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Abstract 
 
Many techniques and mechanisms exist today, some 

COTS, others less mature research products that can be 
used to deflect, detect, or even recover from specific types 
of cyber attacks. None of them individually is sufficient to 
provide an all around defense for a mission critical dis-
tributed system.  A mission critical system must operate 
despite sustained attacks throughout the mission cycle, 
which in the case of military systems, can range from 
hours to days. A comprehensive survivability architecture, 
where individual security tools and defense mechanisms 
are used as building blocks, is required to achieve this 
level of survivability. We have recently designed a surviv-
ability architecture, which combined elements of protec-
tion, detection, and adaptive reaction; and applied it to a 
DoD information system. The resulting defense-enabled 
system was first evaluated internally, and then deployed 
for external Red Team exercise.  In this paper we describe 
the survivability architecture of the system, and explain 
the rationale that motivated the design. 

 
1 Introduction 

 
 Previous investments in cyber security, information as-

surance, and intrusion tolerance research resulted in sev-
eral solutions for particular cyber threats. For instance, 
firewalls effectively block unwanted traffic, digital signa-
tures detect modification of data in transit, and redundancy 
and Byzantine protocols tolerate corrupt or compromised 
application components. However, these technologies are 
point solutions and are not adequate by themselves to 
build a system that can withstand a wide range of threats. 

Experience shows that protecting a system against all 
possible cyber attacks is not currently feasible when the 
system is composed of COTS components with unknown 
or unverified security properties. The increasing demands 
for systems to interconnect and interoperate with each 
other exacerbate the situation. It must be assumed that 
some attacks will be successful, causing undesirable ef-

fects such as loss of availability, integrity, and confidenti-
ality (LOA, LOI, and LOC respectively) in parts of the 
system. Detection complements protection, but detection 
alone has known problems such as false positives, false 
negatives, late detection, missing sensors, difficulties in 
interpreting alerts, and not having a course of action to fix 
the problem.  

Knowing that attacks will occur and detection could be 
incorrect or happen too late, we have been investigating 
how to allow mission critical systems to be cyber-attack 
tolerant so that they can recover from attack induced fail-
ures or to continue to operate in a degraded mode.   

Building a system that is resilient, despite a wide range 
of sustained attacks, requires integration of tools and 
mechanisms that provide protection and detection, as well 
as adaptive tolerance.  This integration of solutions from 
each category provides complimentary, defense-in-depth 
coverage protecting all layers and aspects of the system. 
We define this integration as a ‘survivability architecture’, 
which denotes the well-defined organization, placement, 
and interconnection of the multiple layers of these security 
solutions and how they are integrated with the original 
components of the undefended system.  
 Continuing with our history of research in dynamic se-
curity, adaptive intrusion tolerance, and survivability [1] 
[2], we recently designed a survivability architecture for a 
DoD information system, and used the design to build the 
survivable version of the system in the DPASA project 
under the DARPA OASIS Dem/Val program. 

In this paper, we first present the principles that moti-
vated the design of the survivability architecture. Then we 
describe the survivable system, explaining how the archi-
tecture integrated with and transformed the undefended 
system. Next, we describe how the system counters at-
tacks.   After a short discussion of related work, the paper 
concludes with a brief summary of the technical contribu-
tions of this paper, and a few areas for future research. 
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2 Motivating Principles  
The high level strategy underlying our approach to de-

signing a survivable system is to strategically combine 
elements of protection, detection, and adaptive reaction in 
the architecture of the system, such that  

• Protection is the first line of defense, employing 
techniques to fortify key aspects of the system to 
deny the attacker easy or undetected access to 
targets 

• Detection provides insight into the status of the 
system and allows the system to detect attacks 

• Adaptive reaction enables the system to cope 
with (undesirable) changes caused by attackers 
exploiting gaps in the protection or circumvent-
ing it, to support recovery and graceful degrada-
tion 

The need to combine protection, detection, and adap-
tive reaction is based on the understanding that protection 
cannot be perfect, some attacks will succeed (at least par-
tially), and some of the attacks will not be detected in 
time.  

When combined with the collective experience of our 
team members [1][2][3][10], this high level strategy led to 
a number of design principles that influenced the surviv-
ability architecture. These are explained in the remainder 
of this section.   

Multiple Layers of Protection: To maximize the level 
of protection, a high barrier of entry against break-in to the 
system needed to be built. A single layer of protection is 
not sufficient to provide a high barrier, thus multiple lay-
ers of protection are needed. Techniques that are grounded 
in the hardware are suited for providing multiple layers of 
protection. Autonomic Distributed Firewall (ADF) [3] 
Network Interface Card (NIC) based distributed firewalls 
that filter packets, or smart card based mechanisms that 
control physical access to sensitive data such as private 
keys are good examples of these techniques. Combining 
hardware, cryptography, operating system protection do-
mains, and application level session and quorum checking 
provide multiple layers of protection. This will deter script 
kiddies, and will also force serious attackers to spend more 
time and resources to gain entry into the system.  
 Redundancy and Static Diversity: A secure system 
cannot have single points of failure in either its critical 
functionality or its key defensive infrastructure. Redun-
dancy is a fundamental technique used to eliminate single 
points of failure, but homogeneous redundancy incurs the 
risk of correlated/common mode vulnerabilities. These 
vulnerabilities can lead to rapid deterioration of the sys-
tem, with little recourse. Diversity can be used to manage 
this risk.  

Physical Constraints in the Architecture to Impose 
Modular Isolation and Containment: A system should 
make use of architectural constraints and design constructs 
that will slow the attacker’s progress through the system. 
Even if he manages to gain access to some parts of the 
system (i.e., overcomes the multiple layers of protective 
barriers to that part of the system), his privileges in the 
system and his ability to see and reach other parts of the 
system should remain severely constrained. Techniques 
such as Demilitarized Zones (DMZs) can be used to force 
the attackers to compromise several perimeters before they 
get to a core asset. Network architecture connecting key 
resources inside the organizational firewall can be made 
more compartmental, allowing physical connection only 
where needed.  

Detection and Correlation: When COTS components 
with unverified security properties are deployed, it is not 
always possible to detect intrusions in a timely and accu-
rate manner. A system must strive to increase the at-
tacker’s risk of being detected.  Forcing an attacker to 
spend more time executing his attack, in conjunction with 
instrumenting the architecture to sense anomalies and pol-
icy violations can significantly raise the attacker’s risk. 
Correlating policy violation reports yield higher accuracy 
and lower false alarm rates.  For example, the absence of 
heartbeats from component X does not always mean that 
X has failed or is corrupt.  Correlating that absence with 
the file system corruption of X or a violation of an appli-
cation-level protocol by X gives much higher confidence 
that an attack has corrupted X. 

Adaptive Response: Adaptive reaction, entailing dy-
namic response (autonomic and human assisted) to secu-
rity events is an essential enabler for reaching high surviv-
ability. Improved detection and awareness can lead to bet-
ter reaction—which means better response to observed 
events and anomalies. Adaptive responses can be used to 
mask or recover from the effects of attacks or to degrade 
gracefully, retaining some service for the longest possible 
time. Examples of adaptive response are managing redun-
dancy and protection mechanisms, adding run time diver-
sity by changing system configuration or behavior, dy-
namically isolating and containing attack effects, and re-
covering from attack effects by replacing or restarting 
failed or compromised components. 

Design Based on Weak Assumptions: A system that 
makes strong assumptions about the environment is more 
vulnerable [4].   For example, if a system’s correct behav-
ior depends on the assumption that the communication en-
vironment always delivers a request for service exactly 
once, then the attacker has a number of ways to put the 
system in a bad state: he can block the request or send 
multiple copies of the request by manipulating the com-
munication environment, without having to attack the ser-
vice requester or service provider components of the sys-
tem.  On the other hand, a system that makes weaker as-
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sumptions about the communication environment will be 
designed to handle a missing request, multiple requests, a 
missing response, multiple responses, a corrupted re-
sponse, as well as the desired response. Such a system 
minimizes the attacker’s opportunity to harm the system 
by simple manipulation of the operating environment. 

In the next section we explain how these principles 
were applied in the creation of the survivability architec-
ture. In addition to these principles, it is important to note 
that the survivability architecture has incorporated a num-
ber of tunable parameters (for instance, amount of redun-
dancy, amount of diversity, number of defensive layers). 
These tunable parameters allow for cost-benefit trade-offs, 
making the survivability architecture applicable to con-
texts that have different survivability and cost require-
ments from the DoD information system described. 

 
3 Survivability Architecture: The DPASA 

Example 
 
In the DPASA project we developed the survivability 

architecture for a Joint Battlespace Infosphere  (JBI) ex-
emplar. The JBI concept is being developed at the Air 
Force Research Laboratory.  More details about the JBI 
concept and implementation can be found on the JBI home 
page [5]. The JBI’s objective is to facilitate quick integra-
tion of disparate Air Force applications to support specific 
missions. JBI uses publish/subscribe communication for 
flexible integration of distributed applications.    

In this section we introduce the JBI exemplar, the mis-
sion it supports and its survivability requirements. Then 
we present a summary of the key aspects of the survivabil-
ity architecture we designed. Finally, we describe the de-
fense-enabled or survivable version of the JBI exemplar.    
 
3.1 The Undefended JBI Exemplar and Survivabil-

ity Requirements   
 
The exemplar JBI shown in Figure 12 integrates appli-

cations for selecting proper targets, monitoring environ-
mental conditions, and creating air-tasking orders (ATOs).  
A successful mission would involve making the go- no-go 
decision on an ATO that may have, among other targets, 
weapons of mass destruction (WMD) sites. The factors 
that could influence the go or no go decision include 
whether the ATO had any WMD sites among its targets, 
the predicted weather condition in the targeted area, the 
presence of friendly forces nearby, the possibility of other 
air traffic (such as logistic support) in the theater, and ul-
timately the possibility of collateral damage (for instance, 

                                                           
2 The dashed line delineates the system boundary.  

Only the elements that are in the system boundary were 
selected to be defense-enabled.   

the chemical plume from the hit WMD site spreading into 
civilian areas) resulting from executing the ATO. 

The undefended system consists of clients connected to 
a JBI core (platform). The JBI core is shown as a network 
cloud representing a public IP networking infrastructure 
like the SIPRNet3. The clients interact with each other ex-
changing Information Objects (IOs) using publish, sub-
scribe and query (PSQ) operations submitted to the JBI 
core. Besides providing PSQ, the JBI core allows informa-
tion flows to be managed and access by clients to be con-
trolled. 
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Figure 1 Exemplar JBI - undefended 

 
The defense-enabled JBI is required to survive at least 

an order of magnitude longer than previous defended sys-
tems such as APOD [6] [7].  Additional survivability re-
quirements are: provide 100% of JBI critical functionality 
under sustained attack by a “Class A” Red Team, detect 
95% of attacks in the given time, and ultimately survive 
12 hours to finish the JBI mission.  

 
3.2 Overview of DPASA Survivability Architecture 

 
Before we describe the defense-enabled JBI, we give 

an overview of the key concepts and elements of DPASA 
architecture. 

 
3.2.1 Zones and Quadrants (Quads) 

 
The DPASA architecture extends the notion of the 

DMZ using three zones. It replicates the service provider 
part of the JBI (i.e., the part offering the key services, such 
as the PSQ service), commonly known as the Core, and 
protects it by organizing the replicas in quads. As shown 
in Figure 2, there are four quads and each quad has three 
zones: crumple, operations, and executive.  The crumple 

                                                           
3 SIPRNet stands for Secret Internet Protocol Router 

Network. It is the DoD’s classified version of the civilian 
Internet. 
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zone, which acts as the region of first impact, buffers the 
core assets in the operations zone. The executive zone sits 
behind the operations zone and hosts the functions that 
manage the overall security and survivability. 
 

 The crumple zone consists of the Access Proxy (AP) 
host. The AP host acts as the entry point for all traffic be-
tween the Core from the clients.  For each process running 
on Core hosts that the clients need to interact with, there is 
a corresponding proxy running on the AP host that per-
forms rate limiting, size-checking, application level checks 
without violating the end-to-end authentication, and en-
cryption before forwarding traffic to the Core. 

The operations zone contains five hosts: the Network 
Intrusion Detection System (NIDS), the PSQ host, the Pol-
icy Server (PS) host, the Correlator (CORR) host, and the 
Downstream Controller (DC) host. The NIDSes are de-
ployed in each quad. Each NIDS sniffs ingress and egress 
traffic on the LAN and sends alerts to the CORR.  The 
PSQ host runs the PSQ server.  Guardians augment the 
PSQ server to check the size, the frequency, and the rate 
of the requests exchanged and report anomalies to the Sys-
tem Manager (SM). The PS host runs processes that man-
age the ADF NICs in the system, and interfaces with the 
SM for mounting adaptive responses that make use of the 
ADF NICs. The CORR host runs processes that receive 
alerts, generate advice about a host, and correlate the 
alerts.  The correlated alerts are ranked, aggregated, and 
displayed on a visual interface running on the SM host. 
The DC host runs the DC component, which processes the 
heartbeat messages, and acts as an operations zone proxy 
for the SM so that the SM is not directly exposed to the 
crumple zone.  

The executive zone contains the SM host.  The SM host 
runs the System Manager component that manages the 
Core components running in the quad, and presents a user 
interface for the security operators.  

On most hosts, there is a set of Local Controllers (LCs) 
running to monitor the host and to carry out proactive and 
reactive actions against suspicious activities on the host.  

Communication among elements within a zone and 
across zones is strictly controlled to limit attack progres-
sion from compromised parts. Furthermore, quads can be 
isolated, stopped and restarted. Communication between 
clients and the processes running on different core zones 
uses different application level protocols  

 
3.2.2 Protection Domains 

 
In order to implement a barrier to entry and to impede 

attack propagation, we use protection domains.  DPASA 
uses three protection domains: network, system, and proc-
ess. 

The Network Protection Domain protects network 
traffic, restricts network attack points, and prevents misuse 
of the network. The System Protection Domain protects 
the host’s integrity by preventing modification to critical 
system files and protects application integrity by prevent-
ing modification of critical application resources. It en-
forces least-privilege at the host level and is deployed on 
all hosts. Each host process is granted privileges based on 
the requirements of the system and any attempt to carry 
out an action (such as accessing the file-system or contact-
ing the network) that is not in the granted privilege is de-
nied and logged. The Process Domain enforces additional 
constraints such as restricting the system calls an applica-
tion can make.  

 
3.2.3 Protocols 

 
The components described in section 3.2.1 use proto-

cols to communicate with other pertinent components. The 
major protocols in DPASA are the registration protocol, 
alert protocols, PSQ protocol, heartbeat protocol, and SM 
protocols. 

A client uses the registration protocol when it is ready 
to join the JBI. To do so, the SM authenticates itself to the 
client and the client authenticates itself to the SM. The cli-
ents and the Core use alert protocols to alert the Core of 
possible issues.  The PSQ protocol implements publish, 
subscribe, and query in a fault-tolerant way. When all four 
quads are participating in the protocol, clients see correct 
behavior from the Core even if any one of the PSQ servers 
is corrupt and behaving in an arbitrarily malicious way.  
To detect the failure of the DPASA survivability compo-
nents, the heartbeat protocol is used. Heartbeat messages 
are sent to the Core where the SMs use the messages to 
display the status of the system.    The SM uses the SM 
protocols to control ADF NICs, to interact with the PSQ 
servers to perform quorum group management and other 
published data management, to take an action on an ac-
cused host, or to gather status of components.   
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3.3 The Defense-Enabled System: The JBI Exem-
plar Instantiated in the Survivability Architec-
ture 

 
Figure 3 shows the defense-enabled JBI. First note that 

rather than one JBI core LAN, it has four Core LANs 
(quads). The Core uses redundant service providers. These 
services perform the same function but are hosted on re-
dundant hardware using three different operating systems 
(Security Enhanced Linux (SELinux), Windows, and So-
laris).  

The crumple zone and the executive zone each have 
one host (denoted by QXAP and QXSM respectively in the 
figure) in every quad. The operations zone has five hosts 
(the QXNIDS, the QXDC, the QXPSQ, the QXCORR, and 
the QXPS) in each quad. The clients are organized into 
four LANS and the configuration of the client LAN is not 
changed except for the addition of a NIDS in each LAN.  
 The network topology of the defense-enabled JBI pro-
vides defense-in-depth using multiple layers of protection. 
There is a VPN router in front of each LAN, establishing a 
VPN trunk from each client LAN to each of the Core 
LANs. All hosts are equipped with ADF NICs, as shown 
by the small solid rectangles. Hosts in the crumple zone 
have two ADF NICs since each crumple zone host has two 
network interfaces: one client facing and the other Core 
facing. A device driver for the ADF card was not available 
for the Solaris operating system, therefore the Solaris 
hosts had an ADF equipped Linux host acting as a bump 
in the wire (indicated by the small diamond attached to 
Solaris hosts). Each core LAN has a managed switch that 

controls the communication between quads as well as in-
ter-zone communication within its own quad. Each man-
aged switch is further controlled via a Quadrant Isolation 
Switch (QIS) by the four SMs (System Managers). The 
QIS allows security operators to isolate an entire quad if 
necessary by cutting off the power to the managed switch. 
A quorum of three SMs is required to isolate a quad. The 
public IP network is simulated by a layer 3 switch and in-
stead of implementing each client and core LAN as a 
physical LAN, they are implemented as VLANs off the 
layer 3 switch. 

Host protection domain policies on hosts tightly define 
how processes can be started, and limit the capabilities a 
process should have. In addition to SELinux (on Linux 
hosts) and Cisco Security Agent (on Solaris and Windows 
hosts) policy enforcement, the Java application compo-
nents were further sandboxed by JVM security policies. 
Each host runs a Local Controller (LC) component that 
periodically checks the file system integrity, CPU, mem-
ory and disk usage of the host, and acts as the aggregator 
and reporter of local host based policy violation reports. 
The clients run three instances of LCs that monitor each 
other and can take over if one crashes.  

The undefended JBI had only one data flow, namely 
the data flow associated with the PSQ (Publish, Subscribe, 
Query) operation. The DPASA architecture introduced 
four new types of data and control flows in the defended 
system:  1) Each software component sends heartbeats to 
the Core, 2) NIDS, Host Intrusion Detection System, LCs 
and software components all send alerts to the Core, 3) 
SMs send coordination and command messages among 
themselves and to other components, sometime via the 
DCs (Downstream Controllers), and 4) the PS (Policy 
Server) talks to ADF (Autonomic Distributed Firewall) 
NICs for status/heartbeats and key renewal and audit mes-
sages.  

All communications between a client LAN and the 
Core, which were routed in the undefined JBI, are now 
proxied at the crumple zone except for the PS traffic. The 
PSQ flow is changed further. With the addition of the four 
PSQ servers in the four quads, a PSQ request first goes to 
the AP (Access Proxy), which checks whether the traffic 
belongs to an existing session by consulting the DC. If so, 
the request is forwarded to the PSQ server, which checks 
for signatures, and whether the client is authorized to send 
the request. If both succeed, the request is disseminated to 
the other quads. Each quad processes the request and 
sends a signed ACK or response back to the client. The 
client completes the request if it sees enough signed re-
sponses, otherwise keeps resending indefinitely. If the 
PSQ request is a publication, the IO (Information Object) 
is escrowed. When the escrow period is over, the IO is re-
leased for circulation. 
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4 Evaluating the Defense 

 
We have taken a multi-pronged approach to evaluate 

the effectiveness of the survivability architecture. Team-
members not involved in the design and development of 
the architecture evaluated the design and the defense-
enabled system using an Integrated Survivability Valida-
tion methodology. The validation process and results are 
described in detail in [14]. Based on the attack trees and 
minimal attacks considered, they found that the defense-
enabled system put up multiple independent layers of de-
fense in front of the attacker. In particular, none of the 
high level goals (such as corrupting an IO (Information 
object), stealing an IO, or making the PSQ service un-
available) they considered had a minimal attack consisting 
of only a single step.  

The defense-enabled system was subjected to numerous 
fault and intrusion injection test runs where failures and 
attack effects were simulated or caused by hand in various 
parts of the system to see how the system reacted, and 
whether mission operations could still continue. Apart 
from the external Red Team exercise (which constituted of 
multiple runs of the mission during which the Red Team 
was attacking the system with fairly unrestricted rules of 
engagement), the defense-enabled system was subjected to 
several internal Red Team experiments as well.  

The findings from these evaluation activities showed 
that the survivability architecture significantly improves 
the survivability of the undefended system, even though 
several weak points of the architecture were discovered. 
Causing LOI or LOC was found to be very difficult. LOA 
of the PSQ service in the JBI core is also found to be very 
hard to cause, but the communication infrastructure, espe-
cially the communication between the LANs and the pub-
lic network was found to be vulnerable to DoS attacks.   

In this section we show the value of the survivability 
architecture by summarizing a subset of fault/intrusion in-
jection test cases, and attack steps that the defense-enabled 
system was subjected to. The official results of the exter-
nal Red Team exercise will be forthcoming from the inde-
pendent White Team, thus this paper we will only mention 
some of the attack steps and the Blue Team’s interpreta-
tion of events. 

The sequence of attacker locations indicated by callouts 
in Figure 4 can be thought of as steps in a sustained attack, 
where the attacker starts from the public network (location 
1) and progresses deeper into the Core zone.  For each at-
tack location, a description of attack step or the injected 
failure condition/attack effect, and how the system defends 
against that is described in a table format. 

 
4.1 Public Network (location 1) 

 

In the first set of attacks, the attacker is connected to 
the Layer 3 switch via a Switched Port Analyzer (SPAN) 
port, a VLAN port, and an unaddressed port (which de-
faults to being a Trunk port4). Since the layer-3 switch 
emulates a public network like the SIPRNet in the de-
fense-enabled system, this level of access means that the 
attacker has a high level of presence in the public network 
and can observe all traffic in it. Attempts to get inside the 
client or quad LANs, or observing application traffic are 
faced with 2 layers of VPN (VPN routers and the ADF en-
forced VPGs). The VPN routers and the ADF NICs are 
also key to stopping flood traffic from getting inside the 
LANs. However, we observed that the NIDSes do not pick 
up attack traffic that is discarded by the VPN routers be-
cause of their position behind the VPN routers. Also, since 
the VPN routers were a single point in the communication 
path from a LAN to the emulated public network, and they 
lacked diversity, exploitation of an implementation or con-
figuration flaw in the VPN router proved to be fatal.    
 
Attack Action Defensive Action 
Send traffic to a client VPN 
router to decrease system 
availability5. 

VPN Router’s firewall 
drops non-valid VPN traf-
fic. No reply sent back. 

Sniff network traffic6.   VPN traffic is encrypted so 
the attacker can only tell 

                                                           
4 Trunk ports are used to connect routers, using Direct 

Trunk Protocol (DTP), which makes it a highly privileged 
port.  

5 This occurred in internal Red Team experiments as 
well as the external Red Team exercise. 

6 This occurred during the external Red Team exercise. 
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that traffic is passing be-
tween LANs but cannot de-
cipher the data. 

Flood VPN router using 
valid replay traffic to dis-
rupt the flow of heartbeat 
messages and  IOs7. 

 VPN router drops some 
traffic, but very high level 
of flood causes heartbeat 
and other traffic to be 
dropped.  SM operator no-
tices this.  

Disrupt VPN tunnels by 
becoming a man-in-the-
middle in the VPN connec-
tion8. 

All inter-LAN communica-
tion is lost. 

 
4.2 Client Host (location 2) 

 
In this second set of attacks, we assume that the at-

tacker has physical access to a client host running 
SELinux, and has the root password. He is now inside the 
VPN and can interact with the members of the VPGs that 
the client host is part of. The attacker attempts to disrupt 
the mission by corrupting the IO flow. Defense against 
this type of attack included the adaptive response mounted 
by the LCs (Local Controllers) running on the client’s 
host, modular isolation imposed by the protection domains 
policies, and application level security checks. 

 
Attack Action Defensive Action 
Open an ssh session to an 
AP (Access Proxy) host 
which the VPG and VPN 
policies allow the client to 
communicate with.  

One of the LCs running on 
the client host notices this 
and destroys the ssh ses-
sion. 

(2-1)Use an existing cmd 
line window and perform 
ps to get a list of running 
LCs. 

Protection domain policies 
severely limit what the root 
user can do. This operation 
fails. 

After (2-1), issue a kill 
command for all three LCs. 

The host has been hard-
ened, thus the kill command 
has been removed from the 
system. There is a special 
kill command that the LCs 
can use, but the protection 
domain policies prevent 
root to use. 

Install own copy of the kill 
command into /usr/bin. 

SELinux policy (part of 
system protection domain) 

                                                           
7 This attack was successful in causing an impact at the 

external Red Team exercise but the architecture did not 
provide any visibility of success for the attacker, so they 
moved on to another attack.   

8 In the external Red Team exercise a zero-day attack 
of this type was executed, which killed the mission. This 
attack required the trunk port on the layer-3 switch. 

prohibits him from install-
ing. As a second line of de-
fense, the LC would re-
move this file if the attacker 
manages to install it. 

(2-2) Install own copy of 
the kill command into /tmp. 

None. The LC does not re-
move this since the LC 
does not protect /tmp. 

After (2-2), issue a kill 
command for all three LCs. 

LCs die9 and stop sending 
heartbeat messages. SMs 
display a lost heartbeat 
message to the security op-
erators.  One of the security 
operators notices this and 
detaches the client. 

Publish an IO (Information 
Object) that the client is not 
authorized to do so to dis-
rupt the JBI mission. 

Request is denied by the 
authorization check. 

Publish an authorized IO 
but increase the size of the 
IO. 

The AP in the crumple zone 
performs size checking and 
drops this IO. Or if the size 
were not big enough for the 
AP, Guardian would notice 
that the size is too big and 
send an alert to the SM 
(System Manager). 

Publish an authorized IO 
multiple times. 

Guardian notices that too 
many of the IO is coming 
in.  Sends alerts to the SM 
and the SM displays the 
alert to the security opera-
tor. The SM operator re-
calls the repeated IOs. 

   
4.3 Crumple Zone – AP Host (location 3) 

 
In this set of attacks, the attacker has made it into the 

Core, and now is on the Q1AP host as the root user. The 
protection domain policies, adaptive responses mounted 
by the LC disrupt the attacker’s attempt to become a man-
in-the-middle using Q1AP. The policy violation reports 
and NIDS alerts provide visibility of attack action. Weak 
assumption based design of the PSQ (Publish, Subscribe, 
Query) protocol tolerates delay and corruption caused at 
this AP by retransmitting to other quads. Cross checking 
among PSQ servers and end-to-end signature checking are 
also used.   

 
Attack Action Defensive Action 

                                                           
9 This assumes that the attacker compromises the pro-

tection domain policy enforcement mechanism at this 
point. Otherwise, root does not have the privilege to kill 
DPASA processes. 
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(3-1) Take over a PSQ 
Proxy by killing the run-
ning PSQ proxy, installing 
his own version of the PSQ 
Proxy, and starting it to act 
as a man-in-the-middle10.    

1. Host Protection Do-
mains prevent the kill-
ing of the PSQ proxy. 
If not, 

2. Host Protection Do-
mains prevent install-
ing new PSQ Proxy. If 
not, 

3. LC notices a change in 
the file system and re-
stores it. If not, 

4. LC notices a change of 
PID of the PSQ Proxy 
and kills the PSQ 
Proxy.  

All above defensive action 
send alerts. 

(3-2) Exploit timing to kill    
Cisco Security Agent be-
fore detection, and then kill 
LC11. 

SM notices loss of heart-
beat. Block the NIC to stop 
further attack propagation.  

After (3-2) and (3-1), as a 
PSQ Proxy, corrupt the 
content of the IO.  

Since an IO is signed end-
to-end, the PSQ server 
sends an alert and rejects 
this IO. Client does not re-
ceive an ACK so resends 
the IO. 

Take over a DC (Down-
stream Controller) Proxy. 
Drop the client (one that 
was detached earlier)’s re-
quest to connect. 

1. Host protection domains 
and LC prevent this 
similar to the first row 
of this table.  If not, 

2. After inviting the client, 
the SM operator no-
tices that the client is 
not registered. The op-
erator checks the alerts 
generated by the LC 
and others on the 
Q1AP and blocks 
Q1AP’s NIC. 

Client is re-invited from the 
Q1SM and connects suc-
cessfully. 

Break into Q1PSQ exploit-
ing the same security hole 

Q1PSQ runs different oper-
ating system so the same 
security hole does not exist, 
unless it is in Java VM. 

Connect to SM There is no physical con-
                                                           
10 This was attempted in the external Red Team exer-

cise. 
11 When the external Red Team was allowed on Q1AP, 

they successfully did this and ran their own PSQ proxy. 
The PSQ Server noticed the change of the serial ID and 
dropped the traffic sent from this proxy. 

nection between the execu-
tive zone and the crumple 
zone. 

  
4.4 Operations Zone – PSQ Host (location 4) 

 
In this set of attacks, we assume that the attacker has 

made it into the operations zone, and has   access to the 
Q1PSQ host. The redundancy of multiple PSQ servers, the 
PSQ server’s design based on weak assumptions (where it 
does not solely trust its own decision but uses a quorum), 
detection and correlation (polling of component’s status), 
and an adaptive response mounted by an SM counter the 
attacker’s attempt to disrupt the PSQ flow.    

 
Attack Action Defensive Action 
Shut down the database 
server running on Q1PSQ. 

1. Host Protection Domain 
prevents this. If not,  

2. Q1SM polls the status of 
the database, notices 
that it no longer re-
sponds, and displays 
the alert to the SM op-
erator. Restarts the da-
tabase and the PSQ op-
erations continue. 

Modify the role table in the 
database and delete a role 
for a client. 

Q1PSQ gets unauthorized 
reply but before replying as 
such, consults other PSQ 
servers.  Other PSQ servers 
reply authorized, so the cli-
ent is not denied. 

 
4.5 Executive Zone – SM Host (location 5) 

 
In the final set of attacks, we assume that the attacker 

has made it deep into the system, past the operations zone 
into the executive zone and is now on the Q1SM host. The 
redundancy of quads (multiple SMs and PSQ Servers), 
adaptive responses mounted by the SMs, and the design 
based on the weak assumptions (where SMs do not trust 
each other), stops the attacker’s attempt to compromise an-
other quad.   

 
Attack Action Defensive Action 
Detach the clients.    Other SMs notice that the 

clients have gone away, one 
of the SM re-invites them.  
Clients continue from 
where they were stopped. 

Recall IOs to interrupt the 
JBI mission. 

Q1PSQ recalls the IOs but 
other three PSQ servers do 
not. The IOs are preserved.  

Issue a command to isolate 
Q1PSQ. 

Isolating a PSQ server re-
quires a quorum of two, no 
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other SM agrees so the PSQ 
server is not blocked. 

Issue a command to isolate 
Quad 3. 

Isolating a Quad requires 
an agreement from all SMs.  
No other SM agrees, Quad 
3 is not isolated.  SM op-
erators on other quads no-
tice and vote to isolate 
Quad 1.  System continues 
to operate with three quads. 

  
5 Related Work 

 
  Since we first showed the feasibility of integrating de-

fensive adaptation into an application in 1999 [8], adaptive 
response has become an integral part of survivable sys-
tems. Many researchers, who have explored adaptive cy-
ber defense, have also developed special purpose architec-
tures for intrusion detection and response (ID&R), intru-
sion tolerance, or graceful degradation.     

The ITUA [2] project developed technology and sys-
tem design techniques for building information systems 
that will tolerate, i.e., continue to function without violat-
ing program and data integrity, a specific class of attacks, 
namely, the attacks that introduce corruption in communi-
cation and application level interaction in a distributed ob-
jects application. In addition to corruption tolerant algo-
rithms, ITUA developed an architecture for managing dis-
tributed object replicas and the hosts on which they run. 
The DPASA SMs and LCs are based on elements of the 
ITUA architecture.   

The Willow architecture [9] achieves intrusion toler-
ance using a combination of disabling of vulnerable net-
work elements when a threat is detected or predicted, re-
placing failed system elements, and reconfiguring the sys-
tem if non-maskable damage occurs. Willow uses its own 
event-notification service as the control mechanism of its 
scalable architecture.  

Dependable Intrusion Tolerance (DIT) [10] comprises 
functionally redundant HTTP COTS servers. These serv-
ers run on diverse operating systems and platforms, use 
hardened intrusion-tolerant proxies that mediate client re-
quests and verify the behavior of server and other proxies, 
and include monitoring and alert-management components 
based on the EMERALD [11] Intrusion Detection System. 
The system adapts its configuration dynamically in re-
sponse to intrusions and other faults. DIT focused on a 
specific kind of server (web servers), however, its use of 
EMERALD in sensing and alert management influenced 
the alert management and correlation aspect of the 
DPASA architecture.  

Malicious and Accidental Fault Tolerance for Internet 
Applications (MAFTIA) [12] is a European project devel-
oping an open architecture for transactional operations on 
the Internet. MAFTIA models a successful attack on a se-

curity domain, leading to corruption of processes in that 
domain, as a fault; the architecture then exploits ap-
proaches to fault tolerance that apply regardless of 
whether the faults are due to accidents or malicious acts. 
MAFTIA is explicitly middleware-based and provides 
both protection from and tolerance of intrusions. 

The Saber [13] system uses several mechanisms includ-
ing intrusion detection, automatic code patching, process 
migration, and filtering of distributed denial-of-service 
floods for defense, but focuses primarily on server avail-
ability.  

 
6 Conclusions  

 
This paper presents a set of design principles we fol-

lowed in designing the survivability architecture. While 
our experience validates the principles at a general level, 
we had to overcome several practical challenges while 
translating the theory into implementation. For instance, 
creating a correct and consistent policy for multiple layers 
of mechanisms is not trivial. We used automated policy 
generation to mitigate that risk partially. Finding static di-
versity was also challenging. Different operating systems 
and JVM implementations were the only source of static 
diversity we used. Existing system components and secu-
rity tools were not always available for all operating sys-
tems, which added to the complexity. We also found that 
depending on how diverse entities are interconnected, 
more diversity is not necessarily better which is the reason 
we used three operating systems on four quads.  On the 
other hand, use of weaker assumptions and the overall 
strategy of combining protection, detection, and adaptive 
reaction proved to be very useful. In particular, the PSQ 
protocols showed tolerance against a wide range of envi-
ronmental variations and corruption (fuzzing) attacks. 
Human assisted responses complemented the automated 
responses in recovery attempts when Red Team attacks re-
sulted in component failures. Heavyweight adaptive re-
sponses like isolating a client or a LAN had a human over-
ride option, a feature that we believe will remain useful 
until adaptive responses are driven by a cognitive decision 
making capability. 
 The defense-enabled JBI and its evaluation illustrate 
the utility of our approach of using a survivability archi-
tecture in defending an existing system. It shows that it is 
possible to integrate COTS and laboratory quality mecha-
nisms, organized in multiple overlapping layers to provide 
a high level of resilience, without having to alter or sacri-
fice any of the operational features of the undefended sys-
tem. Compromising the integrity or the confidentiality of 
the information objects proved to be very hard. The PSQ 
service demonstrated tolerance and graceful degradation 
when less than four quads were operational.  
  We view the success of the survivability architecture 
and design to be a significant step forward in the continu-
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ing fight against the threat of cyber-attack. The defense-
enabled JBI completed the 12-hour mission despite visible 
impacts caused by sustained attacks from the external Red 
Team. However, in another run, a Red Team was able to 
mount a zero-day attack on the VPN routers to stop all 
communication between the client and the core LANs. 
The evaluation of the results from the exercise is continu-
ing, as it is a complex set of various objectives, tests, and 
multiple (sometimes conflicting) results.  It is already 
clear, however, that further evaluation and continued im-
provement of aspects of the defense are absolutely neces-
sary. 

The experience with designing, building, and evaluat-
ing a real system under stress has provided us with quite a 
number of insights for future improvements in both the 
design and analysis of survivable systems.  A few of these, 
focused on areas currently less well understood, include: 

• Creating additional adaptive actions and surviv-
ability mechanisms, with properties that are 
provably uncircumventable. 

• Dynamically but credibly computing and chang-
ing the trust of a component based on past actions 
and current systems state 

• Analytically comparing the effectiveness of and 
contribution of the various and varying overlap-
ping layers of defense. 
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