Verify Results of Network Intrusion Alerts Using Lightweight Protocol Analysis

Jingmin Zhou, Adam J. Carlson, Matt Bishop
Computer Security Laboratory
University of California, Davis

{zhouji, carlsona, bishop} @cs.ucdavis.edu

Abstract

We propose a method to verify the result of attacks de-
tected by signature-based network intrusion detection sys-
tems using lightweight protocol analysis. The observation
is that network protocols often have short meaningful status
codes saved at the beginning of server responses upon client
requests. A successful intrusion that alters the behavior of
a network application server often results in an unexpected
server response, which does not contain the valid protocol
status code. This can be used to verify the result of the intru-
sion attempt. We then extend this method to verify the result
of attacks that still generate valid protocol status code in the
server responses. We evaluate this approach by augmenting
Snort signatures and testing on real-world data. We show
that some simple changes to Snort signatures can effectively
verify the result of attacks against the application servers,
thus significantly improve the quality of alerts.

1. Introduction

An intrusion is traditionally defined as an action that suc-
cessfully violates the security policy. Anderson defines a
penetration as a successful attack [2]. Mukherjee et. al.
define intrusions as unauthorized use, misuse and abuse of
computer systems [17]. Denning defines intrusions as secu-
rity violations [8]. All these definitions state that an intru-
sion is a successful violation of the security policy.

However, today’s intrusion detection systems (IDSes)
often try to detect not only intrusions, but also unsuccess-
ful intrusion attempts. This is because it can be difficult for
an IDS to determine the result of an intrusion attempt [21];
therefore the IDS assumes the worst and reports alerts for
every observed intrusion attempt. Moreover, an intruder of-
ten tries several unsuccessful attacks until he finally suc-
ceeds. Each attack raises its own alerts. Detecting on-
going attempts can help intrusion prevention by blocking
attacks before they succeed. These have contributed to a
well-known problem: too many alerts are reported to be ef-

fectively audited [15, 18]. People often find it difficult to
analyze an overwhelming amount of alerts and instead wish
to focus on the successful intrusions, ignoring unsuccess-
ful ones until necessary. It means that an IDS must be able
to determine the result of intrusion attempts rather than just
detecting them. Thus, successful and unsuccessful intrusion
attempts can be distinguished and prioritized.

A popular approach to verifying intrusion attempt results
is to let an IDS be aware of the environment and configu-
ration of the systems under attack [15, 16]. For example,
assuming a Windows worm is attacking a host H running
a Linux system, if an IDS is aware of the operating system
of host H, it can determine that the attack will fail. This
approach requires the mapping and modeling of run-time
environment and system configuration [15, 23]. It can be a
burden to collect and update the configuration database in
large or dynamic settings. Moreover, collecting such infor-
mation can potentially interfere with the execution of the
systems [15] and expose the IDS to the intruder.

Observing the fact that intrusions like buffer overflows
often alter program behavior, we propose to verify intrusion
attempt results via lightweight protocol analysis. After an
intrusion attempt against a network server is detected, the
IDS will monitor the server response and use it to determine
intrusion attempt results. This approach is completely pas-
sive and eliminates mapping of monitored systems and host
based verification. In addition, we show that often a simple
protocol analysis on the header field of a server response
is adequate to effectively determine attack result. Even if a
server response obeys the protocols, meaningful status code
in the response can still help verify the attack results.

The contributions of this paper include: (1) a passive
method based on lightweight protocol analysis to verify the
result of network attacks; (2) the methodologies and amount
of information needed for this approach, (3) the efficacy of
this method with real-world data, and (4) a simple fix to
Snort signatures to successfully apply our approach.

To avoid confusion, we informally define some terms
used throughout this paper:

Definition 1.1 (Intrusion Attempt, Attack) A malicious



action that intends to violate the security policy.

Definition 1.2 (Intrusion) An attack that successfully vio-
lates the security policy.

The rest of the paper is structured as follows. In Sec-
tion 2 we discuss the related work. In Section 3 we present
our method to verify intrusion attempt results. We describe
the implementation in Section 4, and present the experimen-
tal results in Section 5. Section 6 discusses several issues in
our approach and experiments. Section 7 concludes the pa-
per and future work.

2. Related Work

Intrusion detection techniques are generally categorized
into misuse detection, anomaly detection and specification-
based detection [3]. Misuse detectors identify intrusions
based on signatures of known attacks, such systems include
Bro [20], Snort [22], and NetSTAT [28]. Anomaly detec-
tors, such as NIDES [12], detect intrusions that behave sig-
nificantly different from the statistical profile of normal ac-
tivities. Specification-based detectors [13, 30] look for in-
trusions that violate the specifications of normal behavior.
Nowadays, misuse (signature-based) detection is the most
popular approach in intrusion detection and is widely used
in network IDSes (NIDSes).

Misuse detection has a well-known problem [15]: it of-
ten detects attacks and raises alerts regardless of attack re-
sults. If a Windows worm is attacking a Linux system, a
misuse IDS reports alerts even though the attack cannot suc-
ceed. Thus, misuse IDSes often report so many alerts for
unsuccessful attacks that they become unmanageable. A se-
curity officer usually ignores these unsuccessful attacks, re-
garding them as harmless. Fine-tuning IDS rules according
to the monitored systems can avoid alerts of unsuccessful
attacks. This requires manual refining and testing of the
signatures, which is error prone for large or dynamic com-
puting environment.

A popular antidote [11, 15, 23] is to profile the systems
under attack using network mapping software and vulnera-
bility scanners either before or after an attack, and compare
the profile to the vulnerability that the attack exploits. If
they do not match, the attack will fail. This approach has
several drawbacks. Information of the monitored systems
collected before an attack can be out of date or inaccurate at
the time of the attack in a dynamic environment. Actively
gathering data at runtime can expose the existence of IDSes,
and even disturb the normal functioning of the system when
using vulnerability scanners [15].

Almgren et. al. [1] propose to detect failed attacks
against CGI scripts that do not exist on the web server
by checking the “404 Not Found” response from the web

server. However, an in-depth analysis of other possi-
ble responses and their relations with the attacks is miss-
ing. Snort [22] includes several signatures to detect typi-
cal responses from a victim system under successful attack.
However, these signatures are fixed and are logically sepa-
rated from the signatures detecting the attacks.

Sommer and Paxson [24] implement Request/Reply sig-
natures for Bro [20] to check both directions of a connec-
tion in order to avoid alerts of unsuccessful attacks. For
example, a signature that checks for “4XX” ! in web server
response code can filter out unsuccessful attacks. However,
they do not consider those responses that violate protocol
specifications. Moreover, methodologies to analyze and
generate such signatures, how much and what information
is needed to determine the attack results, and the efficacy of
this method remain unanswered.

Vigna et. al. [29] propose an approach to verify success-
ful buffer overflow attacks against web servers. They sug-
gest that unlike normal web server activities that create en-
tries in server log files, successful buffer overflow attacks
usually leave no trace in the log files. Thus, after detecting
an attack in a network connection, the web server log file is
inspected to check whether the entry is created. The missing
of entry indicates a successful attack. This method requires
both network and host-based IDSes. On the contrary, our
approach only requires NIDSes.

Vigna and Kemmerer study state transition analysis tech-
niques in NetSTAT [28]. Our approach is similar to state
transition analysis in general. In our method, a malicious re-
quest and its response trigger a simple three-state transition.
The request establishes a possible compromised state and
the response moves the state to either compromised state if
the attack has succeeded or non-compromised state if the at-
tack has failed. NetSTAT establishes the compromised state
solely based on detection of malicious requests.

Our approach is also similar to protocol analysis, e.g.,
NATE [25]. Unlike approaches that detect attacks via pro-
tocol analysis, our method uses protocol analysis to verify
attack results. Moreover, our analysis focuses on applica-
tion protocols and is lightweight - it only examines header
information in server responses, and the domain of values
to examine is often limited.

Several different approaches [6, 7, 18] correlate IDS
alerts. The goal of these approaches is to aggregate and
correlate alerts that are generated from logically related at-
tacks, thereby reducing the total number of alerts and time
needed to inspect them. However, the reduction obtained
from these approaches thus far does not seem as satisfactory
as that of Gula [11], Kruegel and Robertson [15], and ours.
In addition, alerts of unsuccessful attacks can have negative
impact on alert correlation [19]. Finally, these approaches

"Here ‘X’ is any ASCII digital character. The two ‘X’s are not neces-
sarily the same digit. We shall use the same notation in what follows.



usually need significant work on modeling and analyzing
alerts.

3. Network Intrusion Attempt Verification

Program behavior usually follows certain specifications.
For example, a web server must follow the HTTP proto-
col to interact with clients. Here the HTTP protocol is the
specification that defines the legitimate behavior of the web
server and its clients. In fact, most network applications
follow some well-defined application protocols. In this pa-
per, we shall limit the scope of our discussion to verifying
network intrusion attempts based on application protocols.
The methodology, however, is general and can be applied to
verify host-based intrusion attempts as well.

An intrusion, like a successful buffer overflow attack, of-
ten causes a vulnerable application to change its program
logic and enter into an unexpected state, therefore making
it behave differently from its specifications. For example,
a successful buffer overflow attack against a vulnerable ftp
server often invokes a shell program, whose functionality is
very different from the ftp server. The interactions between
the malicious client and the shell program will not follow
the FTP protocol any longer. An IDS can utilize this feature
to determine the result of the attack.

However, many attacks do not alter the program logic of
the applications. We notice that protocol status code in the
header of an application response often provides some hints
about the result for a request, e.g., whether the application
has successfully processed a request. This status code can
help determine the result of the attack.

3.1. Assumptions

To simplify the discussions we make several assump-
tions:

1. A NIDS is able to detect attacks against network appli-
cation servers and to report alerts accordingly.

2. A network application server and its clients interact
with well-defined network application protocols.

3. An attacker cannot arbitrarily manipulate application
server responses in the intrusions.

4. The result of an attack is successful with respect to the
violation of security policy.

5. A NIDS is placed logically between a network appli-
cation server and its clients.

6. An application server does not use any IDS evasion
techniques like packet fragmentation in its normal re-
sponses.

Assumption 1 is three-fold. First, our purpose is to verify
the result of an attack. Sometimes an IDS cannot detect
certain attacks. For example, a lack of high-level semantic
models makes it difficult for Snort to detect attacks crossing

persistent HTTP sessions. We consider this as the problem
of detection, not verification. Secondly, our method only
inspects network connections that are flagged by the IDSes
as containing malicious packets. Thirdly, we only study the
attacks launched by the client side against the server side.
Most attacks that today’s NIDSes try to detect fall in this
category.

Assumption 2 means a client and a server do not inter-
act using arbitrary protocols or protocol extensions. For
example, some web servers may issue “200” status code
with a customized “Not Found” page even if the requested
web page does not exist on the server. This violates the
HTTP protocol specification. We consider such cases as
non-typical and ignore them unless absolutely necessary.

Assumption 3 limits the scope of our approach. Some at-
tacks, such as buffer overflows, often grant an attacker full
control of a process. In theory, a clever attacker can hijack
an application to produce a response that looks perfectly
normal, making it difficult to verify the attack result. This
is a limitation of our method. In fact, advanced attacks [14]
also cause problems for other verification approaches or
even host-based intrusion detection. For example, after a
successful buffer overflow attack, the intruder can insert a
fake entry into web server’s log file in order to avoid detec-
tion [29].

The result of an attack often has different meanings from
different view points. For example, a buffer overflow at-
tack often intends to execute a shell program. Thus, from
the view of the attack goal, executing a shell is a success-
ful attack result, but crashing a vulnerable application due
to imperfect overflow attack is not. By assumption 4, over-
running the buffer, regardless of executing a shell or not, is
considered as a successful attack.

Assumptions 5 and 6 are common in the real world. They
also give a performance benefit to our approach, as dis-
cussed in Sect. 3.4.

3.2. Application Response

Below we use attacks against web servers as example
to illustrate our approach. We choose web attacks because
they comprise the majority of known attacks. Moreover,
web attacks are often more complicated than the attacks
against other network services because web servers often
serve as a platform for many high-level applications. Tech-
niques in analyzing web attacks are usually adequate for
analyzing other attacks. Typical web attacks can generate
many different results. We elaborate on the attacks and their
possible results, showing how to verify attack results based
on different responses from web servers.



3.2.1 HTTP Protocol

A web server and its clients communicate through the
HTTP protocol. The HTTP protocol 1.1 defines a server
response as follows [10]:

Response = Status—Line
*(( General—Header
| Response—Header
| Entity —Header )
CRLF
[ message—body ]
Status —Line = HTTP—Version SP Status—Code
SP Reason—Phrase CRLF

The first line of a server response is a well-formatted
Status-Line. In particular, the Status-Code element is a 3-
digit integer that indicates the result of a request. There are
five values for the first digit [10], of which 2, 4 and 5 are of
the most concern:

e Ixx: Informational - The request was received, and the

process is continuing

e 2xx: Success - The request was successfully received,

understood, and accepted

e 3xx: Redirection - Further action must be taken in or-

der to complete the request

e 4xx: Client Error - The request contains bad syntax or

cannot be fulfilled

e 5xx: Server Error - The server failed to fulfill an ap-

parently valid request

3.2.2 Response to Attacks

Attacks against a web server can result in one of two kinds
of server responses: a response that obeys the HTTP pro-
tocol, or a response that does not. If an attack, typically a
buffer overflow attack, has changed the program logic of a
web server process, a response that does not obey the HTTP
protocol is often produced. This is called “erroneous server
response” in the following. Otherwise, the response follows
the HTTP protocol 2.

Attacks that cause a web server to generate erroneous
server responses are limited. In particular, these attacks
must change the program logic of the web server pro-
cess. Such attacks typically include buffer overflows, in-
teger overflows and format string attacks against the web
server process. Since server side scripts, e.g., PHP and ASP
scripts, execute in the same address space of the web server
process, attacks against the scripts can potentially produce
erroneous server responses as well.

2Unless there exists a logic error in the web server program that can
generate erroneous server response on valid request, which we shall ignore
according to assumption 2.

Not all overflow-like attacks can trigger erroneous server
responses. Many web based applications are executing in a
different address space from the web server process, e.g.,
CGI programs. Successful overflow-like attacks against
these applications can change their program logic, but not
that of the underlying web server process. Thus, the web
server does not produce erroneous server responses for
these attacks.

For web attacks that do not change the program logic of
a web server process, the server responds with a Status-Line
following the HTTP protocol. In this case, the Status-Code
in the Status-Line of the server response often provides hint
about the attack result. Almgren et. al.[1] discusses such an
example: if an attack is targeting a vulnerable CGI program,
but the program does not exist on the server, a “404” Status-
Code is returned by the server. Thus, observing the “404”
Status-Code in the server response, an IDS knows the attack
has failed. A trickier example is to crash a CGI program via
a buffer overflow attack. In this case, the web server often
returns a “500” Status-Code. Thus, seeing the “500” Status-
Code indicates the attack has succeeded.

3.3. Methodology of Verification

Therefore, to verify the result of an attack, we first de-
termine whether the attack will trigger an erroneous server
response. If true, a server response that does not satisfy the
protocol means the attack has succeeded. If false, we will
determine the attack result via the status code in the server
response.

There are two verification methods to determine the re-
sult of an attack based on the status code in the server re-
sponse: confirming a negative result or confirming a posi-
tive result.

Confirming a negative result means to identify a set of
status codes that indicate an attack has failed. Often, the sta-
tus code is the same as the error code used in the protocols.
For example, a “4XX” status code in a web server response
means the web server cannot process a client request (e.g.,
a web page does not exist or the client is forbidden to ac-
cess it). As another example, a “45X” status code in an ftp
server response means a file or directory request has failed.
Such code in a server response to an attack often means the
attack has failed. Other status codes mean the attack has
either failed or succeeded depending on the property of an
attack. If it is difficult to determine the attack result based
on the status code, the IDS should assume that the attack
has succeeded and report alerts. In this case, failed attacks
can be reported as successful attacks.

Confirming a positive result requires finding a set of sta-
tus codes that show an attack has succeeded. Often the
status code is the same as the success code in the proto-
cols. For example, a “2XX” status code in a web server



response means that a client request has been successfully
processed. Thus, it is reasonable to believe that the attack
may have succeeded. But exceptions exist, depending on
the relevant property of an attack. For example, as discussed
earlier, even though a “5XX” response code means a web
server error, it can indicate a successful buffer overflow at-
tack against a CGI program. Except for this set of status
codes that we can use to verify successful attacks, other sta-
tus codes mean the attack has failed, or the status codes are
irrelevant to the attack.

Which method to choose depends on many factors, such
as the relevant property of an attack, the granularity of sta-
tus code defined by a protocol, the ease of identifying an
accurate set of status codes to confirm the positive or neg-
ative result, and the tolerance to accept false decisions. In
our implementation, we find the first method (confirming a
negative result) is preferred though it introduces some im-
precision.

Because an attack is aimed at a specific vulnerability,
the number of possible outcomes is usually limited. Thus,
a complete protocol analysis is unnecessary, and we only
need to analyze the part of the protocol that is relevant to
the attack. For example, for an ftp attack to retrieve sensi-
tive files, the status codes to monitor would be those related
to file operations, i.e., “X5X”. We can safely ignore the sta-
tus codes related to authentication, i.e., “X3X”. This signif-
icantly simplifies and facilitates the analysis in practice.

Though our discussion so far focuses on the HTTP pro-
tocol, the approach is also applicable to other popular net-
work application protocols, e.g., the FTP, SMTP and POP3
protocols. They share several properties:

e An application protocol is based on a request and re-

sponse model. An application client sends a request to
a server, and the server sends a corresponding response
back to the client.

e Considering each request and its response as a session,
sessions can be uniquely identified from the network
traffic.

e Each server response has a well defined format. In par-
ticular, it contains at least a status code chosen from a
pre-defined domain of all meaningful status code.

e The status code appears at the beginning of the server
responses.

3.4. Performance Considerations

Our approach requires tracking network connections. It
is expensive in term of processing and memory overhead.
Dreger et. al. [9] finds three major factors of overhead in
network intrusion detection: (1) the total amount of state
kept by the IDS, (2) the network traffic volume, and (3) the
(fluctuating) per-packet processing time. Based on these
factors, we suggest several methods to reduce the amount

of data to inspect and to limit the lifetime of attack related
data in a NIDS’s memory.

We only verify the server response of detected attacks.
Thus, a NIDS can do detection on client requests as usual.
Once a malicious request has been found, the NIDS begins
to inspect the response. This optimization eliminates the ex-
amination of server responses for all normal network con-
nections, which comprise the majority of network traffic.

Assumption 5 of Sect. 3.1 also helps reduce overhead.
Typically, a NIDS resides in the same network of the moni-
tored systems. It simplifies connection state management of
the NIDS by avoiding delays between the moment a mon-
itored system sends a response and the moment the NIDS
observes the response because of network transmission de-
lay. Once the NIDS observes the response of an attack from
the monitored system, it can determine the attack result, and
immediately discard the attack related data from its mem-
ory. The lifetime of an attack session in the NIDS’s memory
is close to the processing time of a request by the monitored
system.

By assumption 6, a NIDS expends little effort to recon-
structing the response from multiple packets using network
traffic reassembly techniques. This limits the data kept in
IDS memory and reduces the processing time.

Finally, since our analysis is primarily based on the
header in the server responses, NIDS processing time is
minimized. The header data usually appears only at the be-
ginning of a response, and is small enough to fit into a single
network packet. Therefore, the NIDS needs to capture only
the first packet in a response, and to analyze only a small
portion of the packet, which is adequate for verifying attack
results. The rest of the data can be ignored. This means
less processing time. The fact that the header is in the first
packet can help verify the attack result as well. If a response
is unexpectedly fragmented or its size is very small, a valid
status code will not fit in the first packet of the response,
signalling of a successful attack.

4. Implementations

We have implemented our tool using Snort [22], a pop-
ular NIDS primarily based on misuse detection techniques.
Although other misuse NIDSes like Bro and NetSTAT pro-
vide better facilities to support our approach, we feel that
choosing Snort can benefit its large user base. We used
Snort 2.3.0 in our implementation. Snort provides a simple
lightweight description language to define signatures. Each
signature is divided into two sections, the rule header and
the rule options. The rule header defines rule action, pro-
tocol, IP addresses and ports. The rule option specifies the
method to inspect the network packets and other options,
e.g., reference to the vulnerability.

Our approach requires tracking connections between



network application server and client. Snort has two pre-
processors, stream4 and flow, to support TCP reassembly
and stateful analysis. Each of the pre-processors provides a
rule option keyword and several options to specify the prop-
erties of TCP connections. For example, using the stream4
pre-processor, one can define the flow option as fo_server in
a signature to inspect only the packets from client to server;
or, define the flow option as established to inspect only the
packets after a TCP connection is established. Using the
Sflow pre-processor, one can tag a user-defined flag to an in-
teresting TCP connection using the flowbits option, and in-
spect only the packets in the tagged TCP connection. The
flag can be cleared when it is not needed any more.

There is a limitation of the Snort signature description
language. If we want to inspect data A in a TCP connection
from the client to the server, and also inspect data B in the
same connection from the server to the client, we cannot do
so using a single rule. Thus, we have to introduce an extra
rule to inspect B.

4.1. Rule Conversion

We convert Snort signatures to handle our approach in
the following way. Using web attacks as example, for each
attack, we define at least two detection rules. The first rule
is the same as the original Snort rule with two exceptions:
(1) the TCP connection that contains a malicious client re-
quest is tagged with a custom flag using the flowbits option;
(2) no alert is reported by this rule. The second rule in-
spects the web server response with the corresponding TCP
connection having an appropriate tag. If a certain condi-
tion is met, the attack is possibly successful, so an alert is
reported. For the sake of simplicity, we call the first rule “re-
quest rule”, and the second rule “response rule”. Figure 1
shows the rule of an original Snort signature that detects a
chunked transfer-encoding attack against an IIS web server.
It is a buffer overflow attack. Figure 2 3 shows the new rules
after conversion. The second rule detects server responses
that do not obey the HTTP protocol, meaning a successful
buffer overflow attack.

4.2. Rule Optimization

There are several problems in rule conversion. First,
the number of rules dramatically increases after the con-
version, making the signature database more difficult to
maintain since there are already more than Snort 2,800 sig-
natures to date. Secondly, it requires more resources to
load more rules, and increases run-time overhead to pro-
cess more rules. In fact, sometimes it requires even three or

30ption pcre in Figure 2 defines a Perl compatible regular expression to
inspect the payload of a HTTP response and determine if it obeys the HTTP
protocol. The Symbol “!” at the beginning of the option data reverses the
inspection result.

alert tcp $EXTERNALNET any —> $HOMENET 80
( msg:”IIS .htr chunked Transfer—Encoding”;
sid:1806; flow:to_server ,established;
uricontent :”. htr”; nocase;
content:” Transfer—Encoding |3A|”; nocase;
content :” chunked”; distance :0; nocase;)

Figure 1. Original Snort Signature

alert tcp $EXTERNALNET any —> $HOMENET 80
( msg:”IIS .htr chunked Transfer—Encoding”;
sid:1806; flow:to_server ,established;

uricontent :”. htr”; nocase;
content:” Transfer—Encoding |[3A|”; nocase;
content :” chunked”; distance :0; nocase;

flowbits :set ,tag_1806; flowbits:noalert;)

alert tcp SHOMENET 80 —> $EXTERNAL.NET any
( msg:”IIS .htr chunked Transfer—Encoding”;
flow:to_client ,established;
flowbits :isset ,tag_1806;
pere : ! 7/ HTTP\/\d\.\d\s\d\d\d/m”;
flowbits : unset ,tag_1806;)

Figure 2. New Snort Signature

more rules for a single signature (See Sect. 4.3 and Figure 3
for details).

We have developed a method to optimize the response
rules. For the attacks that have similar responses, we reused
atag. For example, for a web CGI attack, if the targeted pro-
gram does not exist on a web server, the server will respond
to the request with a “404” status code. For a different CGI
attack, the scenario is similar. Thus, these two web attacks
can share the same tag and response rule. The distinct TCP
connections of the two attacks ensure that the response rule
of the second attack is not used to verify the result of the first
attack even they have the same tag. After this optimization,
hundreds of signatures of web CGI attacks can share only
1-2 response rules. Therefore, the number of new rules is
reduced significantly.

However, we must be conservative in choosing the pro-
tocol status code in rule optimization. For example, assume
two sets of status code A and B have been chosen as the fail-
ure indication of two attacks respectively. If we want to use
a single response rule to verify both attacks, the status code
of the new rule should be AN B. On the other hand, if A and
B are used as the success indication for the two attacks, the
status code of the new rule should be AUB. For example, in
our optimization, we chose both “2XX” and “5XX” as the
status code of successful CGI attacks, and only “4XX” as




the status code of unsuccessful CGI attacks. This can make
unsuccessful attacks trigger unwanted alerts. However, it is
better than missing successful attacks.

There is another problem in rule optimization. Because
the request rules do not fire their own alerts and many of
them share the same response rules to verify their results,
different attacks will result in the same alert. The security
officer must then examine each alert to figure out its cor-
responding attack. A simple fix is to let both request and
response rules report alerts, and post-process the alerts to
filter out unsuccessful attacks.

4.3. Rule Sets Conversion

Snort groups its rules into multiple rule sets based on
the type of application protocols and attacks. Currently,
we have converted eight rule sets: ftp, pop3, web-attacks,
web-cgi, web-coldfusion, web-frontpage, web-iis, and
web-php.

The first step of rule set conversion is trivial: for each
rule set, we introduced a new tag *. Assuming a tag is
named new_tag, we inserted two option statements, “flow-
bits:set,new_tag;” and “flowbits:noalert;”, into each rule in
the rule set. This step was done in only several minutes
by using regular expression in pattern match and insertion.
We could do this because of the standardized formatting and
good organization of Snort rule sets. We strongly urge other
NIDS vendors to adopt a similar approach as it makes batch
maintenance very easy!

After the first step, we added one or more response rules
to each rule set. These new rules checked protocol status
code in the TCP connection that is tagged in the first step,
and take appropriate actions accordingly — the rule either
does not report an alert if the attack has failed or reports an
alert if the attack has succeeded.

Figure 3 shows the new rules added into the pop3 rule
set. The POP3 protocol specifies that a response from
a POP3 server must begin with “+OKL” or “-ERRLI” (U
means a space). Nearly all attacks in the pop3 rule set are
buffer overflow, integer overflow and format string attacks.
If these types of attacks succeed, the POP3 server is likely
not to respond as the POP3 protocol. Otherwise, the POP3
server will still behave as normal. Therefore, we added two
new rules. The first rule verifies the failure of an attack by
checking that the response from a POP3 server obeys the
POP3 protocol. It therefore clears the tag and does not re-
port alerts. The second rule verifies the success of an attack
by checking that the response from a POP3 server does not

4Qur first attempt was to convert the rule set web-iis without rule op-
timization, which means we introduced a new custom tag for each rule in
this rule set and one or more response rules for each tag. Then we devel-
oped the rule optimization method and applied it to the conversion of all
other rule sets.

follow the POP3 protocol. It therefore clears the tag and
reports an alert.

For some rule sets, e.g., ftp and web-iis, there are mul-
tiple different types of attack, e.g., buffer overflow, anony-
mous login, and retrieving sensitive files. Thus, we added
multiple tags to handle different types of attack and cre-
ated corresponding response rules for each tag. This took
slightly longer time. Overall, we were able to accomplish
this task in a few minutes. The number of new rules is 23,
which is negligible compared to 687 original rules °.

alert tcp $SHOMENET 110 —> $EXTERNALNET any
( msg:”POP3 failed overflow attack?”;
flow:to_client , established;
pere :”/"(\+OK|\—ERR)\ s /m”;
flowbits:isset , tag_pop3bo;
flowbits :unset, tag_pop3bo;
flowbits:noalert ;)

alert tcp $HOMENET 110 —> $EXTERNAL.NET any
( msg:”POP3 successful overflow attack”;
flow:to_client , established;
pere:!”/"(\+OK|\—ERR)\ s /m”;
flowbits :isset , tag_pop3bo;
flowbits :unset, tag_pop3bo;)

Figure 3. POP3 Attack Response Rules

5. Experimental Results

We have performed several off-line experiments with
real-world data-set collected at our site to test our imple-
mentations. The results are promising.

We have set up four honeypot machines [27] since June
2003. All the network traffic of these machines has been
recorded using Tcpdump [26]. Three honeypot machines, a
Windows NT 4.0 server, a Windows 2000 server and a Red-
Hat Linux 7.2 were repeatedly compromised via HTTP and
FTP servers. Furthermore, scans of the honeynet generated
large amount of HTTP and FTP traffic.

In the experiments, we let Snort read the Tcpdump data
files recorded from the honeynet from June 18, 2003 to
November 30, 2003. We executed Snort twice on the data
files. One was using the original Snort rule sets, the other
was using our new rule sets. When using the new rule sets,
attacks that did not succeed were not reported. All unmod-
ified rule sets were turned off from Snort configuration file.
All options in the Snort configuration file were kept at their
default values. The results are shown in Table 1 .

5The web-iis rule set is excluded because it has not been optimized.
©Alerts generated by the Snort pre-processors instead of the rule sets
were excluded from the table.




Honeypot Alert Number Alert Number
System (Org. Rule Sets) | (New Rule Sets)
Win NT 4.0 16989 2841
Win 2000 13660 1242
RH Linux 7.2 4978 152

Table 1. Reported Alerts

Table 1 shows that our simple implementation is able to
eliminate 83.28%, 90.91% and 96.95% of the alerts against
the Windows NT 4.0 server, the Windows 2000 server and
the RedHat Linux 7.2 respectively. We feel it is an encour-
aging result since the new rules we have introduced are con-
servative. In fact, there is a potential to improve the result if
we take a close analysis for each individual signature.

A manual examination shows that most of the attacks
against RedHat Linux were related to a Microsoft IIS server
on Windows, and the others were related to the wu-ftp ftp
server on the system. Among the IIS attacks, two types of
attacks were reported by our new rule sets. One is the /IS
view source via translate header attack. The non-vulnerable
Apache web server running on the Linux system responded
“200 OK”, the same as the IIS server would respond. In
order to filter it, we can check the vendor information in
the server response besides of status code. This shows a
limitation of our approach, but is fixable. The other is
the IIS WEBDAV nessus safe scan attempt attack. Since
it is a buffer overflow attack, we let Snort report an alert if
the server response code is “5XX”, meaning a server mal-
function has happened. In fact, the Apache web server re-
sponded “501 Method Not Implemented” to this attack, but
we had expected “500 Server Internal Errors” for a success-
ful attack. Thus, we can refine the response rule for this
attack to suppress the alert if the server responds “501” sta-
tus code. Among the ftp attacks, three were unsuccessful
attacks related to directory operations, and two were unsuc-
cessful buffer overflow attacks. They were suppressed by
the response rules. The other 77 attacks all have succeeded,
including 76 directory operations and one buffer overflow
attack. They were all correctly reported by the new rule
sets. Thus, if we further refine the response rules, we could
end up with 77 alerts corresponding to only the successful
attacks.

We manually studied the result of attacks on the Win-
dows NT 4.0 and Windows 2000 servers. First, many alerts
being filtered out were related to CodeRed II worm inci-
dents [4]. The attacks scanned the web servers in order to
access a backdoor program, “root.exe”, created by early in-
fection of the worm. Since our servers were not infected,
the backdoor program did not exist. The servers responded
“403 Forbidden” or “404 Not Found” to the attacks. The
corresponding alerts were suppressed. Secondly, we ob-

Tepdump | Avg. Time (sec.) | Avg. Time (sec.)
Data of Orig. Rule Sets | of New Rule Sets
New 164.620 222.648

Original 285.349 343.354

Table 2. Snort Execution Time (each run)

served a lot of attacks that tried to access some known
vulnerable CGI programs on the IIS web server. Since
these CGI programs were not installed on the servers, the
servers responded “403 Forbidden” or “404 Not Found”
to the attacks. The corresponding alerts were suppressed,
too. Thirdly, there were also several buffer overflow at-
tacks against the anonymous ftp servers on the machines,
but both ftp servers were not vulnerable to the attacks. The
ftp server responded as the FTP protocol dictates. The at-
tacks were considered to have failed, and the alerts were
suppressed. Finally, the IIS web server on the Windows NT
4.0 server suffered from some directory transversal vulner-
abilities. An attack utilizing them can access the command
prompt program “cmd.exe” and execute arbitrary programs.
But it required careful encoding of the attack string. We ob-
served 11,741 such attacks. Among them, 2,046 have suc-
cessfully accessed the “cmd.exe” and were reported under
our new rule sets. The others have failed and the alerts were
suppressed. Overall, our approach was able to effectively
distinguish successful and unsuccessful attacks, and signif-
icantly reduce the number of reported alerts.

We measured the off-line experiments performance by
executing Snort on the Tcpdump data for the Windows NT
4.0 server. We first extracted the TCP connections related
to the FTP, HTTP, and POP3 protocols from the Tcpdump
data, obtaining 168MB of Tcpdump data. We then ran Snort
twice on the new data. The first run used the original Snort
rule sets and the second used the new rule sets. We re-
peated each run over the data for ten times. We also repeated
the experiments using the original 2,770MB Tcpdump data.
The time of CPU-seconds in user mode is shown in Ta-
ble 2 7. It shows that if we focus on the protocols we were
monitoring, the new rule sets slow down execution time by
35.24%, which looks high. But if we average it into back-
ground traffic, the total slow down is reduced to 20.33%.
Since the percentage of malicious network traffic in the hon-
eynet is much higher than that of a normal network environ-
ment, the average slow-down is expected to be lower in a
normal network environment. We are investigating the ma-
jor cause of slow-down and are exploring the methods to
improve the performance. This will be our future work.

7We eliminate the CPU-seconds in system mode in order to avoid cal-
culating time spent on file I/O. In fact, using total execution time, the slow
down is about 27% for new data and 0.3% for original data, which is obvi-
ously wrong because of time spent on file I/O.



6. Discussions

The approach we propose is particularly useful for veri-
fying alerts reported by misuse detectors. Our assumption is
that a misuse IDS is able to precisely detect attacks but does
not know the results. Anomaly detectors usually are unable
to detect attacks accurately. To verify alerts by anomaly de-
tectors is difficult and often requires manual analysis. On
the other hand, if a specification-based detector detected
an attack, theoretically it is always an intrusion because a
violation of specification has been detected, assuming the
specification is correct. There is no need to verify the alerts
reported by specification-based detectors.

Our approach is similar to specification-based detectors.
These detectors use protocol specifications to detect attacks.
Our method uses protocol specifications to determine the at-
tack results if the network traffic violates the specifications.
Moreover, we also demonstrate that it is possible to verify
attack results even if their outputs satisfy the protocol spec-
ifications.

We believe that anomaly detection techniques can help
improve our approach. For example, to reduce the over-
head, misuse NIDSes often keep the data of some suspi-
cious network sessions in its memory for only a short period
of time [9]. If an intrusion can trigger a server to produce an
erroneous response after a period of time that is longer than
the life time of the session, it is possible to bypass the detec-
tion. In this case, we can use anomaly detection techniques
to profile normal lifetime of the sessions. Each suspicious
session that has a longer response time than the normal life-
time of the sessions is flagged as a possible intrusion.

Another popular approach is to apply vulnerability and
system profile in verification. In fact, by comparing our ap-
proach to the profile based verification approach, we realize
that the fundamental ideas of two approaches are similar.
This suggests that the two approaches could perform as well
as, or at least close to, each other. This is demonstrated by
the successful experiments on the RedHat Linux system.

The limited data collected in our approach limits the pre-
cision of verification. That is, if an attack does not produce
an erroneous response, and the protocol status code in the
response to the attack does not provide compelling evidence
of an intrusion, our approach can generate incorrect verifi-
cation results. This happened in our experiment to verify
the I1IS view source via translate header attack against the
RedHat Linux system. In order to correctly verify the at-
tack results, further information is needed. A solution is
to analyze more data in the response. For example, a suc-
cessful IIS attack aiming to execute the command shell can
produce banner information like “Volume Serial Number”
in a server response. This can be used to verify the attack
result. Though inspecting more data in the response will in-
crease the overhead of IDSes, if it is only used for a limited

number of signatures, the overhead could be acceptable.

There could be two types of errors in verification: (1)
failed attacks are reported as successful ones; (2) success-
ful attacks are regarded as failed ones. Our strategy is to
minimize the first type of errors and to avoid the second
type. Thus, we were conservative in choosing the set of sta-
tus codes in alert verification as discussed in Sect. 4.2. The
experiments show that our conservative approach can cor-
rectly and effectively identify a majority of failed attacks
with few errors of the first type. Though we have not ob-
served a case of the second type of errors in the experi-
ments, there exists a possible source of it in our approach: a
buffer overflow attack can corrupt the non-control data of a
server process [5]. It violates security policy, but the server
response still obeys the protocol specification. It can be a
problem for other verification approaches as well.

Our approach does not deal with reconnaissance/probe
activities that collect information about computer systems
and network services. For example, an attacker can try
to access a potentially vulnerable CGI program on a web
server. The server either responds “404 Not Found” if the
CGI program does not exist, or “403 Forbidden” if the CGI
program exists but the access is denied. Thus, the attacker is
able to tell the existence of the CGI program on the server,
and takes further actions based on this information. From
the view of the attacker, regardless of the server response,
the probe has successfully gathered the information. From
the view of alert verification, the probe has failed. But for
the purpose of our approach, our methods behave correctly.

7. Conclusion and Future Work

In this paper, we have presented an approach to verify
the results of intrusion attempts using lightweight protocol
analysis. The approach analyzes and tracks network appli-
cation responses to the intrusion attempts, and uses header
information in the responses to verify the result of the at-
tempts. Thus, our method does not need to collect vulner-
ability information, rely on host-based intrusion detection,
or perform a complete protocol analysis. We have modified
Snort signatures and evaluated our method by the real-world
data collected at our site. Our off-line experiments showed
that the approach can effectively verify the results of intru-
sion attempts against network application servers, thus im-
proving the quality of alerts reported by the NIDSes. We
demonstrated that the method is simple and easy to apply.

Our future work includes improving the performance of
our approach, and evaluating the performance for on-line
verification. We have identified several potential perfor-
mance issues that impact our approach, and they need an
in-depth study. The current implementation is limited to
simple network connections because Snort lacks a power-
ful semantic model. We plan to use Bro and NetSTAT to



evaluate the efficacy of this approach on more sophisticated
network activities, like HTTP sessions. Our approach can
be further improved by combining anomaly detection tech-
niques as we have discussed. This also remains our future
work.

8. Acknowledgments

This research is supported by a grant from Promia Inc. to
the University of California at Davis. We thank the anony-
mous reviewers for their valuable comments to improve the

paper.

We thank Bhume Bhumiratana, Senthilkumar G.

Cheetancheri, Ebrima Ceesay, and Patrick Wheeler for their
proof-reading.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

M. Almgren, H. Debar, and M. Dacier. A lightweight tool
for detecting web server attacks. In Proceedings of Network
and Distributed Systems Security (NDSS 2000) Symposium,
pages 157-170, 2000.

J. P. Anderson. Computer security threat monitoring and
surveillance. James P. Anderson Co., 1980.

M. Bishop. Computer Security: Art and Science. Addison
Wesley Professional, 2002.

CERT. Incident Note IN-2001-09 Code Red II: Another
worm exploiting buffer overflow in IIS indexing service dll,
2001.

S. Chen, J. Xu, and E. C. Sezer. Non-control-data attacks are
realistic threats. In Proceedings of 14th USENIX Security
Symposium, August 2005.

F. Cuppens and A. Miege. Alert correlation in a cooperative
intrusion detection framework. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, pages 202—, May
2002.

H. Debar and A. Wespi. Aggregation and correlation of
intrusion-detection alerts. In Proceedings of Recent Ad-
vances in Intrusion Detection (RAID), October 2001.

D. E. Denning. An intrusion detection model. /EEE Trans-
action of Software Engineering, 13(2):222-232, 1987.

H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Oper-
ational experiences with high-volume network intrusion de-
tection. In Proceedings of 11th ACM Conference on Com-
puter and Communications Security, October 2004.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee. Hypertext transfer pro-
tocol — HTTP/1.1. ftp://ftp.rfc-editor.org/
in-notes/rfc2616.txt, 1999.

R. Gula. Correlating ids alerts with vulnerability informa-
tion. Technical report, Tenable Network Security, December
2002.

H. S.Javitz and A. Valdes. The NIDES statistical component
description and justification. Technical report, SRI Interna-
tional, March 1994.

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]
(27]

(28]

[29]

(30]

C. Ko, P. Brutch, J. Rowe, G. Tsafnat, and K. Levitt. System
health and intrusion monitoring using a hierarchy of con-
straints. In Proceedings of the 4th International Symposium
on Recent Advances in Intrusion Detection, pages 190-203,
2001.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Automating mimicry attacks using static binary analysis. In
Proceedings of 14th USENIX Security Symposium, August
2005.

C. Kruegel and W. Robertson. Alert verification: Deter-

mining the success of intrusion attempts. In Proceedings
of the 1st Workshop on Detection of Intrusions and Malware

& Vulnerability Assessment (DIMVA), July 2004.
R. P. Lippmann, S. E. Webster, and D. Stetson. The effect

of identifying vulnerabilities and patching software on the
utility of network intrusion detection. In Proceedings of Sth
International Symposium of Recent Advances in Intrusion

Detection (RAID), 2002.
B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network

Intrusion Detection. IEEE Network, 8(3):26-41, 1994.

P. Ning and Y. Cui. An intrusion alert correlator based on
prerequisites of intrusions. Technical Report TR-2002-01,
North Carolina State University of Erlangen, Department of

Computer Science, January 2002.
P. Ning and D. Xu. Learning attack strategies from intrusion

alert. In Proceedings of 10th ACM Conference on Computer

and Communications Security, October 2003.
V. Paxson. Bro: A system for detecting network intruders in

real-time. In Proceedings of 7th USENIX Security Sympo-

sium, January 1998.
T. H. Ptacek and T. N. Newsham. Insertion, evasion, and de-

nial of service: Eluding network intrusion detection. Secure

Networks, Inc., 1998.
M. Roesch. Snort - lightweight intrusion detection for net-

works. In Proceedings of the USENIX LISA "99 Conference,

November 1999.
U. Shankar and V. Paxson. Active mapping: Resisting nids

evasion without altering traffic. In Proceedings of 2003

IEEE Symposium on Security and Privacy, May 2003.
R. Sommer and V. Paxson. Enhancing byte-level network

intrusion detection signatures with context. In Proceedings
of 10th ACM Conference on Computer and Communications

Security, October 2003.
C. Taylor and J. Alves-Foss. Nate — network analysis of

anomalous trafficevents, a low-cost approach. In Proceed-
ings of New Security Paradigms Workshop, 2001.

Tcpdump and Libpcap. http://www.tcpdump.org/.
The Honeypot Project. Know your enemy: Revealing the se-
curity tools, tactics, and motives of the blackhat community.
http://www.honeynet.org, 2001.

G. Vigna and R. A. Kemmerer. NetSTAT: A network-based
intrusion detection system. Journal of Computer Security,
7:37-71, 1999.

G. Vigna, W. Robertson, V. Kher, and R. Kemmerer. A state-
ful intrusion detection system for world-wide web servers.
In Proceedings of the 19th Annual Computer Security Ap-
plications Conference (ACSAC), December 2003.

D. Wagner and D. Dean. Intrusion detection via static analy-
sis. In Proceedings of the IEEE Symposium on Security and
Privacy, May 2001.



