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Abstract 
 
We present a statistical method that can swiftly identify, 
from the literature, sets of genes known to be associated 
with given diseases. It offers a comprehensive way to treat 
alias symbols, a statistical method for computing the 
relevance of the gene to the query, and a novel way to 
disambiguate gene symbols from other abbreviations. The 
method is illustrated by finding genes related to breast 
cancer. 
 

1. Introduction 
 
The number of medical articles accessible electronically is 
growing at an unprecedented rate, a fact that makes it 
impossible for individuals to keep up with the pace of 
available information. At the same time, it presents a 
unique opportunity to gather information automatically, 
summarizing vast quantities of data in a statistical fashion 
and allowing for the discovery of new and relevant 
connections among pieces of dispersed information. Such 
information can then be used to test new hypotheses or aid 
a human in editing summaries of available results [1]. 
 
In this paper we present an identification and 
summarization method that relies on statistical techniques 
to extract gene sets relevant to a query such as a particular 
disease. It offers a comprehensive way to treat alias 
symbols, a statistical method for computing the relevance 
of a gene or a group of genes to the query, and a novel 
way to disambiguate gene symbols from other 
abbreviations.  
 
Natural language processing (NLP) methods have 
previously been used to automatically extract gene names 
and gene and protein interactions from text [2-12]. For 
example, rule-based systems use part-of speech 
information and keywords to discover and tag names. 
These techniques can be computationally intensive and 
unsuitable to apply to large datasets such as the complete 
set of Medline abstracts. Moreover, they frequently seek 
to find relationships between a small, restricted set of 
genes and/or are applied to a few, select articles. Our 
work uses statistical methods to find the relevant set 
among all known human genes and identify the 
correlations between them quickly from the entire 

Medline database. This set of genes could in turn be used 
by a NLP algorithm or one using templates [13] to 
identify the nature of the interactions.  
 
Methods for extracting keywords related to diseases [14] 
have a tendency to sometimes return overly general terms, 
and do not focus on genes in particular. The use of the 
“term frequency, inverse document frequency” (TFIDF) 
metric [13,14] requires a further thresholding step, since 
the method can rank very infrequent terms quite highly. In 
contrast, our statistical method captures only highly 
relevant genes, ones that only occur frequently in a 
specific context. 
 
Previous work on extraction of gene mentions from 
Medline [15] has displayed high error rates due to 
abbreviations or words being mistaken for gene symbols. 
Instead, by focusing on statistically relevant symbols and 
further disambiguating their meanings, we are able to 
significantly reduce the error rate while also identifying 
sets of genes relevant to a particular condition. 
 
In what follows we present the statistical basis of the 
method and illustrate its applicability to the Medline 
database. We then discuss a powerful disambiguation 
technique that allows for the identification of genes 
associated with given diseases. We present results that 
exhibit the power and simplicity of the method. In 
addition we compare our method with existing data and 
outline further extensions. 
 

2.  A Statistical Basis for Gene Relevance to 
Diseases 
 
Since the information needed to explain the relevance of a 
gene to a disease is often present in the articles of the 
biological literature, detailed syntactic analysis of every 
article could in principle yield all, or almost all, of the 
information needed to explain the connection between a 
set of genes and diseases. However, such analysis is not 
only computationally prohibitive but also error prone 
when using natural language techniques.  
 
Our method, on the other hand, relies on the statistical 
analysis of gene-disease occurrences in the biomedical 
literature, rather than exhaustive analyses of given articles. 



 
Consider a set S of N articles from the biomedical 
literature and assume that a subset s mentions a particular 
disease, i.e. leukemia. A particular gene, A which has no 
correlation with leukemia, should occur in the same 
proportion in s as it does in all of S. Therefore, the 
probability that with no correlations one would find a co-
occurrence of the gene A and the word leukemia would be 
simply s/S. It follows from probability theory that the 
probability of n co-occurrences can be simply computed 
from the Binomial distribution, as well as the expected 
number of occurrences and the associated variance. 
 
A number of co-occurrences much greater than that 
computed from the binomial distribution would certainly 
indicate a strong correlation, which is what one seeks. 
Moreover, this metric can be used to roughly quantify the 
strength of the correlations of different genes based on 
known, published results. A gene whose relationship to a 
disease has only recently been documented would 
hopefully show as relevant to that disease, but perhaps not 
score as highly as a gene whose relationship is established 
and well documented.   
 
We extended this statistical method to determine the 
relevance of a pair of genes to a disease. A pair that 
occurs much more frequently in the context of a disease is 
likely to be relevant to the disease. One can further 
examine to what extent the two genes are complementary. 
That is, when one gene is mentioned in an article related 
to a disease, another gene is likely to be mentioned as 
well, indicating that a strong link exists between the two 
genes. Of course one is not limited to studying only single 
genes or gene pairs. If a sufficient number of articles 
mention a larger number of genes, the same method can 
be applied to any size set of genes. 
 
3. The Method 

 
The outline of the method is shown in Figure 1.  As 
shown, we first gathered gene symbols, both official and 

alias (see below), listed by 3 online gene databases: 
HUGO (Human Genome Organization) [16], OMIM 
(Online Mendelian Inheritance in Man) [17], and 
LocusLink (an online database of gene loci) [18]. We 
obtained titles and abstracts published between 1960 and 
2001 from over 11 million Medline records.  

 
We performed an automated search of the abstract and 
title of the Medline records to produce a “PMID/gene list” 
which for each document, identified by a unique PMID 
(PubMed Identifier) number, lists the different gene 
symbols that occurred in the abstract or title. In the current 
system we did not search for the full name of each gene, 
only its symbol, and we did not count how many times a 
particular symbol occurred in each article, just whether it 
occurred. 
 
Additionally, we recorded whether each article’s abstract 
or title contained a word or words pertaining to a 
particular disease or gene expression pathway. For 
example, if we were focusing on leukemia, we searched 
for the words “leukemia” or “leukaemia”.  
 
3. 1 Alias Symbols 
 
Because the identification and categorization of human 
genes on a large scale is at an early stage, the 
nomenclature system is still haphazard. In some cases, a 
particular symbol is used in different contexts to denote 
10 or more distinct genes; conversely, a particular gene 
may be represented by many symbols. Indeed, as of April 
2002, HUGO alone lists some 13,800 redundant gene 
symbols.  
 
Obviously, this unfortunate situation makes it more 
difficult to identify individual gene relevance to given 
diseases and to detect important gene pairs. To mitigate 
the confusion, we made use of the “official” symbol for 
each gene, as designated by HUGO, OMIM or Locuslink.  
These three databases have chosen one symbol per gene to 
be official, while the other symbols used to refer to the 

Figure 1. A general flow chart of the method.  Medline documents are analyzed for 
gene symbols, the aliases are combined, and statistical relevance is determined
given different disease contexts.  Finally, a disambiguation and display step
visualizes the results. 
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same gene are known as “aliases”. We attempted, where 
possible, to replace any mention of an alias symbol with 
the official symbol, using the following scheme. 
 
First, we counted all occurrences of gene names (official 
symbols and aliases) within the entire article set and 
within a focus subset (e.g. those article which mention 
leukemia). For each alias occurrence, we added to the 
count of both the alias and the official gene or genes it 
represented. For example, if the symbol OS, an alias for 
MID1, occurred in 49 articles, while MID1 occurred in 3, 
we would have a count of 52 for MID1. We kept track of 
the fact that 49 of the counts for MID1 originated with OS 
to be able to relate back to the articles and to modify the 
document gene lists as described below. Because OS 
frequently stands for “overall survival”, it is important to 
keep track of its contribution to MID1’s counts, as MID1 
could otherwise erroneously be related to a disease. 
 
We then modified our PMID/gene lists for the entire set 
and the focus subset to account for alias symbols. For 
each alias symbol, there were four possibilities: 

1. The alias symbol represented only one official 
symbol, and the official symbol appeared 
independently (that is, its count was greater than 
its alias’ count). For this case, we replaced all 
mentions of the alias in question in our PMID/ 
gene lists with the official symbol.  

2. The alias symbol represented more than one 
official symbol, but only one of these official 
symbols occurred independently within the set or 
subset. Here we replaced the alias symbols with 
the official symbols which had counts. 

3. The alias symbol represented one or more 
official symbols, but none of these official 
symbol ever occurred independently within the 
set or subset. Clearly in this case the official 
symbol was not yet widely accepted by 
researchers, so it was more reasonable to refer 
only to the alias symbol. 

4. The alias symbol represented more than one 
official symbol, and at least two of these had 
independent occurrences within the subset. In 
this case we could not decide, without syntactic 
analysis of the abstract or title text, which official 
symbol was meant by the paper authors, and so 
we kept the alias symbol. 

 
Because we count only one occurrence of a gene per 
abstract, an alias and an official symbol occurring in the 
same abstract contribute together only a single count. In 
all cases, we kept the information about where the counts 
originally came from and indicated this in our results. For 
example, let’s say our results implicate an obscure official 
symbol, which almost always appeared as the well-used 
alias symbol, in some disease. The original counts would 
show the user that 95% of the time that the gene was 
mentioned in connection with the disease, it was 
mentioned as the alias and not as the newer official 
symbol, hopefully mitigating possible confusion. 
 
3.2 Measuring the Relevance of Genes to Diseases 
 
Using the counts obtained after adding contributions from 
alias symbols, we compared the frequency of occurrence 
of a gene name in the set of all Medline articles (S0) to the 
frequency with which the gene occurred in the focus 
subset (S1) of articles which mentioned the disease. As 
stated earlier, this provides a measure of the relevance of 
the gene to the disease. 
 
Focusing on “acute myeloid leukemia” (AML), consider 
for example the gene RUNX1, which our measure shows 
to be most tied to AML. The official HUGO symbol 
RUNX1 stands for “runt-related transcription factor 1 
(acute myeloid leukemia 1; aml1 oncogene). Aliases for 
the gene RUNX1 include AML1, CBFA2, AMLCR1, and 
PEBP2AB.  
 
Putting for the moment aside that the name of the symbol 
RUNX1 itself reveals its strong connection to AML, we 
can establish the connection in a purely statistical fashion. 
The symbol RUNX1 occurs in 480 of the 20,909 articles 
mentioning AML and containing a gene symbol, and 590 
times in the 3 million articles containing gene symbols.  
Next we compute how unlikely it would be to see the 

Figure 2. Distribution of correlation 
strengths between leukemia and various 
genes mentioned with leukemia in 
articles. 
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number of gene mentions in SL, given how frequently the 
gene is mentioned overall.  
 
The expected number of mentions of RUNX1 (assuming it 
is uncorrelated to leukemia) in SL is given by the Binomial 
distribution 11 *][ RUNXLRUNX pNnE = .  pRUNX1 = 
0.0003 is the fraction of documents in all of Medline 
mentioning AML1, and NL is the number of documents in 
SL. The standard deviation is given by 

111 *)1(*)( RUNXRUNXLRUNX ppNn −=σ . We 
measure the strength of the relationship (cRUNX1) between 
RUNX1 and leukemia by measuring how much the 
observed number of RUNX1 documents deviates from the 
expected number had the draw been random. 
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We find that cRUNX1 = 195.68, a very high value. We have 
used the normal approximation to the binomial 
distribution, valid in the case of large N. Using the normal 
distribution we can also find that the probability that 480 
or more RUNX1 documents are found among a random 
draw of 20,909 documents is less than 10-16. Our finding 
is consistent with the fact that AML1 is one of the most 
common targets of chromosomal translocations implicated 
in acute myeloid leukemia [19]. 
 
Most genes, however, show little or negative correlation 
with leukemia as demonstrated in Figure 2, which shows 
the values of cAML for all genes which occur in SL. The 
figure lacks those genes which occur in the database, but 
do not occur in SL at all. They would populate the negative 
correlation side of the figure. 
 
 

3.3 Relevance of Gene Pairs  
 
We can further explore the relevance of gene pairs as 
opposed to individual genes. If a gene pair occurs more 
frequently in SL than in the entire document collection, 
then the pair is considered relevant to SL. For example, we 
find that the CFBF-MYH11 pair occurs 30 times with 
AML, and 37 times overall, giving the pair a relevance 
score of 48.83 to AML.  
  
 One can also compute to what extent the two genes are 
complementary, that is if they predominantly  act together 
with regard to the disease. We compare the number of 
times each gene occurs in SL separately to the number of 
occurrences together.  
 
Let pA (pB) be the fraction of documents with gene A(B) 
in SL. Then if A and B are uncorrelated, the probability of 
finding them together is pAB=pA*pB. From here on, we 
proceed just as we did for the link of a single gene to 
leukemia. Consider again the genes CBFB and MYH11, 
which have an unusually high complementarity. CBFB 
occurs 40 times in SL and MYH11 occurs 78 times, yet a 
full 30 of those occurrences are joint. The probability of 
this occurring is very small, and we obtain a 
complementarity score of 75.63 given by 
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Searching though the literature we find why CBFB and 
MYH11 are complementary to such an extent: “In human 
acute myeloid leukemia samples with chromosome 16 
inversion, a fusion gene CBFB-MYH11 is created and 
expressed. This novel gene includes most of the CBFB 

Figure 3:  To extract the “definition” for an acronym or abbreviation in the original text, 
a window is constructed in which the definition may be found.  The characters of the 
acronym, ABG, are aligned to the text.  Three of these paths are illustrated in the figure.  
Each path represents a different definition, which is scored independently.  The most 
likely candidate, Alpha Beta Gamma, is retained as the definition. 
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gene, a hematopoietic transcription factor, and the last 
half of MYH11”1. 
 
3.4 Disambiguating Potential Gene Symbols 
 
Once we identified symbols with high relevance to a 
disease, we still need to address the problem of polysemy, 
where gene symbols may be identical to abbreviations for 
other common terms. In fact, the most challenging aspect 
of extracting gene names from the text is determining 
which symbols actually correspond to genes.  For 
example, Emergency Room and Estrogen Receptor are 
both represented by the acronym ER  (an alias for the gene 
ESR1).  Thus, to ensure that the statistical analysis is not 
weakened by non-gene symbol instances, it is necessary to 
take further steps to clean the data. We tackled this 
problem from two directions: using cues from the text that 
identify a particular gene, and when these cues were 
absent, calculating an overall likelihood that the symbol 
represents a gene. 
 
Authors frequently offer cues about the meaning of a 
symbol when they list a definition followed by the symbol 
itself in parenthesis. We utilize these definitions to 
eliminate abbreviations that are possible gene aliases, but 
that are rarely used to refer to a gene. 
 

                                                 
1 http://www.umassmed.edu/pgfe/faculty/castilla.cfm 

To do so, we first determine different possibilities for 
acronym expansions. Once this information is in hand, the 
second step establishes which expansion relates to the 
gene. Below, we briefly describe the mechanism behind 
our approach.  The full details of this process are beyond 
the scope of this paper, but are fully described in [20].   
 
Several researchers [21-23] have attempted to tackle the 
problem of abbreviation and acronym definition from text. 
Acromed [24], the most successful of these methods, 
yields results with  98% precision but requires complex 
natural language processing.  Our approach, which is 
much simpler to implement, generates comparable results 
(95%+ accuracy).  The algorithm which is illustrated in 
Figure 3, constructs possible alignments (which we call 
paths) that potentially define an abbreviation within the 
text.  The test for paths is done in a definition window, 
which contains several words preceding the first 
occurrence of the abbreviation. In the figure, we show 
three potential paths (although there are others in this 
example) that may define the abbreviation. Each path is 
scored by various rules in order to find the most likely 
path. One rule, for example, gives a higher score to paths 
in which the abbreviation letters occur at the start of 
words. (In Figure 3, the second path is then scored higher 
that the third.) Although simple and few, the rules 
generate the correct answer repeatedly. 
 
Once we have a definition, it is possible to compare it to 
the known definition for the gene.  Unfortunately, while 
we would like every correct definition for a gene such as 

 

disease cG nDISEASE nALL 
colon cancer 33.30 83 1039 

ACCEPT from 
definitions 

30.1% had 
definitions., 96% 
matched 

match: , deleted in colon cancer :15 (0.51), deleted in colorectal cancer :4 (0.78), deleted in 
colon carcinoma :2 (0.77), deleted colon cancer :1 (0.34), deleted colorectal carcinoma :1 
(0.88), deletion :1 (0.24)  
no match: , dextran coated charcoal :1 (0.13)  
 

breast cancer 47.90 179 1039 

REJECT from 
definitions 

29.6% had 
definitions,  
11% matched 

match: , deleted in colon cancer :4 (0.51), deleted in colorectal cancer :2 (0.78)  
no match: , dextran coated charcoal :32 (0.13), dextran coated charcoal method :7 (0.12), 
dextran coated charcoal assay :2 (0.12), dextran coated charcoal technique :2 (0.11), 
dextrancoated charcoal :1 (0.13), dextrose coated charcoal :1 (0.09), dextran coated charcoal 
assays :1 (0.12), conventional radiochemical :1 (0.00)  
 

  
Table 1. Evaluation of the symbol DCC as a possible reference to the “deleted in colon 
cancer” gene for two diseases: breast and colon cancer. The number of occurrences and 
the matching score (0 to 1, low to high) is given after each extracted definition of the 
symbol. 



PR to be progesterone receptor, other definitions we have 
found include: progesterone receptors (plural), 
progesterone (no receptor), or progestron receptor (a 
spelling variant).  To address this problem we apply a tri-
gram based comparison to determine relationships 
between the “true” definition and others.  In this approach, 
each definition is broken up into three letter chunks called 
tri-grams.  Progesterone receptor, for example, is 
composed of the tri-grams pro, rog, oge, ges, etc.  The 
similarity between the true definition and proposed 
definition is: 
 

1||||*1||||
1||||

++
+=
BA

BAsimilarity �
 

 
Where the numerator is the number of intersecting tri-
grams between the true definition, A, and the proposed 
definition, B.  The denominator is a normalization factor 
based on the number of tri-grams in both definitions.  The 
resulting similarity value is then compared to a threshold 
(.2 in our case) to decide if the two definitions are 
sufficiently related. 
 
Finally, in order to decide whether or not to include a 
symbol in the final statistics, we determine if there is 
enough evidence (enough definitions), and further 
compare the good (matching) to bad (non-matching) 
definitions.  If this ratio is high enough, the gene symbol 
is accepted; otherwise the algorithm determines that the 
symbol is rarely used to represent a gene, and it is rejected 
or down-weighted in the overall statistics.  
 
When an insufficient number of definitions is present, we 
calculate the likelihood that a symbol represents a gene by 
comparing the number of article titles and abstracts 
containing the symbol as well as words such as gene, 
DNA, inhibit, and express, to the total number of articles 
in which the symbol occurs. The higher this ratio, rG, the 
greater the likelihood that any given instance of the 
symbol is a gene reference. While rG is often an adequate 
indicator, using definitions when available yields much 
higher quality results relevant to the context. For example, 
the ratio rG  for the symbol DCC is only 0.46. This 
information alone does not allow us to judge with 
certainty whether the symbol DCC refers to a gene 
‘deleted in colon cancer’ in any given article  
 
Table 1 shows how definitions can be used to 
disambiguate the symbol DCC in two contexts, one of 
breast cancer and the other of colon cancer. Although the 
symbol occurs twice as often in documents dealing with 
breast cancer, our algorithm allows us to recognize that 
DCC in the context of colon cancer stands for the “deleted 
in colon cancer” gene, but most often stands for “dextran 

coated charcoal” in the breast cancer context. Dextran 
coated charcoal assay is the preferred method used to 
quantify the presence of estrogen and progesterone 
receptors in breast cancer tissue. This makes the symbol 
DCC highly relevant to breast cancer, but the gene DCC 
itself relates to breast cancer to a lesser extent. By 
analyzing the definitions accompanying the symbol, we 
were able to give opposite classifications (accept for the 
colon cancer context, and a reject for breast cancer) for 
DCC in two different contexts.  

 
4.  Results 
 
Next we present results using the methods described in the 
above section, as applied to breast cancer.  To summarize, 
we extract gene symbols from the literature, folding 
aliases into official symbols, and computing the relevance 
of each official symbol to breast cancer. We then 
eliminate non-gene symbols using contextual clues, such 
as whether the symbol has an overall likelihood to be 
representing a gene or whether its accompanying 
definitions match the official or alias gene names.  
 
In order to evaluate our algorithm, we compared the 
selected genes by our algorithm to a human edited breast 
cancer gene database2.  Of the 58 entries in the human 
edited database, 46 had a significant score (sG > 2) which 
identified them as relevant to breast cancer. 3 genes, 
CTSD (cathepsin D), PLG (plasminogen) and COL18A1 
(endostatin) were almost always mentioned in Medline 
text by their full names as opposed to symbols and hence 
were not selected by our algorithm. Future versions of the 
algorithm could of course include gene names as well as 
symbols, but this would require an additional 
disambiguation method. The remaining 9 genes had low 
or negative scores because there were too few articles 
supporting a connection, or because the symbol was 
obscured by a common acronym. Two of the gene 
symbols had fewer than 5 articles mentioning them in 
connection with breast cancer, with no further articles 
published in the past 10 years. Those connections might 
be quite weak.  
 
On the other hand, our scoring method was able to 
produce a much more extensive list of genes connected to 
breast cancer. Table 2 shows the ten genes most relevant 
to breast cancer  in order of relevance given by the 
function given in Equation 13. We note that TFF1, CEA, 
MUC1 are scored as highly relevant, and play roles in 
diagnosis and treatment of breast cancers. A potential user 

                                                 
2 http://tyrosine.biomedcomp.com 
3 a more complete list can be found at 
http://www.hpl.hp.com/shl/papers/genelit/index.html 



of such information would be a human wanting to edit a 
list of known genes connected to breast cancer. 
 
At the same time, we were able to eliminate those 
acronyms which while highly relevant to breast cancer, do 
not represent genes.  Examples include FAC and CAF (5-
fluorouracil, Adriamycin, cyclophosphamide 
chemotherapy), SLN (sentinel lymph node), OS (overall 
survival), ILC (invasive lobular carcinoma), TNM (tumor 
node metastasis). A list is shown in Table 3. In addition to 
filtering out non-gene symbols, we can also use the 
disambiguation techniques to resolve a symbol that is an 
alias for multiple genes. For example, using the 
definitions ‘estrogen receptor’ we were able to resolve ER 
to ESR1 (estrogen receptor 1) as opposed to EREG 
(epiregulin). 
 
The quality of the output of the algorithm is heavily 
dependent on the completeness of the input. For example, 

the ki-67 antigen is associated with the gene MKI67. But 
having no listing for ki-67 from the HUGO, OMIM or 
LocusLink databases, we interpret the symbol KI as an 
alias for PSME3. Similarly, PSCP is an alias of BRCA1. 
Even though our database contained the alias, there was 
no definition present. When PSCP was mentioned, the 
definition “papillary serous carcinoma of the peritoneum” 
was tested and did not match the name of the official 
symbol BRCA1. In the case of PSCP, the error had no 
effect because the single occurrence of PSCP did not 
offset the strong statistical significance of the 1,300 
BRCA1 mentions. These two sources of error will play a 
smaller role once more protein symbols and alias names 
are incorporated into databases.  Another source of error 
is mistaking a cell line symbol such as MX1 for a gene 
symbol. Additional analysis of text and classification 
using mesh headings may eliminate false positives from 
cell lines. 

official symbol 
and score aliases cG official or alias name BC gene 

database 
BRCA1: PSCP 276.54  breast cancer 1, early onset  x 
ESR1 ER 253.36 estrogen receptor x 
BRCA2  213.86 breast cancer 2, early onset x 

ERBB2 HER2, 
NEU, NGL 

205.18 v-erb-b2 erythroblastic leukemia viral oncogene 
homolog 2,neuro/glioblastoma derived oncogene 
homolog (avian) 

x 

PGR PR 148.69 progesterone receptor x 

TFF1 PS2, PNR2, 
BCEI 

106.91 trefoil factor 1 (breast cancer, estrogen-inducible 
sequence expressed in)  

TP53 P53, TRP53 96.90  tumor protein p53 (Li-Fraumeni syndrome) x 

EGFR ERBB, S7 88.29 epidermal growth factor receptor (erythroblastic 
leukemia viral (v-erb-b) oncogene homolog, avian) x 

CEACAM5 CEA 67.32 carcinoembryonic antigen-related cell adhesion molecule 
5  

MUC1 PUM EMA 
PEM  

58.90  mucin 1, transmembrane  

  
Table 2. Genes with the highest relevance score cG to breast cancer. All aliases occurring more than 
once are listed, as well as the relevance score, the gene name, and whether the gene was listed in the
human edited breast cancer gene database. 



 
6.  Conclusions and Future Work 
 
The explosive growth in the number of medical 
publications and databases available electronically calls 
for novel ways of accessing, summarizing, and extracting 
knowledge from the data. In this spirit, we have developed 
an algorithm to automatically extract genes from text such 
as Medline titles and abstracts and determine their 
relevance to a particular topic. We presented a way to 
count alias symbols and to determine whether the 
frequency with which a particular gene is mentioned in a 
given context is statistically significant. We also presented 
a novel method for disambiguating gene symbols from 
acronyms. In our sample study of breast cancer genes, we 
found that the algorithm identified most breast cancer 
genes from a human edited database, as well as identifying 
many additional genes that have been tied to breast cancer 
in the literature. The algorithm was also able to discard 

acronyms which were relevant to breast cancer but did not 
represent gene symbols. Future work will further improve 
upon this method by incorporating full gene names and 
MESH headings. It would optionally use weights to favor 
more recent documents. This modification would 
emphasize recently discovered gene-disease connections 
as well as well-established ones that are being restated in 
the current literature. 
 
For a demonstration of various aspects of our system, 
including the gene pair algorithm, see 
http://www.hpl.hp.com/shl/papers/genelit/index.html. 
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official symbol 
and score 

symbol 
in  text official or alias name most common meaning in text 

FANCC, 
c =56.98: FAC(152)  Fanconi anemia, complementation 

group C  
fluorouracil doxorubicin and 
cyclophosphamide 

SCYA27, 
c =56.89   ILC (88)  il11ra-locus chemokine (infiltrating, invasive) lobular 

carcinoma 

CMD1A, 
c =56.80 IDC (154)  cardiomyopathy, dilated 1A 

 (autosomal dominant) 
(infiltrating, invasive)  
ductal (carcinoma, cancer), 

DCC, 
c =55.00 DCC (202)  deleted in colorectal carcinoma dextran coated charcoal 

PCAF,  
c = 53.34 CAF (161)  p300/CBP-associated factor cyclophosphamide (adriamycin, 

doxorubicin) and 5 fluorouracil 

ODZ1,   
c =52.56 TNM (349)  odz, odd Oz/ten-m homolog 

1(Drosophila) tumor node metastasis:7 

MID1,,  
c =51.87,   OS (300)  midline 1 (Opitz/BBB syndrome) overall survival 

SLN,   
c = 48.71 SLN (132)  sarcolipin sentinel lymph node 

PRKWNK1 
 c=40.03 

RFS (153)  protein kinase, lysine deficient 1 (relapse, recurrence) free survival 

BCS1L,  
c = 36.28,   BCS (91) BCS1-like (yeast) breast conserv(ing,ation) surgery, 

 breast cancer survivors 

 
Table 3. Acronyms highly relevant to ‘breast cancer’ which were automatically filtered as not 
representing gene symbols. The score  cG, along with the number of times the symbol occurs in 
the breast cancer set (NBC) and overall (NALL) are listed. The second column lists the most 
commonly occurring official or alias symbol. The shading of the second column corresponds to 
rG, the overall likelihood that the symbol represents a gene. The last two columns list the gene 
name and the definitions found in text for comparison. 
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