
 1

Survivability Architecture of a Mission Critical System: The DPASA1 Example

Jennifer Chong, Partha Pal, Michael Atigetchi, Paul Rubel, Franklin Webber

BBN Technologies, Cambridge, MA
{jchong, ppal, matiget, prubel, fwebber}@bbn.com

1 DPASA stands for Designing Protection and Adaptation into a Survivability Architecture.
This work has been supported by DARPA under contract number F30602-02-C-0134.

Abstract

Many techniques and mechanisms exist today, some

COTS, others less mature research products that can be
used to deflect, detect, or even recover from specific types
of cyber attacks. None of them individually is sufficient to
provide an all around defense for a mission critical dis-
tributed system. A mission critical system must operate
despite sustained attacks throughout the mission cycle,
which in the case of military systems, can range from
hours to days. A comprehensive survivability architecture,
where individual security tools and defense mechanisms
are used as building blocks, is required to achieve this
level of survivability. We have recently designed a surviv-
ability architecture, which combined elements of protec-
tion, detection, and adaptive reaction; and applied it to a
DoD information system. The resulting defense-enabled
system was first evaluated internally, and then deployed
for external Red Team exercise. In this paper we describe
the survivability architecture of the system, and explain
the rationale that motivated the design.

1 Introduction

 Previous investments in cyber security, information as-

surance, and intrusion tolerance research resulted in sev-
eral solutions for particular cyber threats. For instance,
firewalls effectively block unwanted traffic, digital signa-
tures detect modification of data in transit, and redundancy
and Byzantine protocols tolerate corrupt or compromised
application components. However, these technologies are
point solutions and are not adequate by themselves to
build a system that can withstand a wide range of threats.

Experience shows that protecting a system against all
possible cyber attacks is not currently feasible when the
system is composed of COTS components with unknown
or unverified security properties. The increasing demands
for systems to interconnect and interoperate with each
other exacerbate the situation. It must be assumed that
some attacks will be successful, causing undesirable ef-

fects such as loss of availability, integrity, and confidenti-
ality (LOA, LOI, and LOC respectively) in parts of the
system. Detection complements protection, but detection
alone has known problems such as false positives, false
negatives, late detection, missing sensors, difficulties in
interpreting alerts, and not having a course of action to fix
the problem.

Knowing that attacks will occur and detection could be
incorrect or happen too late, we have been investigating
how to allow mission critical systems to be cyber-attack
tolerant so that they can recover from attack induced fail-
ures or to continue to operate in a degraded mode.

Building a system that is resilient, despite a wide range
of sustained attacks, requires integration of tools and
mechanisms that provide protection and detection, as well
as adaptive tolerance. This integration of solutions from
each category provides complimentary, defense-in-depth
coverage protecting all layers and aspects of the system.
We define this integration as a ‘survivability architecture’,
which denotes the well-defined organization, placement,
and interconnection of the multiple layers of these security
solutions and how they are integrated with the original
components of the undefended system.
 Continuing with our history of research in dynamic se-
curity, adaptive intrusion tolerance, and survivability [1]
[2], we recently designed a survivability architecture for a
DoD information system, and used the design to build the
survivable version of the system in the DPASA project
under the DARPA OASIS Dem/Val program.

In this paper, we first present the principles that moti-
vated the design of the survivability architecture. Then we
describe the survivable system, explaining how the archi-
tecture integrated with and transformed the undefended
system. Next, we describe how the system counters at-
tacks. After a short discussion of related work, the paper
concludes with a brief summary of the technical contribu-
tions of this paper, and a few areas for future research.

 2

2 Motivating Principles
The high level strategy underlying our approach to de-

signing a survivable system is to strategically combine
elements of protection, detection, and adaptive reaction in
the architecture of the system, such that

• Protection is the first line of defense, employing
techniques to fortify key aspects of the system to
deny the attacker easy or undetected access to
targets

• Detection provides insight into the status of the
system and allows the system to detect attacks

• Adaptive reaction enables the system to cope
with (undesirable) changes caused by attackers
exploiting gaps in the protection or circumvent-
ing it, to support recovery and graceful degrada-
tion

The need to combine protection, detection, and adap-
tive reaction is based on the understanding that protection
cannot be perfect, some attacks will succeed (at least par-
tially), and some of the attacks will not be detected in
time.

When combined with the collective experience of our
team members [1][2][3][10], this high level strategy led to
a number of design principles that influenced the surviv-
ability architecture. These are explained in the remainder
of this section.

Multiple Layers of Protection: To maximize the level
of protection, a high barrier of entry against break-in to the
system needed to be built. A single layer of protection is
not sufficient to provide a high barrier, thus multiple lay-
ers of protection are needed. Techniques that are grounded
in the hardware are suited for providing multiple layers of
protection. Autonomic Distributed Firewall (ADF) [3]
Network Interface Card (NIC) based distributed firewalls
that filter packets, or smart card based mechanisms that
control physical access to sensitive data such as private
keys are good examples of these techniques. Combining
hardware, cryptography, operating system protection do-
mains, and application level session and quorum checking
provide multiple layers of protection. This will deter script
kiddies, and will also force serious attackers to spend more
time and resources to gain entry into the system.
 Redundancy and Static Diversity: A secure system
cannot have single points of failure in either its critical
functionality or its key defensive infrastructure. Redun-
dancy is a fundamental technique used to eliminate single
points of failure, but homogeneous redundancy incurs the
risk of correlated/common mode vulnerabilities. These
vulnerabilities can lead to rapid deterioration of the sys-
tem, with little recourse. Diversity can be used to manage
this risk.

Physical Constraints in the Architecture to Impose
Modular Isolation and Containment: A system should
make use of architectural constraints and design constructs
that will slow the attacker’s progress through the system.
Even if he manages to gain access to some parts of the
system (i.e., overcomes the multiple layers of protective
barriers to that part of the system), his privileges in the
system and his ability to see and reach other parts of the
system should remain severely constrained. Techniques
such as Demilitarized Zones (DMZs) can be used to force
the attackers to compromise several perimeters before they
get to a core asset. Network architecture connecting key
resources inside the organizational firewall can be made
more compartmental, allowing physical connection only
where needed.

Detection and Correlation: When COTS components
with unverified security properties are deployed, it is not
always possible to detect intrusions in a timely and accu-
rate manner. A system must strive to increase the at-
tacker’s risk of being detected. Forcing an attacker to
spend more time executing his attack, in conjunction with
instrumenting the architecture to sense anomalies and pol-
icy violations can significantly raise the attacker’s risk.
Correlating policy violation reports yield higher accuracy
and lower false alarm rates. For example, the absence of
heartbeats from component X does not always mean that
X has failed or is corrupt. Correlating that absence with
the file system corruption of X or a violation of an appli-
cation-level protocol by X gives much higher confidence
that an attack has corrupted X.

Adaptive Response: Adaptive reaction, entailing dy-
namic response (autonomic and human assisted) to secu-
rity events is an essential enabler for reaching high surviv-
ability. Improved detection and awareness can lead to bet-
ter reaction—which means better response to observed
events and anomalies. Adaptive responses can be used to
mask or recover from the effects of attacks or to degrade
gracefully, retaining some service for the longest possible
time. Examples of adaptive response are managing redun-
dancy and protection mechanisms, adding run time diver-
sity by changing system configuration or behavior, dy-
namically isolating and containing attack effects, and re-
covering from attack effects by replacing or restarting
failed or compromised components.

Design Based on Weak Assumptions: A system that
makes strong assumptions about the environment is more
vulnerable [4]. For example, if a system’s correct behav-
ior depends on the assumption that the communication en-
vironment always delivers a request for service exactly
once, then the attacker has a number of ways to put the
system in a bad state: he can block the request or send
multiple copies of the request by manipulating the com-
munication environment, without having to attack the ser-
vice requester or service provider components of the sys-
tem. On the other hand, a system that makes weaker as-

 3

sumptions about the communication environment will be
designed to handle a missing request, multiple requests, a
missing response, multiple responses, a corrupted re-
sponse, as well as the desired response. Such a system
minimizes the attacker’s opportunity to harm the system
by simple manipulation of the operating environment.

In the next section we explain how these principles
were applied in the creation of the survivability architec-
ture. In addition to these principles, it is important to note
that the survivability architecture has incorporated a num-
ber of tunable parameters (for instance, amount of redun-
dancy, amount of diversity, number of defensive layers).
These tunable parameters allow for cost-benefit trade-offs,
making the survivability architecture applicable to con-
texts that have different survivability and cost require-
ments from the DoD information system described.

3 Survivability Architecture: The DPASA

Example

In the DPASA project we developed the survivability

architecture for a Joint Battlespace Infosphere (JBI) ex-
emplar. The JBI concept is being developed at the Air
Force Research Laboratory. More details about the JBI
concept and implementation can be found on the JBI home
page [5]. The JBI’s objective is to facilitate quick integra-
tion of disparate Air Force applications to support specific
missions. JBI uses publish/subscribe communication for
flexible integration of distributed applications.

In this section we introduce the JBI exemplar, the mis-
sion it supports and its survivability requirements. Then
we present a summary of the key aspects of the survivabil-
ity architecture we designed. Finally, we describe the de-
fense-enabled or survivable version of the JBI exemplar.

3.1 The Undefended JBI Exemplar and Survivabil-

ity Requirements

The exemplar JBI shown in Figure 12 integrates appli-

cations for selecting proper targets, monitoring environ-
mental conditions, and creating air-tasking orders (ATOs).
A successful mission would involve making the go- no-go
decision on an ATO that may have, among other targets,
weapons of mass destruction (WMD) sites. The factors
that could influence the go or no go decision include
whether the ATO had any WMD sites among its targets,
the predicted weather condition in the targeted area, the
presence of friendly forces nearby, the possibility of other
air traffic (such as logistic support) in the theater, and ul-
timately the possibility of collateral damage (for instance,

2 The dashed line delineates the system boundary.

Only the elements that are in the system boundary were
selected to be defense-enabled.

the chemical plume from the hit WMD site spreading into
civilian areas) resulting from executing the ATO.

The undefended system consists of clients connected to
a JBI core (platform). The JBI core is shown as a network
cloud representing a public IP networking infrastructure
like the SIPRNet3. The clients interact with each other ex-
changing Information Objects (IOs) using publish, sub-
scribe and query (PSQ) operations submitted to the JBI
core. Besides providing PSQ, the JBI core allows informa-
tion flows to be managed and access by clients to be con-
trolled.

client

client

Joint Environmental
Exploitation Segment

client

client

client

JBI “Platform”
Rome, NY

IO

client

IO

IO IO

Theater Air Planner

IO

IO

Environmental Data Cube

MM5(legacy)

client IO

Squadron Combat Operations

Hazard Prediction and
Assessment Capability (legacy)

Theater Weather Server

Intelligent Adaptive
Communications Controller

Bio - environmental

client

IO
CAF-MAF Client

client

client

Joint Environmental
Exploitation Segment

client

client

client

JBI “Platform”
Rome, NY

IO

client

IO

IO IO

Theater Air Planner

IO

IO

Environmental Data Cube

MM5(legacy)

client IO

Squadron Combat Operations

Hazard Prediction and
Assessment Capability (legacy)

Theater Weather Server

Intelligent Adaptive
Communications Controller

Bio - environmental

client

IO
CAF-MAF Client

Figure 1 Exemplar JBI - undefended

The defense-enabled JBI is required to survive at least

an order of magnitude longer than previous defended sys-
tems such as APOD [6] [7]. Additional survivability re-
quirements are: provide 100% of JBI critical functionality
under sustained attack by a “Class A” Red Team, detect
95% of attacks in the given time, and ultimately survive
12 hours to finish the JBI mission.

3.2 Overview of DPASA Survivability Architecture

Before we describe the defense-enabled JBI, we give

an overview of the key concepts and elements of DPASA
architecture.

3.2.1 Zones and Quadrants (Quads)

The DPASA architecture extends the notion of the

DMZ using three zones. It replicates the service provider
part of the JBI (i.e., the part offering the key services, such
as the PSQ service), commonly known as the Core, and
protects it by organizing the replicas in quads. As shown
in Figure 2, there are four quads and each quad has three
zones: crumple, operations, and executive. The crumple

3 SIPRNet stands for Secret Internet Protocol Router

Network. It is the DoD’s classified version of the civilian
Internet.

 4

zone, which acts as the region of first impact, buffers the
core assets in the operations zone. The executive zone sits
behind the operations zone and hosts the functions that
manage the overall security and survivability.

 The crumple zone consists of the Access Proxy (AP)
host. The AP host acts as the entry point for all traffic be-
tween the Core from the clients. For each process running
on Core hosts that the clients need to interact with, there is
a corresponding proxy running on the AP host that per-
forms rate limiting, size-checking, application level checks
without violating the end-to-end authentication, and en-
cryption before forwarding traffic to the Core.

The operations zone contains five hosts: the Network
Intrusion Detection System (NIDS), the PSQ host, the Pol-
icy Server (PS) host, the Correlator (CORR) host, and the
Downstream Controller (DC) host. The NIDSes are de-
ployed in each quad. Each NIDS sniffs ingress and egress
traffic on the LAN and sends alerts to the CORR. The
PSQ host runs the PSQ server. Guardians augment the
PSQ server to check the size, the frequency, and the rate
of the requests exchanged and report anomalies to the Sys-
tem Manager (SM). The PS host runs processes that man-
age the ADF NICs in the system, and interfaces with the
SM for mounting adaptive responses that make use of the
ADF NICs. The CORR host runs processes that receive
alerts, generate advice about a host, and correlate the
alerts. The correlated alerts are ranked, aggregated, and
displayed on a visual interface running on the SM host.
The DC host runs the DC component, which processes the
heartbeat messages, and acts as an operations zone proxy
for the SM so that the SM is not directly exposed to the
crumple zone.

The executive zone contains the SM host. The SM host
runs the System Manager component that manages the
Core components running in the quad, and presents a user
interface for the security operators.

On most hosts, there is a set of Local Controllers (LCs)
running to monitor the host and to carry out proactive and
reactive actions against suspicious activities on the host.

Communication among elements within a zone and
across zones is strictly controlled to limit attack progres-
sion from compromised parts. Furthermore, quads can be
isolated, stopped and restarted. Communication between
clients and the processes running on different core zones
uses different application level protocols

3.2.2 Protection Domains

In order to implement a barrier to entry and to impede

attack propagation, we use protection domains. DPASA
uses three protection domains: network, system, and proc-
ess.

The Network Protection Domain protects network
traffic, restricts network attack points, and prevents misuse
of the network. The System Protection Domain protects
the host’s integrity by preventing modification to critical
system files and protects application integrity by prevent-
ing modification of critical application resources. It en-
forces least-privilege at the host level and is deployed on
all hosts. Each host process is granted privileges based on
the requirements of the system and any attempt to carry
out an action (such as accessing the file-system or contact-
ing the network) that is not in the granted privilege is de-
nied and logged. The Process Domain enforces additional
constraints such as restricting the system calls an applica-
tion can make.

3.2.3 Protocols

The components described in section 3.2.1 use proto-

cols to communicate with other pertinent components. The
major protocols in DPASA are the registration protocol,
alert protocols, PSQ protocol, heartbeat protocol, and SM
protocols.

A client uses the registration protocol when it is ready
to join the JBI. To do so, the SM authenticates itself to the
client and the client authenticates itself to the SM. The cli-
ents and the Core use alert protocols to alert the Core of
possible issues. The PSQ protocol implements publish,
subscribe, and query in a fault-tolerant way. When all four
quads are participating in the protocol, clients see correct
behavior from the Core even if any one of the PSQ servers
is corrupt and behaving in an arbitrarily malicious way.
To detect the failure of the DPASA survivability compo-
nents, the heartbeat protocol is used. Heartbeat messages
are sent to the Core where the SMs use the messages to
display the status of the system. The SM uses the SM
protocols to control ADF NICs, to interact with the PSQ
servers to perform quorum group management and other
published data management, to take an action on an ac-
cused host, or to gather status of components.

Core
Quad C Quad DQuad B Quad A

Executive
Zone Executive

Zone Executive
Zone Executive

Zone

Operations
Zone Operations

Zone Operations
Zone Operations

Zone

Crumple
Zone Crumple

Zone Crumple
Zone Crumple

Zone

Client
Zone Client Client Client Client

WAN

• • • • • •

Core
Quad C Quad DQuad B Quad A Quad 3 Quad 4Quad 2 Quad 1

Executive
Zone Executive

Zone Executive
Zone Executive

Zone
Executive

Zone Executive
Zone Executive

Zone Executive
Zone

Operations
Zone Operations

Zone Operations
Zone Operations

Zone
Operations

Zone Operations
Zone Operations

Zone Operations
Zone

Crumple
Zone Crumple

Zone Crumple
Zone Crumple

Zone
Crumple

Zone Crumple
Zone Crumple

Zone Crumple
Zone

Client
Zone Client Client Client Client

WAN WAN

• • • • • •

Figure 2 Quads and Zones

 5

3.3 The Defense-Enabled System: The JBI Exem-
plar Instantiated in the Survivability Architec-
ture

Figure 3 shows the defense-enabled JBI. First note that

rather than one JBI core LAN, it has four Core LANs
(quads). The Core uses redundant service providers. These
services perform the same function but are hosted on re-
dundant hardware using three different operating systems
(Security Enhanced Linux (SELinux), Windows, and So-
laris).

The crumple zone and the executive zone each have
one host (denoted by QXAP and QXSM respectively in the
figure) in every quad. The operations zone has five hosts
(the QXNIDS, the QXDC, the QXPSQ, the QXCORR, and
the QXPS) in each quad. The clients are organized into
four LANS and the configuration of the client LAN is not
changed except for the addition of a NIDS in each LAN.
 The network topology of the defense-enabled JBI pro-
vides defense-in-depth using multiple layers of protection.
There is a VPN router in front of each LAN, establishing a
VPN trunk from each client LAN to each of the Core
LANs. All hosts are equipped with ADF NICs, as shown
by the small solid rectangles. Hosts in the crumple zone
have two ADF NICs since each crumple zone host has two
network interfaces: one client facing and the other Core
facing. A device driver for the ADF card was not available
for the Solaris operating system, therefore the Solaris
hosts had an ADF equipped Linux host acting as a bump
in the wire (indicated by the small diamond attached to
Solaris hosts). Each core LAN has a managed switch that

controls the communication between quads as well as in-
ter-zone communication within its own quad. Each man-
aged switch is further controlled via a Quadrant Isolation
Switch (QIS) by the four SMs (System Managers). The
QIS allows security operators to isolate an entire quad if
necessary by cutting off the power to the managed switch.
A quorum of three SMs is required to isolate a quad. The
public IP network is simulated by a layer 3 switch and in-
stead of implementing each client and core LAN as a
physical LAN, they are implemented as VLANs off the
layer 3 switch.

Host protection domain policies on hosts tightly define
how processes can be started, and limit the capabilities a
process should have. In addition to SELinux (on Linux
hosts) and Cisco Security Agent (on Solaris and Windows
hosts) policy enforcement, the Java application compo-
nents were further sandboxed by JVM security policies.
Each host runs a Local Controller (LC) component that
periodically checks the file system integrity, CPU, mem-
ory and disk usage of the host, and acts as the aggregator
and reporter of local host based policy violation reports.
The clients run three instances of LCs that monitor each
other and can take over if one crashes.

The undefended JBI had only one data flow, namely
the data flow associated with the PSQ (Publish, Subscribe,
Query) operation. The DPASA architecture introduced
four new types of data and control flows in the defended
system: 1) Each software component sends heartbeats to
the Core, 2) NIDS, Host Intrusion Detection System, LCs
and software components all send alerts to the Core, 3)
SMs send coordination and command messages among
themselves and to other components, sometime via the
DCs (Downstream Controllers), and 4) the PS (Policy
Server) talks to ADF (Autonomic Distributed Firewall)
NICs for status/heartbeats and key renewal and audit mes-
sages.

All communications between a client LAN and the
Core, which were routed in the undefined JBI, are now
proxied at the crumple zone except for the PS traffic. The
PSQ flow is changed further. With the addition of the four
PSQ servers in the four quads, a PSQ request first goes to
the AP (Access Proxy), which checks whether the traffic
belongs to an existing session by consulting the DC. If so,
the request is forwarded to the PSQ server, which checks
for signatures, and whether the client is authorized to send
the request. If both succeed, the request is disseminated to
the other quads. Each quad processes the request and
sends a signed ACK or response back to the client. The
client completes the request if it sees enough signed re-
sponses, otherwise keeps resending indefinitely. If the
PSQ request is a publication, the IO (Information Object)
is escrowed. When the escrow period is over, the IO is re-
leased for circulation.

Executive Zone

Operations Zone

Crumple Zone

Q1SM

Q1PS

Q1CORR

Q1PSQ

Q1DC

Q1AP

Q1NIDS

VPN Router

QUAD 1

Q2SM

Q2PS

Q2CORR

Q2PSQ

Q2DC

Q2AP

Q2NIDS

QUAD 2

Q3SM

Q3PS

Q3CORR

Q3PSQ

Q3DC

Q3AP

Q3NIDS

QUAD 3

Q4SM

Q4PS

Q4CORR

Q4PSQ

Q4DC

Q4AP

Q4NIDS

QUAD 4

Layer 3 Switch

Client LAN 1..4

NIDS

Client 1

Client N

Solaris

Windows

SELinux

ADF NIC

Bump in the wire

Managed Switch

VPN Router VPN Router VPN Router

VPN Router

SPAN Port

Executive Zone

Operations Zone

Crumple Zone

Q1SM

Q1PS

Q1CORR

Q1PSQ

Q1DC

Q1AP

Q1NIDS

VPN Router

QUAD 1

Q2SM

Q2PS

Q2CORR

Q2PSQ

Q2DC

Q2AP

Q2NIDS

QUAD 2

Q3SM

Q3PS

Q3CORR

Q3PSQ

Q3DC

Q3AP

Q3NIDS

QUAD 3

Q4SM

Q4PS

Q4CORR

Q4PSQ

Q4DC

Q4AP

Q4NIDS

QUAD 4

Layer 3 Switch

Client LAN 1..4

NIDS

Client 1

Client N

Solaris

Windows

SELinux

ADF NIC

Bump in the wire

Managed Switch

VPN Router VPN Router VPN Router

VPN Router

SPAN Port

Figure 3 Defense-enabled JBI

 6

4 Evaluating the Defense

We have taken a multi-pronged approach to evaluate

the effectiveness of the survivability architecture. Team-
members not involved in the design and development of
the architecture evaluated the design and the defense-
enabled system using an Integrated Survivability Valida-
tion methodology. The validation process and results are
described in detail in [14]. Based on the attack trees and
minimal attacks considered, they found that the defense-
enabled system put up multiple independent layers of de-
fense in front of the attacker. In particular, none of the
high level goals (such as corrupting an IO (Information
object), stealing an IO, or making the PSQ service un-
available) they considered had a minimal attack consisting
of only a single step.

The defense-enabled system was subjected to numerous
fault and intrusion injection test runs where failures and
attack effects were simulated or caused by hand in various
parts of the system to see how the system reacted, and
whether mission operations could still continue. Apart
from the external Red Team exercise (which constituted of
multiple runs of the mission during which the Red Team
was attacking the system with fairly unrestricted rules of
engagement), the defense-enabled system was subjected to
several internal Red Team experiments as well.

The findings from these evaluation activities showed
that the survivability architecture significantly improves
the survivability of the undefended system, even though
several weak points of the architecture were discovered.
Causing LOI or LOC was found to be very difficult. LOA
of the PSQ service in the JBI core is also found to be very
hard to cause, but the communication infrastructure, espe-
cially the communication between the LANs and the pub-
lic network was found to be vulnerable to DoS attacks.

In this section we show the value of the survivability
architecture by summarizing a subset of fault/intrusion in-
jection test cases, and attack steps that the defense-enabled
system was subjected to. The official results of the exter-
nal Red Team exercise will be forthcoming from the inde-
pendent White Team, thus this paper we will only mention
some of the attack steps and the Blue Team’s interpreta-
tion of events.

The sequence of attacker locations indicated by callouts
in Figure 4 can be thought of as steps in a sustained attack,
where the attacker starts from the public network (location
1) and progresses deeper into the Core zone. For each at-
tack location, a description of attack step or the injected
failure condition/attack effect, and how the system defends
against that is described in a table format.

4.1 Public Network (location 1)

In the first set of attacks, the attacker is connected to
the Layer 3 switch via a Switched Port Analyzer (SPAN)
port, a VLAN port, and an unaddressed port (which de-
faults to being a Trunk port4). Since the layer-3 switch
emulates a public network like the SIPRNet in the de-
fense-enabled system, this level of access means that the
attacker has a high level of presence in the public network
and can observe all traffic in it. Attempts to get inside the
client or quad LANs, or observing application traffic are
faced with 2 layers of VPN (VPN routers and the ADF en-
forced VPGs). The VPN routers and the ADF NICs are
also key to stopping flood traffic from getting inside the
LANs. However, we observed that the NIDSes do not pick
up attack traffic that is discarded by the VPN routers be-
cause of their position behind the VPN routers. Also, since
the VPN routers were a single point in the communication
path from a LAN to the emulated public network, and they
lacked diversity, exploitation of an implementation or con-
figuration flaw in the VPN router proved to be fatal.

Attack Action Defensive Action
Send traffic to a client VPN
router to decrease system
availability5.

VPN Router’s firewall
drops non-valid VPN traf-
fic. No reply sent back.

Sniff network traffic6. VPN traffic is encrypted so
the attacker can only tell

4 Trunk ports are used to connect routers, using Direct

Trunk Protocol (DTP), which makes it a highly privileged
port.

5 This occurred in internal Red Team experiments as
well as the external Red Team exercise.

6 This occurred during the external Red Team exercise.

Q1SM

Q1PS

Q1CORR

Q1PSQ

Q1DC

Q1AP

Q1NIDS

VPN Router

QUAD 1

Q2SM

Q2PS

Q2CORR

Q2PSQ

Q2DC

Q2AP

Q2NIDS

QUAD 2

Q3SM

Q3PS

Q3CORR

Q3PSQ

Q3DC

Q3AP

Q3NIDS

QUAD 3

Q4SM

Q4PS

Q4CORR

Q4PSQ

Q4DC

Q4AP

Q4NIDS

QUAD 4

Executive Zone

Operations Zone

Crumple Zone

Layer 3 Switch

Client LAN 1..4

NIDS

Client 1

Client N

VPN Router VPN Router VPN Router

VPN Router

3

1

2

4

5

N Attacker’s
location

Q1SM

Q1PS

Q1CORR

Q1PSQ

Q1DC

Q1AP

Q1NIDS

VPN Router

QUAD 1

Q2SM

Q2PS

Q2CORR

Q2PSQ

Q2DC

Q2AP

Q2NIDS

QUAD 2

Q3SM

Q3PS

Q3CORR

Q3PSQ

Q3DC

Q3AP

Q3NIDS

QUAD 3

Q4SM

Q4PS

Q4CORR

Q4PSQ

Q4DC

Q4AP

Q4NIDS

QUAD 4

Executive Zone

Operations Zone

Crumple Zone

Layer 3 Switch

Client LAN 1..4

NIDS

Client 1

Client N

VPN Router VPN Router VPN Router

VPN Router

3

1

2

4

5

N Attacker’s
location

Figure 4 Attack Locations

 7

that traffic is passing be-
tween LANs but cannot de-
cipher the data.

Flood VPN router using
valid replay traffic to dis-
rupt the flow of heartbeat
messages and IOs7.

 VPN router drops some
traffic, but very high level
of flood causes heartbeat
and other traffic to be
dropped. SM operator no-
tices this.

Disrupt VPN tunnels by
becoming a man-in-the-
middle in the VPN connec-
tion8.

All inter-LAN communica-
tion is lost.

4.2 Client Host (location 2)

In this second set of attacks, we assume that the at-

tacker has physical access to a client host running
SELinux, and has the root password. He is now inside the
VPN and can interact with the members of the VPGs that
the client host is part of. The attacker attempts to disrupt
the mission by corrupting the IO flow. Defense against
this type of attack included the adaptive response mounted
by the LCs (Local Controllers) running on the client’s
host, modular isolation imposed by the protection domains
policies, and application level security checks.

Attack Action Defensive Action
Open an ssh session to an
AP (Access Proxy) host
which the VPG and VPN
policies allow the client to
communicate with.

One of the LCs running on
the client host notices this
and destroys the ssh ses-
sion.

(2-1)Use an existing cmd
line window and perform
ps to get a list of running
LCs.

Protection domain policies
severely limit what the root
user can do. This operation
fails.

After (2-1), issue a kill
command for all three LCs.

The host has been hard-
ened, thus the kill command
has been removed from the
system. There is a special
kill command that the LCs
can use, but the protection
domain policies prevent
root to use.

Install own copy of the kill
command into /usr/bin.

SELinux policy (part of
system protection domain)

7 This attack was successful in causing an impact at the

external Red Team exercise but the architecture did not
provide any visibility of success for the attacker, so they
moved on to another attack.

8 In the external Red Team exercise a zero-day attack
of this type was executed, which killed the mission. This
attack required the trunk port on the layer-3 switch.

prohibits him from install-
ing. As a second line of de-
fense, the LC would re-
move this file if the attacker
manages to install it.

(2-2) Install own copy of
the kill command into /tmp.

None. The LC does not re-
move this since the LC
does not protect /tmp.

After (2-2), issue a kill
command for all three LCs.

LCs die9 and stop sending
heartbeat messages. SMs
display a lost heartbeat
message to the security op-
erators. One of the security
operators notices this and
detaches the client.

Publish an IO (Information
Object) that the client is not
authorized to do so to dis-
rupt the JBI mission.

Request is denied by the
authorization check.

Publish an authorized IO
but increase the size of the
IO.

The AP in the crumple zone
performs size checking and
drops this IO. Or if the size
were not big enough for the
AP, Guardian would notice
that the size is too big and
send an alert to the SM
(System Manager).

Publish an authorized IO
multiple times.

Guardian notices that too
many of the IO is coming
in. Sends alerts to the SM
and the SM displays the
alert to the security opera-
tor. The SM operator re-
calls the repeated IOs.

4.3 Crumple Zone – AP Host (location 3)

In this set of attacks, the attacker has made it into the

Core, and now is on the Q1AP host as the root user. The
protection domain policies, adaptive responses mounted
by the LC disrupt the attacker’s attempt to become a man-
in-the-middle using Q1AP. The policy violation reports
and NIDS alerts provide visibility of attack action. Weak
assumption based design of the PSQ (Publish, Subscribe,
Query) protocol tolerates delay and corruption caused at
this AP by retransmitting to other quads. Cross checking
among PSQ servers and end-to-end signature checking are
also used.

Attack Action Defensive Action

9 This assumes that the attacker compromises the pro-

tection domain policy enforcement mechanism at this
point. Otherwise, root does not have the privilege to kill
DPASA processes.

 8

(3-1) Take over a PSQ
Proxy by killing the run-
ning PSQ proxy, installing
his own version of the PSQ
Proxy, and starting it to act
as a man-in-the-middle10.

1. Host Protection Do-
mains prevent the kill-
ing of the PSQ proxy.
If not,

2. Host Protection Do-
mains prevent install-
ing new PSQ Proxy. If
not,

3. LC notices a change in
the file system and re-
stores it. If not,

4. LC notices a change of
PID of the PSQ Proxy
and kills the PSQ
Proxy.

All above defensive action
send alerts.

(3-2) Exploit timing to kill
Cisco Security Agent be-
fore detection, and then kill
LC11.

SM notices loss of heart-
beat. Block the NIC to stop
further attack propagation.

After (3-2) and (3-1), as a
PSQ Proxy, corrupt the
content of the IO.

Since an IO is signed end-
to-end, the PSQ server
sends an alert and rejects
this IO. Client does not re-
ceive an ACK so resends
the IO.

Take over a DC (Down-
stream Controller) Proxy.
Drop the client (one that
was detached earlier)’s re-
quest to connect.

1. Host protection domains
and LC prevent this
similar to the first row
of this table. If not,

2. After inviting the client,
the SM operator no-
tices that the client is
not registered. The op-
erator checks the alerts
generated by the LC
and others on the
Q1AP and blocks
Q1AP’s NIC.

Client is re-invited from the
Q1SM and connects suc-
cessfully.

Break into Q1PSQ exploit-
ing the same security hole

Q1PSQ runs different oper-
ating system so the same
security hole does not exist,
unless it is in Java VM.

Connect to SM There is no physical con-

10 This was attempted in the external Red Team exer-

cise.
11 When the external Red Team was allowed on Q1AP,

they successfully did this and ran their own PSQ proxy.
The PSQ Server noticed the change of the serial ID and
dropped the traffic sent from this proxy.

nection between the execu-
tive zone and the crumple
zone.

4.4 Operations Zone – PSQ Host (location 4)

In this set of attacks, we assume that the attacker has

made it into the operations zone, and has access to the
Q1PSQ host. The redundancy of multiple PSQ servers, the
PSQ server’s design based on weak assumptions (where it
does not solely trust its own decision but uses a quorum),
detection and correlation (polling of component’s status),
and an adaptive response mounted by an SM counter the
attacker’s attempt to disrupt the PSQ flow.

Attack Action Defensive Action
Shut down the database
server running on Q1PSQ.

1. Host Protection Domain
prevents this. If not,

2. Q1SM polls the status of
the database, notices
that it no longer re-
sponds, and displays
the alert to the SM op-
erator. Restarts the da-
tabase and the PSQ op-
erations continue.

Modify the role table in the
database and delete a role
for a client.

Q1PSQ gets unauthorized
reply but before replying as
such, consults other PSQ
servers. Other PSQ servers
reply authorized, so the cli-
ent is not denied.

4.5 Executive Zone – SM Host (location 5)

In the final set of attacks, we assume that the attacker

has made it deep into the system, past the operations zone
into the executive zone and is now on the Q1SM host. The
redundancy of quads (multiple SMs and PSQ Servers),
adaptive responses mounted by the SMs, and the design
based on the weak assumptions (where SMs do not trust
each other), stops the attacker’s attempt to compromise an-
other quad.

Attack Action Defensive Action
Detach the clients. Other SMs notice that the

clients have gone away, one
of the SM re-invites them.
Clients continue from
where they were stopped.

Recall IOs to interrupt the
JBI mission.

Q1PSQ recalls the IOs but
other three PSQ servers do
not. The IOs are preserved.

Issue a command to isolate
Q1PSQ.

Isolating a PSQ server re-
quires a quorum of two, no

 9

other SM agrees so the PSQ
server is not blocked.

Issue a command to isolate
Quad 3.

Isolating a Quad requires
an agreement from all SMs.
No other SM agrees, Quad
3 is not isolated. SM op-
erators on other quads no-
tice and vote to isolate
Quad 1. System continues
to operate with three quads.

5 Related Work

 Since we first showed the feasibility of integrating de-

fensive adaptation into an application in 1999 [8], adaptive
response has become an integral part of survivable sys-
tems. Many researchers, who have explored adaptive cy-
ber defense, have also developed special purpose architec-
tures for intrusion detection and response (ID&R), intru-
sion tolerance, or graceful degradation.

The ITUA [2] project developed technology and sys-
tem design techniques for building information systems
that will tolerate, i.e., continue to function without violat-
ing program and data integrity, a specific class of attacks,
namely, the attacks that introduce corruption in communi-
cation and application level interaction in a distributed ob-
jects application. In addition to corruption tolerant algo-
rithms, ITUA developed an architecture for managing dis-
tributed object replicas and the hosts on which they run.
The DPASA SMs and LCs are based on elements of the
ITUA architecture.

The Willow architecture [9] achieves intrusion toler-
ance using a combination of disabling of vulnerable net-
work elements when a threat is detected or predicted, re-
placing failed system elements, and reconfiguring the sys-
tem if non-maskable damage occurs. Willow uses its own
event-notification service as the control mechanism of its
scalable architecture.

Dependable Intrusion Tolerance (DIT) [10] comprises
functionally redundant HTTP COTS servers. These serv-
ers run on diverse operating systems and platforms, use
hardened intrusion-tolerant proxies that mediate client re-
quests and verify the behavior of server and other proxies,
and include monitoring and alert-management components
based on the EMERALD [11] Intrusion Detection System.
The system adapts its configuration dynamically in re-
sponse to intrusions and other faults. DIT focused on a
specific kind of server (web servers), however, its use of
EMERALD in sensing and alert management influenced
the alert management and correlation aspect of the
DPASA architecture.

Malicious and Accidental Fault Tolerance for Internet
Applications (MAFTIA) [12] is a European project devel-
oping an open architecture for transactional operations on
the Internet. MAFTIA models a successful attack on a se-

curity domain, leading to corruption of processes in that
domain, as a fault; the architecture then exploits ap-
proaches to fault tolerance that apply regardless of
whether the faults are due to accidents or malicious acts.
MAFTIA is explicitly middleware-based and provides
both protection from and tolerance of intrusions.

The Saber [13] system uses several mechanisms includ-
ing intrusion detection, automatic code patching, process
migration, and filtering of distributed denial-of-service
floods for defense, but focuses primarily on server avail-
ability.

6 Conclusions

This paper presents a set of design principles we fol-

lowed in designing the survivability architecture. While
our experience validates the principles at a general level,
we had to overcome several practical challenges while
translating the theory into implementation. For instance,
creating a correct and consistent policy for multiple layers
of mechanisms is not trivial. We used automated policy
generation to mitigate that risk partially. Finding static di-
versity was also challenging. Different operating systems
and JVM implementations were the only source of static
diversity we used. Existing system components and secu-
rity tools were not always available for all operating sys-
tems, which added to the complexity. We also found that
depending on how diverse entities are interconnected,
more diversity is not necessarily better which is the reason
we used three operating systems on four quads. On the
other hand, use of weaker assumptions and the overall
strategy of combining protection, detection, and adaptive
reaction proved to be very useful. In particular, the PSQ
protocols showed tolerance against a wide range of envi-
ronmental variations and corruption (fuzzing) attacks.
Human assisted responses complemented the automated
responses in recovery attempts when Red Team attacks re-
sulted in component failures. Heavyweight adaptive re-
sponses like isolating a client or a LAN had a human over-
ride option, a feature that we believe will remain useful
until adaptive responses are driven by a cognitive decision
making capability.
 The defense-enabled JBI and its evaluation illustrate
the utility of our approach of using a survivability archi-
tecture in defending an existing system. It shows that it is
possible to integrate COTS and laboratory quality mecha-
nisms, organized in multiple overlapping layers to provide
a high level of resilience, without having to alter or sacri-
fice any of the operational features of the undefended sys-
tem. Compromising the integrity or the confidentiality of
the information objects proved to be very hard. The PSQ
service demonstrated tolerance and graceful degradation
when less than four quads were operational.
 We view the success of the survivability architecture
and design to be a significant step forward in the continu-

 10

ing fight against the threat of cyber-attack. The defense-
enabled JBI completed the 12-hour mission despite visible
impacts caused by sustained attacks from the external Red
Team. However, in another run, a Red Team was able to
mount a zero-day attack on the VPN routers to stop all
communication between the client and the core LANs.
The evaluation of the results from the exercise is continu-
ing, as it is a complex set of various objectives, tests, and
multiple (sometimes conflicting) results. It is already
clear, however, that further evaluation and continued im-
provement of aspects of the defense are absolutely neces-
sary.

The experience with designing, building, and evaluat-
ing a real system under stress has provided us with quite a
number of insights for future improvements in both the
design and analysis of survivable systems. A few of these,
focused on areas currently less well understood, include:

• Creating additional adaptive actions and surviv-
ability mechanisms, with properties that are
provably uncircumventable.

• Dynamically but credibly computing and chang-
ing the trust of a component based on past actions
and current systems state

• Analytically comparing the effectiveness of and
contribution of the various and varying overlap-
ping layers of defense.

Acknowledgements

 The authors would like to gratefully acknowledge con-
tributions of Bill Weinstein (Draper Laboratories), Al
Valdez (SRI), Dick O’Brien and Charlie Payne (Adven-
tium), and David Levin and Rick Schantz (BBN) for the
work described in this paper. We would also like to thank
Lee Badger (DARPA) and Patrick Hurley (AFRL) for
their continuing support.

References

[1] M. Atighetchi, P. Pal, F. Webber, R. Schantz, C. Jones,
J. Loyall. “Adaptive Cyberdefense for Survival and Intru-
sion Tolerance”, IEEE Internet Computing, Vol. 8, No. 6,
November/December 2004, pp. 25-33
[2] M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy,
W. H. Sanders, M. Seri, M. Atighetchi, P. Rubel, C. Jones,
F. Webber, P. Pal. R. Watro, and J. Gossett. “Providing
Intrusion Tolerance With ITUA”, Supplement of the 2002
International Conference on Dependable Systems and
Networks, June 23-26, 2002.
[3] Tom Markham, Lynn Meredith, and Charlie Payne.
“Distributed embedded firewalls with virtual private
groups”, Proceedings of the DARPA Information Surviv-
ability Conference and Exposition, Volume II. Washing-
ton, D.C., April 2003. DARPA, IEEE.

[4] Schneider, Fred. “Byzantine generals in action: Im-
plementing fail-stop processors”, ACM Transactions on
Computer Systems, Vol. 2 (2), 1984, pp. 145-154
[5] AFRL JBI homepage: http://www.infospherics.org
[6] W. Nelson, W. Farrell, M. Atighetchi, S. Kaufman, L.
Sudin, M. Shepard, and K. Theriault. "APOD Experiment
1: Final Report", BBN Technologies LLC, Technical
Memorandum 1311, May 2002
[7] W. Nelson, W. Farrell, M. Atighetchi, J. Clem, L.
Sudin, M. Shepard, and K. Theriault. “APOD Experiment
2: Final Report”, BBN Technologies LLC, Technical
Memorandum 1326, Sep, 2002
[8] Joseph Loyall, Partha Pal, Richard Schantz, and Frank-
lin Webber. “Building Adaptive and Agile Applications
Using Intrusion Detection and Response.”, Proceedings of
NDSS 2000, the Network and Distributed System Security
Symposium, February 2-4 2000, San Diego, CA.
[9] John Knight, Dennis Heimbigner, Alexander Wolf,
Antonio Carzaniga, Jonathan Hill, Premkumar Devanbu,
and Michael Gertz. “The Willow Architecture: Compre-
hensive Survivability for Large-Scale Distributed Applica-
tions”, Proc. Int’l Conf. Dependable Systems and Net-
works (DSN 02), supplemental vol., IEEE Press, 2002, pp.
C.7.1–C.7.8.
[10] Alfonso Valdes, Magnus Almgren, Steven Cheung,
Yves Deswarte, Bruno Dutertre, Joshua Levy, Hassen
Saidi, Victoria Stavridou, and Tomas E. Uribe. “An Archi-
tecture for an Adaptive Intrusion Tolerant Server”, Proc.
Security Protocols Workshop, LNCS, Springer-Verlag,
2002.
[11] P.G. Neumann and P.A. Porras. “Experience with
EMERALD to Date”, 1st USENIX Workshop on Intrusion
Detection and Network Monitoring
Santa Clara, California, 11-12 April 1999, pp 73-80
 [12] P. Verissimo, N. F. Neves, and M. Correia. “The
Middleware Architecture of MAFTIA: A Blueprint,” Proc.
3rd IEEE Info. Survivability Workshop, 2000.
[13]Angelos D. Keromytis, Janak Parekh, Philip N. Gross,
Gail Kaiser, Vishal Misra, Jason Nieh, Dan Rubenstein,
and Sal Stolfo. “A Holistic Approach to Service Surviv-
ability”, Proc. ACM Workshop on Survivable and Self-
Regenerative Systems, ACM Press, 2003, pp. 11-20.
[14] William H. Sanders. “DPASA Phase II Final Valida-
tion Report”. Submitted to DARPA. 2005

