIP associated with 10.10.1.0/24
is log,LeafCount(10.10.1.0/24) = log, 256 = 8.

Attribute entropy can help us design a satisfactory con-
cept hierarchy. For example, if we want to achieve an
entropy value 8 when sanitizing DestIP distributed from
10.90.1.0 to 10.90.1.255 with equal probabilities, we can
design a concept hierarchy with two levels, where the root
node is a /24 network (10.90.1.0/24), and the leaf nodes
are those individual IP addresses. Entropy can also help
us choose an appropriate general value in a given con-
cept hierarchy. For example, consider an original attribute
DestIP=10.10.10.1 and a concept hierarchy in Figure 1(a),
where leaf nodes in the hierarchy have equal probabilities.
If we require an entropy value 8, we can choose the general
value 10.10.1.0/24 to sanitize the original attribute.

2.2 Continuous Attribute Sanitization

Some attributes in an alert take continuous values, for
example, the CPU time a process uses. To sanitize a con-
tinuous attribute, we divide the domain of the attribute into
mutually exclusive intervals, and replace the original values
with the corresponding intervals. Formally, if the domain of
an attribute a is Dom(a), we partition Dom(a) into n in-
tervals r, 7o, - - -, 7, such that (1) Up_, vy, = Dom/(a), and
(2) for any i, j, where 1 <4,j <nandi # j,r Nr; =0.

The partitions of an attribute domain can be organized
into a concept hierarchy. For example, Figure 1(b) shows
a concept hierarchy for attribute CPUProcessingTime (as-
suming its domain is interval (0, 256]). Several approaches
have been proposed to create concept hierarchies for con-
tinuous attributes in data mining. For example, one simple
approach organizes a hierarchy into multiple levels, where
each level has different number of equal-length intervals.
Example 3 Consider a JVM_Malfunction alert with a sen-
sitive attribute CPUProcessingTime = 82.6 milliseconds.
Using the concept hierarchy in Figure 1(b), we let CPUPro-
cessingTime = (64, 128].

To design a satisfactory concept hierarchy for sanitiza-
tion, or choose an appropriate interval to replace an original
value in a concept hierarchy, we use differential entropy [3],
an uncertainty measure for continuous attributes.

We first discuss how to compute differential entropy.
When sanitizing a continuous attribute a, an original value
v, is replaced with an interval v, that includes value v,. The
length of v, is critical to the calculation of the attribute un-
certainty. We let Length(v,) denote the difference between
the upper and lower bounds of interval v,. We denote the
differential entropy of a associated with vy as Hg(vg).

Ha(vg) = — / f(a)log, f(a)da, ()

where f(a) is the probability density function for attribute
a over interval vg.

Equation 1 is derived and simplified from the standard
form of differential entropy [3]. In the standard form,
Hao(Dom(a)) = = [p,m(a) fola)logy fo(a)da, where
fo(a) is the probability density function over attribute do-
main Dom(a). Under our sanitization technique, although
we cannot know the exact value of attribute a, we are certain
that it is in interval vy, where v, may be a part of Dom(a).
Then we know that the probability density function f(a) is
0 outside interval v,. Thus the integration in Equation 1
only needs to be performed over v, !

Based on Equation 1, we can compute differential en-
tropy for sanitized attributes where their original values are
in different distributions. As an example, we derive a for-
mula for uniformly distributed attributes. The original at-
tributes in other distributions can be computed in a simi-
lar way. Assume an attribute ¢ is in uniform distribution
and is sanitized to interval [a, §]. Thus its probability den-
sity function f(a) is 1/(8 —) when a < a < ; other-
wise f(a) = 0. Based on Equation 1, we have H,(v,) =
— J; f(a)logs f(a)da = log, (3 —a) = log, Length(uvy).

This equation tells us that differential entropy can be
greater than, equal to, or less than 0. Consider a ran-
dom variable X uniformly distributed over an interval with
length 1. For a sanitized continuous attribute, if its differen-
tial entropy is greater than 0, then its uncertainty is greater
than variable X; if its differential entropy is equal to 0, its
uncertainty is equal to X; otherwise its uncertainty is less
than X. As noted by Shannon [16], an important differ-
ence between the differential entropy and the entropy for
categorical attributes is that differential entropy is “relative
to the coordinate system”. In other words, if the measure-
ment units are changed (e.g., from milliseconds to seconds),
differential entropy values may also change. To continue
Example 3, further assume attribute CPUProcessingTime is
uniformly distributed in interval (64, 128]. The differential
entropy of CPUProcessingTime associated with (64, 128] is
log, (128 — 64) = 6.

The differential entropy can help design a satisfactory
concept hierarchy. For example, assume the domain of an
attribute is [0, 64] with uniform distribution. If we require
a differential entropy value 5, we can build a concept hier-
archy with two levels, where the root node is [0, 64], and
there are two leaf nodes [0, 32] and (32, 64]. The differen-
tial entropy can also help us choose an appropriate interval
to replace an original value. For example, consider an orig-
inal attribute CPUProcessingTime=82.6 milliseconds and a
concept hierarchy in Figure 1(b). Assume attributes are in
uniform distribution. If we require a differential entropy

!To let the probability density function f(a) satisfy qu fla)da =1,
f(a) can be derived from f,(a). Assume fvg fo(a)da =q<1 We

can let f(a) = fo(a)/q in interval vg; otherwise f(a) = 0. Another
method to get f(a) is to compute the distribution parameters, which is
straightforward for uniformly distributed attributes.

value 6 for sanitization, we can choose (64, 128] to replace
the original value.

3 Correlation Analysis of Sanitized Alerts

The second phase of our approach is sanitized alert cor-
relation. As we stated in the Introduction, examining the
similarity between alert attributes and building attack sce-
narios are two focuses in current correlation approaches. In
Subsections 3.1 and 3.2, we discuss how to compute the
similarity between sanitized attributes and building attack
scenarios for sanitized alerts, respectively.

3.1 Similarity between Sanitized Attributes

Sanitized Categorical Attributes. Several functions or
heuristics (e.g., techniques in [19, 17]) have been proposed
to calculate the similarity between (original) attribute val-
ues. Here we first give a simple heuristic, and then discuss
how to revise this heuristic to calculate the similarity be-
tween sanitized categorical attributes. Other simple heuris-
tics can be revised using a similar approach.

If two original attributes x, and y, are known, we give a
similarity function between them as follows.

1, ifx, = yo,

Sim(zo,Yo) = { 0, otherwise.)

After sanitization, x, and y, become generalized values
x4 and yg, respectively. There are several ways to compute
the similarity between x, and y,. For example, we can treat
the sanitized attributes as the original ones, and use Equa-
tion 2 to compute their similarity. This is a coarse-grained
similarity measurement because even if the sanitized val-
ues are the same, their corresponding original values may
be different. We propose to compute their similarity by es-
timating the probability that x4 and y, have the same orig-
inal value. Intuitively, in a concept hierarchy, two nodes
Node(x4) and Node(y,) are possible to have the same orig-
inal value only if they are in the same path from the root
to a leaf node (Node(x4) and Node(y,) may be the same).
In other words, there is a specific-general relation between
x4 and y,. If the probability that 2, and y, have the same
original value is large, we interpret it as a high similarity
between them; otherwise their similarity is low.

Now we show how to compute the probability that z,
and y, have the same original value. To simplify our discus-
sion, we assume leaf node values in the concept hierarchy
have equal probabilities. Using probability theory, the re-
vised similarity function based on Equation 2 is as follows.

1 .
LeafC(iunt(:cg)’ if Yg = Ly,

Sim(xg,yg) = TeafComnityy: i %9 = Ygs 3)
0, otherwise,

where “=<” denotes specific-general relations.

When the leaf node values in a concept hierarchy are not
evenly distributed, to compute the similarity value for z,
and y4, we can first compute the probability for each origi-
nal value based on attribute frequencies, then calculate the
similarity value based on x4, ¥4, the concept hierarchy, and
the probability for each leaf node.

Sanitized Continuous Attributes. The similarity func-
tion between continuous attributes is different from that of
categorical attributes due to various reasons. For example,
due to the clock drift, two CPUProcessingTime may not be
reported the same even if their actual time is the same. Con-
sidering these situations, here we first give a simple similar-
ity function as follows. (Other similarity functions are pos-
sible and may be revised in a similar way to our approach.)

1, if |zo —yo|l < A,

Sim(xo,Yo) = { 0, otherwise, @

where x,, and y, are original attribute values, and X is a pre-
defined threshold. For example, if the difference between
two CPUProcessingTime is less than 5 milliseconds, we say
their similarity is 1.

When z, and y, are generalized to intervals x, and
g, Tespectively, there are several ways to compute the
similarity between x4, and y,. For example, assuming
Length(xy) = Length(yy) > A, their similarity is 1 if
T4 = Yg, and O otherwise. This certainly is a rough, impre-
cise estimation, because even if x4 and y, are not the same
interval, it is possible that the difference between their orig-
inal values is less than A\. Similar to the categorical case, we
propose to compute their similarity by estimating the prob-
ability that the difference between their original values is
within threshold A.

To simplify our discussion, suppose that original val-
ues of x4 and y, are independent and uniformly distributed
over intervals x4 and y,, respectively, and we also assume
Length(xz,) = Length(yy) > A. More sophisticated cases
such as Length(z,) # Length(y,) can be covered by an ap-
proach similar to the following calculation. We notice the
difference between two original values may be within A
only if x4 and y, fall into any of the following two cases.
(1) 4 and y, are the same interval, or (2) for x4 and y,, the
difference between the lower bound of the higher interval
and the upper bound of the lower interval is within \. Intu-
itively, this second case means x4 and y, either are adjacent
intervals (e.g., [0,5] and (5, 10]), or there is a small “gap”
between them (e.g., [0, 5] and [6, 11]).

Using probability theory, the revised similarity function
based on Equation 4 is as follows.

2\[Length(zy)]—\?

[Lengtl;(xg)]z , if Lg =Yg
Sim(zg,yg) = | O if0<d<),
0, otherwise,

)
where d is the difference between the lower bound of the
higher interval and the upper bound of the lower interval.

Note that similarity computation based on Equation 5 is
symmetric (Sim(zg, yq) = Sim(yg, x4)).

We notice that in the probability computation, we
have taken several assumptions such as Length(zy)=
Length(yg)> X to simplify our calculation. However, the
essential steps involved in the probability computation have
been demonstrated. More sophisticated cases can be cov-
ered by a similar approach.

3.2 Building Attack Scenarios

An attack scenario is a sequence of steps adversaries per-
formed to attack victim machines. The essence of creating
attack scenarios from security alerts is to discover causal re-
lations between individual attacks. For example, there is a
causal relation between an earlier SCAN_NMAP_TCP attack
and a later FTP_Glob_Expansion attack if the earlier one is
used to probe a vulnerable ftp service for the later one.

We extend a previous correlation method [11], which
targets at building attack scenarios from original alerts, to
build attack scenarios from sanitized alerts. In the follow-
ing, we first give an overview of that correlation method
with a slight modification, which simplifies our discussion
without losing the essence of the previous method.

A Previous Method for Building Attack Scenarios
[11]. The correlation method in [11] models each attack
type through specifying its prerequisite and consequence,
where the prerequisite is the necessary condition to launch
the attack successfully, and the consequence is the possi-
ble outcome if the attack succeeds. Prerequisites and con-
sequences are modeled by predicates. For example, the
consequence of a port scanning attack may be ExistSer-
vice(DestIP, DestPort), denoting that an open port DestPort
is found on host DestIP. Formally, given an alert type 7T,
the prerequisite of 7" is a logical combination of predicates,
and the consequence of 7' is a set of predicates, where the
variables in the predicates are attribute names in type 7.

Example 4 Consider alert types T1=SCAN_NMAP_TCP
and T>=FTP_Glob_Expansion. T}’s prerequisite is Ex-
istHost(DestIP), and {ExistService(DestIP,DestPort)} is its
consequence. Ty’s prerequisite is ExistService(DestIP,
DestPort) A VulnerableFtpRequest(DestIP), and its conse-
quence is {GainAdminAccess(DestIP)}.

Given a type T alert ¢, the prerequisite and consequence
of ¢ can be obtained through instantiating 7”’s prerequisite
and consequence using t’s attribute values and timestamps.
‘We model causal relations between alerts (i.e., detected at-
tacks) as prepare-for relations. Intuitively, an earlier alert
t1 prepares for a later alert ¢ if the consequence of ¢; can
contribute to the prerequisite of t,. Formally, ¢; prepares
for to if and only if (1) one of the instantiated predicates in
t1’s consequence implies one of the instantiated predicates
in t9’s prerequisite, and (2) t1.EndTime < to.StartTime.
Example 5 To continue Example 4, consider a type T
alert t1 and a type Ts alert to. Assume that 1,

and to both have DestlP=10.10.1.1 and DestPort=21,
t1’s EndTime is 11-15-2004 20:15:10, and ts’s Start-
Time is 11-15-2004 20:15:15. Through predicate in-
stantiation, t1’s consequence is {ExistService(10.10.1.1,
21)}, to’s prerequisite is ExistService(10.10.1.1, 21) A
VulnerableFtpRequest(10.10.1.1). Notice t1.EndTime <
to.StartTime. Then we know t, prepares for ts.

Alert correlation graphs are used to represent the at-
tack scenarios discovered through alert correlation. For-
mally, an alert correlation graph is a directed graph (N, E),
where each node n € N is an alert, and each directed edge
(nl, 712)) represents that n; prepares for ny. For con-
venience, we may use causal relations and prepare-for rela-
tions interchangeably in this paper. Given two alerts ¢; and
to, where t1 prepares for to, we call ¢ the preparing alert,
and t, the prepared alert.

Optimistic Approach to Building Attack Scenarios
from Sanitized Alerts. We notice that identifying prepare-
for relations between alerts is essential to building attack
scenarios. However, after alert sanitization, we may not
be certain whether prepare-for relations are satisfied if san-
itized attributes are involved. Without loss of generality,
we assume alert type data is not sanitized. We propose an
optimistic approach to identifying prepare-for relations be-
tween sanitized alerts. This approach identifies a prepare-
for relation between two alerts ¢; and t5 as long as it is
possible that (1) one of the instantiated predicates in t;’s
consequence may imply one of the instantiated predicates
in to’s prerequisite, and (2) ¢; and t5’s timestamps may sat-
isfy ¢1.EndTime < t¢5.StartTime. In other words, based on
sanitized attributes, we “guess” what possible original val-
ues are, and if these original values have a chance to satisfy
the implication relationship between instantiated predicates,
and also satisfy the timestamp requirement, we identify a
prepare-for relation. Example 6 illustrates this idea.

Example 6 To continue Examples 4 and 5, assume DestIP
of alerts t1 and to are sanitized based on the concept hier-
archy in Figure 1(a), where DestIP=10.10.1.1 is replaced
with DestIP=10.10.1.0/24. So t1’s consequence becomes
{ExistService(10.10.1.0/24, 21)}, and to’s prerequisite
is ExistService(10.10.1.0/24, 21) A VulnerableFtpRequest
(10.10.1.0/24). It is possible that the instantiated predicate
ExistService(10.10.1.0/24, 21) in t1’s consequence implies
the instantiated predicate ExistService(10.10.1.0/24, 21)
in to’s prerequisite if both sanitized DestIP attributes have
the same original IP address in network 10.10.1.0/24.
Further due to t1.EndTime < to.StartTime, we identify a
prepare-for relation between t1 and ts.

Attack Scenario Refinement Based on Probabilities of
Prepare-for Relations. Our optimistic approach certainly
may introduce false prepare-for relations between alerts.
Without knowledge of original values, we cannot guaran-
tee that one instantiated predicate implies another if sani-
tized attributes are involved. To improve this approach, it
is desirable to estimate how possible each pair of sanitized

alerts has a prepare-for relation. To do so, we can first com-
pute the probability that one instantiated predicate implies
another, and then consider timestamp requirement.

Example 7 To continue Example 6, consider ExistSer-
vice(DestIP,DestPort) in T ’s consequence and T ’s prereq-
uisite. After predicate instantiation using sanitized alerts,
we compute probabilities P(tl.Dest1P=t2.DestIP)=ﬁ,
and P(t1.DestPort=ty.DestPort) =1. Hence the probability
that the instantiated predicate ExistService(10.10.1.0/24,
21) in t1’s consequence implies the instantiated predicate
ExistService(10.10.1.0/24, 21) in to’s prerequisite is ﬁ.
Further note P(t1.EndTime< to.StartTime)=1. Then we
know the probability of this prepare-for relation to be true
is ﬁ

Notice that between two alerts, sometimes there may ex-
ist several pairs of instantiated predicates such that in each
pair, one instantiated predicate may imply the other. It is
difficult to estimate the probability that at least one impli-
cation relationship is true because we do not know the de-
pendency among them. To simplify the probability estima-
tion, we assume n pairs of instantiated predicates that may
have implication relationships are independent with prob-
abilities pi, pa, - -+, pn, respectively. Then the probabil-
ity that at least one implication relationship is satisfied is
1—(1—=p1)(1 —p2)--- (1 — pn). Next we consider times-
tamp requirement to further compute the probability for the
prepare-for relation.

After the probabilities of prepare-for relations are com-
puted, it is desirable to use these probability values to prune
false prepare-for relations in an alert correlation graph
(e.g., remove prepare-for relations with lower probabili-
ties). However, we observe that this ideal case may not
help much. As shown in Example 7, after sanitizing IP ad-
dresses to /24 network addresses, the probability that two
alerts have a prepare-for relation is only ﬁ, which may
imply that this prepare-for relation is false. However, con-
sidering that when the IP addresses in a /24 network are
sanitized, the probabilities of all prepare-for relations in-
volving these IP addresses are small. If we remove all the
low-probability prepare-for relations, it is very likely that
some true prepare-for relations are pruned.

We further observe that if we calculate the probability
for a set of prepare-for relations instead of only one, we
can gain more interesting hints. Assume n pairs of prepare-
for relations have probabilities p1, po, - - -, pn, respectively.
Further suppose they are independent. Thus the probability
that at least one prepare-forrelation is true is 1 —(1—p1)(1—
p2) -+ (1 — pn). This result may help us refine an alert
correlation graph.

To further refine an alert correlation graph constructed
from the optimistic approach, we propose to aggregate alert
correlation graphs. This is performed according to fem-
poral constraints and probability thresholds. Consider a
set .S of alerts and a time interval with length 6 (e.g., 6
seconds), where alerts in S are sorted in increasing order

Algorithm 1. Aggregation to an alert correlation graph.
Input: An alert correlation graph CG = (N, E), a temporal
constraint ¢, and a probability threshold 6.
Output: An aggregated correlation graph ACG.
Method:
1. Partition edge set F into subsets F1,F», - - -, E; such
that in any F; (1 < ¢ <), all edges have the same preparing
alert type, and the same prepared alert type.
2. For each subset F; in
3. Further partition E; into groups E;1, Ei2, - -+, E;; such
that the preparing alerts and prepared alerts in F;,
(1 < k < j) satisfy temporal constraint §, respectively.
4. For each group E;i in subset F;

5. Compute the probability P that at least one
prepare-for relation in F;y, is true.

6. If P > 0 Then

7. Aggregate edges in E;j into one; merge preparing

and prepared alerts, respectively.

8. Else Remove all edges in E;y.
Remove preparing and prepared alerts in Ejj if
they are not linked by other edges.

9. Let C'G after the above operations be ACG. Output ACG.

Figure 2. Aggregating alert correlation graphs

based on StartTime. We call two alerts consecutive alerts if
their StartTime timestamps are neighboring to each other in
S. S satisfies temporal constraint ¢ if and only if for any
two consecutive alerts ¢; and ¢; in S where t;.StartTime <
t;.StartTime, ¢;.StartTime —¢;. EndTime < §. Intuitively,
this means the time intervals (in the form of [StartTime,
EndTime]) of any two consecutive alerts overlap, or the
“gap” between them is within 6.

Given an alert correlation graph CG = (N, FE) con-
structed from the optimistic approach, a temporal constraint
0, and a probability threshold 6, we perform aggregation to
CG through the algorithm shown in Figure 2. The basic
idea is that we aggregate the edges with the same prepar-
ing and the same prepared alert types into one such that the
probability that at least one prepare-forrelation (represented
by these edges) is frue is greater than or equal to threshold
0. (The related nodes are merged accordingly.)

As we stated earlier, the alert correlation graphs con-
structed from our optimistic approach may include both
false and true prepare-for relations. They may also have
large numbers of nodes and edges such that understanding
these scenarios can be time-consuming. Algorithm 1 helps
us improve the quality of alert correlation graphs in that it
reduces the numbers of nodes and edges, and may improve
the certainty about prepare-for relations (in the aggregated
sense). Note that after aggregation, a node in the aggregated
correlation graph is actually a place holder which may rep-
resents multiple alerts. Our aggregation also has some lim-
itations because we may remove some frue prepare-for re-
lations from alert correlation graphs when the probability
for them is less than the threshold. In our future work, we
will investigate additional techniques to refine alert correla-
tion graphs to reduce both false alerts and false prepare-for

Table 1. Evaluating similarity functions

Categorical | Continuous
R for “similar” pairs 100% 100%
Ry for “similar” pairs 5.88% 9.95%
R for “distinct” pairs 94.12% 90.05%
Ry for “distinct” pairs 0% 0%

relations in the graphs.

4 Experimental Results
4.1 Evaluating Similarity Functions

We first evaluate the revised similarity functions (Equa-
tions 3 and 5). We are interested in how possible sanitized
datasets can provide similarity classification as that from
original datasets. In our experiments, we randomly gen-
erated a set S, of alerts with only one categorical (or
continuous) attribute, and then sanitized it to get a new set
Ss. For each pair of alerts in .S,, we used Equation 2 (or
Equation 4, resp.) to calculate attribute similarity. While for
each pair of alerts in S, we used Equation 3 (or Equation 5,
resp.) to compute their similarity. Then we applied an opti-
mistic classification. If the similarity value is greater than
0, we classify this pair of alerts as “similar” pair; otherwise
we classify them as “distinct” pair. We compared the results
from Sy with those from S,. We used two quantitative
measures: correct classification rate R.. for Ss based on
S, and misclassification rate R,,. for S based on S,. We
define R.. and R,,. for “similar” pairs as follows. R.. =
#common “‘similar” pairs in both S, and S -

#“similar” pairs in S, »oand Rype =
#“similar” pairs in Ss—#common “similar” pairs in .S, and S,
#total alert pairs—# “similar” pairs in .S,

Note that R, and R,,. are only for sanitized datasets, and
both measures can be computed for “similar” or “distinct”
pairs. Likewise, we define correct classification rate and
misclassification rate for “distinct” pairs by replacing
“similar” with “distinct” in the above equations.

Our first experiment is for categorical attributes. We
generated a set S, of 2,560 alerts with DestIP attributes
uniformly distributed over 256 IP addresses in network
10.60.1.0/24 (from 10.60.1.0 to 10.60.1.255). Next we
partitioned this network into 16 subnets. Each subnet (/28
subnet) has 16 addresses. We sanitized S, to S, such that
DestIP of each alert is generalized to the corresponding /28
subnet ID. We applied Equation 2 to S, and Equation 3 to
Ss. The results are shown in the left part of Table 1.

Our second experiment is for continuous attributes. We
generated a set S, of 1, 000 alerts with CPUProcessingTime
attributes uniformly distributed over interval [0, 100]. Then
we divided [0, 100] into 20 small equal-length intervals (the
length of each small interval is 5). Next we sanitized .S,
to S, by replacing original values with the corresponding
small intervals (a boundary value between two adjacent in-
tervals is put into the lower interval). Let A = 2.5. We

applied Equation 4 to S, and Equation 5 to S,. The results
are shown in the right part of Table 1.

In these two experiments, the entropy and differential
entropy for attributes DestIP and CPUProcessingTime are
log216 = 4 and log2d = 2.3219, respectively. Our correct
classification rates for both “similar” and “distinct” pairs are
high (greater than 90%), while the misclassification rates
for both pairs are low (less than 10%). This demonstrates
that the privacy of alert attributes can be protected with
sacrificing the data functionality (similarity classification)
slightly.

4.2 Building Attack Scenarios

To evaluate the techniques on building attack scenarios,
we performed experiments on 2000 DARPA intrusion de-
tection scenario specific data sets [8]. The datasets include
two scenarios: LLDOS 1.0 and LLDOS 2.0.2, where each
scenario includes two parts (inside and DMZ).

In the first set of experiments, our goal is to evaluate the
effectiveness of our optimistic approach to building attack
scenarios. We first used RealSecure network sensor 6.0
to generate alerts from four datasets: LLDOS 1.0 inside,
LLDOS 1.0 DMZ, LLDOS 2.0.2 inside, and LLDOS 2.0.2
DMZ. The prerequisites and consequences for all alert types
can be found in [12] (Tables III and IV). Due to space con-
straint, we do not list them here. We first constructed alert
correlation graphs for the original alert datasets using the
previous method [11]. Then we sanitized the destination IP
address of each alert (a sanitization policy used by DShield)
by replacing it with its corresponding /24 network ID. We
applied our optimistic approach to building alert correlation
graphs for the four datasets. To save space, here we only list
one alert correlation graph in Figure 3.

In Figure 3, the string inside each node is an alert type
followed by an alert ID. Notice that to show the differ-
ence between the alert correlation graphs created from the
original dataset and the sanitized one, we marked the ad-
ditional nodes obtained only from the sanitized dataset in
gray. From Figure 3, it is clear that the alert correlation
graph from the sanitized dataset is a supergraph of the one
from the original dataset. This is because our optimistic
approach identifies prepare-for relations even if the related
probabilities are low. Figure 3 represents a multi-stage at-
tack scenario, which is consistent with the major steps ad-
versaries performed.

We notice that false alerts may be involved in an alert
correlation graph (e.g., alert Email_Debug67705 in Fig-
ure 3). To further evaluate the effectiveness of our ap-
proach, similar to [11], we used two quantitative mea-

sures: soundness Mg and completeness M., where My =
F£correctly correlated alerts __ Fcorrectly correlated alerts
#correlated alerts ° and MC - F#related alerts We
computed both measures for the correlation approaches
based on original datasets and the sanitized ones. The re-

sults are in Table 2. Table 2 shows the correlation ap-

proach based on original datasets is slightly better than our
optimistic approach, which is reasonable because original
datasets are more precise than sanitized datasets. Neverthe-
less, our optimistic approach is relatively good: the majority
of soundness measures are greater than 70%, and all com-
pleteness measures are greater than 60%.

Table 2. Soundness and completeness

LLDOS 1.0 LLDOS 2.0.2
Inside | DMZ Inside | DMZ
M, (original) | 93.18% | 94.74% | 92.31% | 100%
M (sanitized) | 70.69% | 85.71% | 48.00% | 83.33%
M. (original) 93.18% | 94.74% | 66.67% | 62.50%
M. (sanitized) | 93.18% | 94.74% | 66.67% | 62.50%

In the second set of experiments, our goal is to ver-
ify whether correlation methods can help us differentiate
between true and false alerts. We conjecture that corre-
lated alerts are more likely to be true alerts, and false alerts
have less chance to be correlated. This conjecture has
been experimentally verified in [11] when original alerts
are available. We try to see the results when alerts are
sanitized. Similar to [11], we compute detection rate as

_gfdetected attacks | __ #ttrue alerts)
ZFobservable amacks - and false alert rate as 1 — #=775=. We cal

culated detection rates and false alert rates for RealSecure
network sensor, the correlation approach based on original
datasets, and the correlation approach (our optimistic ap-
proach) based on sanitized datasets. The results are shown
in Table 3. In Table 3, the numbers of alerts for correla-
tion approaches are the numbers of correlated alerts. We
observe that our optimistic approach still has the ability to
greatly reduce false alert rates, while slightly sacrificing de-
tection rates. In addition, comparing the detection rates and
false alert rates, the approach based on original datasets is
slightly better than our optimistic approach since original
datasets have more precise information than sanitized ones.

In the third set of experiments, our goal is to evaluate the
effectiveness of the aggregation to alert correlation graphs.
Due to space constraint, we only show one case for LL-
DOS 1.0 inside dataset. We aggregated the alert correlation
graph in Figure 3, where we set temporal constraint § = oo
and probability threshold § = 0.1. The result is shown in
Figure 4. In Figure 4, we notice that some false alerts are
ruled out (e.g., Email_Debug67705), which is highly prefer-
able. However, we also observe that some true alerts are
pruned (e.g., three Sadmind_Ping alerts), which is undesir-
able. Though it is possible to mitigate this undesirable case
through setting a lower probability threshold, we can never
guarantee that only false alerts will be ruled out. Thus the
aggregation should be applied with caution. The alert corre-
lation graphs created from the optimistic approach and the
aggregated correlation graphs are complementary to each
other, and they should be referred to each other to better
understand the security threats.

i
7

r

‘W‘\ «
J

——
2
w Vg
Rep> AN

=3
A - <A

i

|

J

v
)

»?

i

'>—_ -
| /
a) <N
‘ — ‘ /.
Gy 3
7

4
/
< 7P

P

N

N

== o,

W\

Figure 3. An alert correlation graph in LLDOS 1.0 inside dataset

Table 3. Detection rates and false alert rates in our experiments

Detection approach LLDOS 1.0 LLDOS 2.0.2
Insidle | DMZ Insidle | DMZ
RealSecure 922 891 489 425
alerts Correlation for original datasets 44 57 13 5
Correlation for sanitized datasets 58 63 25 6
RealSecure 61.67% | 57.30% | 80.00% | 57.14%

Detection rate | Correlation for original datasets | 60.00% | 56.18% | 66.67% | 42.86%
Correlation for sanitized datasets | 60.00% | 56.18% | 66.67% | 42.86%

RealSecure 95.23% | 93.60% | 96.73% | 98.59%
False alert rate | Correlation for original datasets | 6.82% | 5.26% | 23.08% | 40.00%
Correlation for sanitized datasets | 29.31% | 14.29% | 60.00% | 50.00%

Sadmind_Amslverify_Overflow2

T G SR

Figure 4. Aggregation to the alert correlation graph in Figure 3

5 Related Work proach is complementary to ours. DShield lets audit log
submitters perform partial or complete obfuscation to des-
To our best knowledge, [7] is the only paper that explic- tination IP addresses to sanitize sensitive information. Our

itly addresses privacy issues in alert correlation. This ap-

approach can be considered an extension to the DShield ap-
proach; the sanitization process in our approach is guided
by the desirable entropy, which can be determined by the
privacy policy, and thus leaves maximum allowable infor-
mation for further analysis.

Our work is also closely related to the k-Anonymity ap-
proaches [15, 18] where an entity’s information may be re-
leased only if there exist at least £ — 1 other entities in
the released data that are indistinguishable from this en-
tity. These approaches also apply generalization hierarchies
to help obfuscate attributes, where k is the pre-defined pa-
rameter to control the generalization process. Our approach
differs in that we use entropy to control the attribute san-
itization as well as to help design satisfactory concept hi-
erarchies. Moreover, we also study methods to correlate
sanitized alerts.

We notice that several other techniques may also be
used to protect the privacy of alerts, such as data pertur-
bation techniques [14, 6] used in statistical databases [1],
and privacy-preserving data mining techniques [2].

6 Conclusion and Future Work

In this paper, we proposed a concept hierarchy based ap-
proach for privacy-preserving alert correlation. It works
in two phases. The first phase is entropy guided alert
sanitization. We sanitize sensitive attributes through con-
cept hierarchies, where original attribute values are gener-
alized to high-level concepts to introduce uncertainty into
the datasets, and also partially maintain attribute seman-
tics. We further proposed to use entropy and differential
entropy to measure the uncertainty of sanitized attributes,
and also guide the generalization of original attributes. The
second phase is sanitized alert correlation, where we focus
on defining similarity functions between sanitized attributes
and building attack scenarios from sanitized alerts.

There are several future research directions. One of the
focuses in this paper is to define similarity functions for san-
itized attributes. Our results are still preliminary. We are
not clear how to get new similarity functions if the heuris-
tics between original attributes are very complex. We notice
that alert correlation graphs constructed from our optimistic
approach may include false prepare-for relations, we will
investigate how to further refine them in our future work.

References

[1] N. Adam and J. Wortmann. Security-control methods for
statistical databases: A comparison study. ACM Computing
Surveys, 21(4):515-556, 1989.

[2] R. Agrawal and R. Srikant. Privacy-preserving data min-
ing. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, May 2000.

[3] T. Cover and J. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., 1991.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

(15]

[16]

(171

(18]

(19]

(20]

F. Cuppens and A. Miege. Alert correlation in a cooperative
intrusion detection framework. In Proceedings of the 2002
1IEEE Symposium on Security and Privacy, May 2002.

H. Debar and A. Wespi. Aggregation and correlation of
intrusion-detection alerts. In Recent Advances in Intrusion
Detection, LNCS 2212, pages 85 — 103, 2001.

C. Liew, U. Choi, and C. Liew. A data distortion by proba-
bility distribution. ACM Transactions on Database Systems,
10(3):395-411, September 1985.

P. Lincoln, P. Porras, and V. Shmatikov. Privacy-preserving
sharing and correlation of security alerts. In Proceedings of

13th USENIX Security Symposium, August 2004.

MIT Lincoln Lab. 2000 DARPA intrusion detection scenario
specific datasets. http://www.ll.mit.edu/IST/
ideval/data/2000/2000_data_index.html,
2000.

B. Morin and H. Debar. Correlation of intrusion symptoms:
an application of chronicles. In Proceedings of the 6th In-
ternational Conference on Recent Advances in Intrusion De-
tection (RAID’03), September 2003.

B. Morin, L. Mé, H. Debar, and M. Ducassé. M2D2: A
formal data model for IDS alert correlation. In Proceedings
of the 5th International Symposium on Recent Advances in

Intrusion Detection (RAID 2002), pages 115-137, 2002.

P. Ning, Y. Cui, and D. S. Reeves. Constructing attack sce-
narios through correlation of intrusion alerts. In Proceedings
of the 9th ACM Conference on Computer and Communica-
tions Security, pages 245-254, Washington, D.C., Novem-
ber 2002.

P. Ning and D. Xu. Hypothesizing and reasoning about at-
tacks missed by intrusion detection systems. ACM Trans-
actions on Information and System Security, 7(4):591-627,
November 2004.

P. Porras, M. Fong, and A. Valdes. A mission-impact-based
approach to INFOSEC alarm correlation. In Proceedings
of the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID 2002), pages 95—-114, 2002.

S. Reiss. Practical data-swapping: The first steps. ACM
Transactions on Database Systems, 9(1):20-37, March
1984.

P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement
through generalization and suppression. Technical Report
SRI-CSL-98-04, Computer Science Laboratory, SRI Inter-
national, 1998.

C. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379-423, 623-656, July
1948.

S. Staniford, J. Hoagland, and J. McAlerney. Practical auto-
mated detection of stealthy portscans. Journal of Computer
Security, 10(1/2):105-136, 2002.

L. Sweeney. k-anonymity: A model for protecting pri-
vacy. International Journal on Uncertainty, Fuzziness and

Knowledge-based Systems, 10(5):557-570, October 2002.
A. Valdes and K. Skinner. Probabilistic alert correlation. In
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID 2001), pages 5468,
2001.

V. Yegneswaran, P. Barford, and S. Jha. Global intrusion
detection in the domino overlay system. In Proceedings of
the 11th Annual Network and Distributed System Security
Symposium (NDSS’04), February 2004.

