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Abstract

A good number of biclustering algorithms have been
proposed for grouping gene expression data. Many of them
have adopted matrix norms to define the similarity score
of a bicluster. We shall show that almost all matrix met-
rics can be converted into vector norms while preserving
the rank equivalence. Vector norms provide a much more
efficient vehicle for biclustering analysis and computation.
The advantages are two folds: ease of analysis and saving
of computation.

Most existing biclustering algorithms have also implic-
itly assumed the use of univariate (i.e., single metric) eval-
uation for identifying biclusters. Such an approach how-
ever overlooks the fundamental principle that genes (even
though they may belong to the same gene group) (1) may
be subdivided into different substructures; and (2) they may
be co-expressed via a diversity of coherence models (a gene
may participate in multiple pathways that may or may not
be co-active under all conditions). The former leads to the
adoption of a multi-substurcture analysis, while the latter to
the multivariate analysis.

This paper will show that the proposed multivariate and
multi-subscluster analysis is very effective in identifying
and classifying biologically relevant groups in genes and
conditions. For example, it has successfully yielded highly
discriminant and accurate classification based on known ri-
bosomal gene groups.

1 Introduction

Microarrays have been used to classify clinical samples,
to investigate the mechanism of drug action, to examine the
effects of drugs on gene expression in yeasts, and to identify
and validate novel therapeutics for cancer patients [4, 2, 7].
The gene expression profile (mRNA), one of the molecular
signatures (DNA, mRNA, and protein), is a snapshot of the
malignant and proliferative mechanism behind cancers. Mi-
croarrays produce mass measurements of gene expression,

but the tools to analyze the data are not well developed [5].
Because the number of dimensions in a microarray data set
could reach from thousands to tens of thousands, the devel-
opment of these analytical tools is crucial.

A gene expression data is anM ×N matrix of real num-
bers: A = [aij ], whereM is the number of genes and
N the number of conditions. Each entryaij represents the
logarithm of the relative abundance of the mRNA of theith

gene under thejth condition.1

The gene expression profile of each condition (sam-
ple) is described as anM -dimensional vector in which
each element represents the expression level of one gene.
The presence of well-separated sample groups implies that
the representations of samples within the same group are
close to each other in this gene expression space but dis-
tant from those of other samples. Thus, the representa-
tions of phenotype-related samples or condition form clus-
ters. Similarly, the profile of each gene is described as an
N -dimensional vector in which each element represents the
expression level of one condition. Just like before, the geno-
typical related genes will form clusters.

1.1 Clustering and Biclustering

Cluster discovery detects previously unrecognized tumor
subtypes [5]. Gene selection identifies the most relevant
gene subset involving in the biological process that gener-
ates the patterns. Phenotype prediction assigns unknown
tumor samples to known tumor classes [5].

It is biologically more meaningful to cluster both genes
and samples in gene expression data. This leads to a no-
tion of biclustering, first introduced by Hartigan (1972) [6]
to describe simultaneous grouping of both row and col-
umn subsets in a data matrix. It involves grouping a subset
of genes and a subset of conditions with a high similarity
score. Biclustering was specialized for genomic grouping
by a number of researchers. For examples, see [10, 11, 9, 3].

1Note that before data analysis can be performed, it is often necessary
to engage a preprocessing step to properly fill in unknown entries in the
matrix.



To this end, the similarity must reflect a measure of the co-
herence of the genes and conditions in the bicluster. The key
properties that separate biclustering from clustering are (1)
simultaneous clustering of both genes and conditions and
(2) permitting to form overlapped grouping. The latter is
due to the fact that genes with multiple functions may be
simultaneously associated with more than one group. (Such
overlapping allows a gene or condition to be simultaneously
associated with multiple families.) Nevertheless, there is
still intimate relationship between clustering and bicluster-
ing and their interplay is in general inevitable.

1.2 Biological Coherence Models

Two popular coherence models regulating the relative
abundance of mRNA are additive and multiplicative coher-
ence models. Their corresponding preprocessing processes
are and normalization and standardization respectively. It
has been long recognized that normalizing and standardiz-
ing either or both the rows (genes) and columns (conditions)
could improve significantly the biclustering performance.

1. Additive coherence model

A scaling relation between mRNAa and mRNAb is ex-
pressed as mRNAb = k(mRNAa), wherek is a scal-
ing factor. The logarithm transformation

a = log(mRNAa) and b = log(mRNAb)

allows conversion of multiplicative changes of the rela-
tive abundance into additive increments [3]:b = k′+a
wherek′ ≡ log(k). A “normalization” preprocessing
step is often adopted to alleviate the uncertainty caused
by the additive increments. Computationally, “normal-
ization” is a process which subtracts the mean from
each row (or column).

2. Multiplicative coherence model

An exponential relation between mRNAa and mRNAb

is expressed as mRNAb = (mRNAa)c. Now the log-
arithm converts the exponential changes of the rela-
tive abundance into multiplicative factors, leading to
a “multiplicative model” governing dependence be-
tweena andb: b = c×a. A “standardization” prepro-
cessing step can be adopted to counter the uncertainty
incurred by the multiplicative increments. Computa-
tionally, “standardization” is a process which divides
each row (or column) by its standard deviation.

1.3 Organization of the Paper

Section 2 reviews the plausible proximity metrics of bi-
clusters in terms of the prevailing matrix norms. It then

discusses various metrics created by a variety of combina-
tions of preprocessing models for genes or conditions. Sec-
tion 3 presents the computationally more appealing vector
norms. It further establishes the rank-equivalence property
between the matrix norms and their corresponding vector
norms. Section 4 presents biclustering results based on
various univariate analysis. Section 5 proposes a fusion
scheme combining various metrics as there will be a need
of multi-metric evaluation. The multivariate analysis offers
a great potential for achieving high performance, which can
be confirmed by SVM neural classification. This section
shows successful biclustering results in terms of sensitivity-
precision-specificity. Section 6 summarizes the novelty of
the work and offers some research directions.

2 Biclustering Metrics: Matrix Norms

The first question to address is how to define a bicluster
of expression data. The answer hinges upon a notion of
proximity measurement which is often used to associate a
new member (either a gene or a condition) into a group. The
intra-family inhomogeneity of a bicluster is measured by its
error residue, which may take various forms of definitions.

1. Matrix norms: Traditionally, such a function is rep-
resented by a matrix norm of a submatrix ofA. The ba-
sis for biclustering is often a similarity function of the
rows and columns in the expression matrix. The most
commonly used matrix norm is the Frobenius norm,
denoted by||A||F , which is defined as the square-root
of the sum of squares of all elements in the matrix. Un-
fortunately, the matrix norms are relatively complex as
a computational tool for biclustering analysis.

2. Vector norms: In contrast, vector norms have very
clear and simple physical meaning. The most common
measure for the distance between two vectors, saya
andb, is the well-known Euclidean distance denoted
by ||b− a||.

2.1 Matrix-Norm Metrics

The notion of biclusters in data matrices was first intro-
duced by Hartigan [6]. The proposed constant-value matrix
norm has a very broad application spectrum. After incor-
poration of some proper preprocessing models, the same
matrix norm can also be adopted to measure the similarity
between genes or conditions.

1. Constant-value matrix norm

A special case for a perfect bicluster is one with con-
stant value, denoted byc, in every matrix entry. If there
is noise or perturbation, then it will cause a deviation
represented by a constant-value residue norm [6]:
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||A||constant−value ≡ min
c
||A− cE||F

where E denotes an all-one matrix, i.e.,E ≡
[ 1 1 · · · 1]T × [ 1 1 · · · 1] and|| · ||F denotes the Frobe-
nius norm.

For gene expression analysis, it is not only natural
but also appealing to incorporate biologically relevant
coherence models. While conceptually simple, the
constant-value based biclustering has a disadvantage
that it ignores the biologically justifiable coherence
models. This will definitely impose limitation on its
classification capability. To overcome this weakness,
preprocessing presents a very effective solution.

2. Additive coherent matrix norm

Let us consider first thenormalization-type prepro-
cessingdesigned for additive coherent models. If pre-
processing is applied to only the rows (or only the
columns), then the mathematical operations are as fol-
lows:

Arow−normalized = A− ~α[ 1 1 · · · 1] (1)

Acolumn−normalized = A− [ 1 1 · · · 1]T ~βT (2)

where the elements of~α and ~β reflect the amount of
adjustment in rows and columns, respectively. How-
ever, if both rows and columns are normalized, then
we have

Aboth−normalized = A− ~α[ 1 1 · · · 1]− [ 1 1 · · · 1]T ~βT . (3)

Based on Eq. 3, if optimal normalization is applied,
this effectively leads to Cheng and Church’s residue
given below:

||A||normal ≡ min
~α,~β

||A− ~α[ 1 · · · 1]− [ 1 · · · 1]T ~βT ||F . (4)

3. Multiplicative coherent matrix norm

Other coherence models also have similar matrix-norm
formulation. For example, to cope with a row (or col-
umn) multiplicative coherent model, we should adopt
astandardization-type preprocessing.

2.2 Classification of Bilcustering Family

So far, the prevailing assumption is that genes (rows)
and conditions (columns) must share the same coherence
model. Such a symmetry assumption leads to the conclu-
sion that the rows and columns must receive the same kind
of preprocessing. However, such a symmetry property is
not necessarily most appealing nor is it truly biologically
justifiable.

In order to provide a more comprehensive platform for
all plausible coherence models, it is important that we ex-
plore various combination of (row and column) preprocess-
ing. This leads to two types of preprocessing models: sym-
metrical and asymmetrical models, as depicted in Table 1.

1. Symmetrical preprocessing models

The symmetrical preprocessing models are found
along the main diagonal boxes in Table 1, i.e., Boxes
(1,1), (2,2) and (3,3). For example, for the center
Box (2,2) in the table, “normalization” preprocessing
is applied to both rows and columns. Therefore, it
leads to the Cheng and Church model [3]. Moreover,
in the right-lower box, the “normalization and stan-
dardization” preprocessing is applied to both rows and
columns, leading to a Tavazoie-type test [11].2

2. Asymmetrical preprocessing models

All the boxes, except those along the main diagonal,
are the so-called asymmetrical preprocessing models.
For example, the first sub-diagonal Box (2,1) is simply
based on the traditional K-means clustering on rows.
According to the simulation study in Section 4.2, c.f.
Figure 4, the performance of some asymmetrical co-
herence models appear to be very promising. In fact,
most of them outperform Box (2,2), i.e., Cheng and
Church criteria.

To illustrate the operations of different preprocessing op-
tions, a numerical examples is provided in Table 2.

3 Biclustering Metrics: Vector Norms

3.1 Vector-Based Metrics

Assume that we are given two vectorsa andb, represent-
ing two different genes, and each entry in the vector stands
for one particular condition. Before we address the similar-
ity of the two vectors, it is important to take into account
the underlying biological coherence models. Fortunately,
the comprehensive list of preprocessing options in Table 1
(e.g., normalization and/or standardization for genes and/or
conditions) can again be directly applied to adopted to cope
with the additive and/or multiplicative coherence models.
After preprocessing, the similarity of the vectors can be
measured by the traditional Euclidean distance.

1. Distance for additive coherence models

The distance coping with additive coherence is de-
noted as(a,b)normal. Normalization is effective in

2For “normalization” preprocessing, the order of whether row before
column or vice versa is immaterial. For “standardization” preprocessing,
such order does make some difference. Throughout this paper, we assume
that row-wise preprocessing precedes column-wise preprocessing.
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Table 1. List of various possibilities in combining the row (gene) and column (condition) preprocessing models. If the same
preprocessing is applied to both rows and columns, it is referred to as a symmetrical preprocessing model. Otherwise, it
is categorized into the asymmetrical models. The entries in the table indicate the equivalent type of clustering (far from
being exclusive). For example, if preprocessing is applied to rows or columns (but not both), then the resulting clustering
is equivalent to K-means. For Box (2,2), if optimal normalization (c.f. Eq. 4) is applied to both rows and columns, this
effectively leads to Cheng and Church’s clustering. The similar argument carries through to Boxes (2,3), (3,2), and (3,3). See
Section 5.1.

Preprocessing Models No column-preprocessing Normalization Normalization&Standardization

No row-preprocessing Constant-value K-means K-means
Normalization K-means C&C-type Tavazoie-type

Normalization & Standardization K-means Tavazoie-type Tavazoie-type

Table 2. A numerical example to further elaborate the operations involved in preprocessing models listed in Table 1. The
residual matrices after the completion of the corresponding preprocessing processes are listed in the table. For example, Box
(2,1) is a result from Eq. (1) while Box (2,2) is from Eq. (3). Given the residual matrices, the final similarity measure can
readily be derived either as the Frobenius norm of the residue matrices or via the vector norms in Section 3.

Consider a gene expression matrixA =




10 20 30
11 22 32
20 42 61


 , with ~α =




20
21.7
41


, ~β =




13.7
28
41


, andµ ≈ 27.5.

Preprocessing Models No-preprocessing Normalization Normalization&Standardization

No-preprocessing



−17.5 −7.5 2.5

−16.5 −5.5 4.5

2.5 26.5 33.5






−3.7 −8 −11

−2.7 −6 −9

6.4 14 20






−0.8 −0.8 −0.8

−0.6 −0.6 −0.6

1.4 1.4 1.4




Normalization




−10 0 10

−10.6 0.3 10.3

−21 1 20







4 −.5 −3.5

3 −.1 −3.1

−7 0.5 6.5







0.8 −1.0 −0.7

0.6 −0.3 −0.7

−1.4 1.4 1.4




Normalization&Standardization




−1.2 0.0 1.2

−1.2 0.0 1.2

−1.25 0.05 1.2







.02 −.03 .02

0.0 0.0 0.0

.01 .03 −.01







1.3 −1.3 1.3

−0.3 0.4 −0.2

−1.0 1.0 −1.1




accounting for the additive coherence model. The pur-
pose is to adjust gene levels relative to their average
behavior.

Under the additive coherence model, the distance is ad-
justed by a minimizing parameterc such that

min
c
||b− a− c[ 1 1 · · · 1]T ||.

This leads to the following minimum distance:

(a,b)normal = ||b̄− ā||
where

ā ← a− µa[ 1 1 · · · 1]T , b̄ ← b− µb[ 1 1 · · · 1]T (5)

where µa and µb stand for the means of{ai} and
{bi} respectively. In Section 3.2, it will be established

that such a vector norm is rank-wise equivalent to the
Cheng and Church’s matrix-norm metric, cf. Eq. 4,
i.e., the norm for the additive coherence model [3].

2. Distance for additive and multiplicative coherence
models

Preprocessing with both normalization and standard-
ization serves the purpose of adjusting gene levels rel-
ative to their average behavior and at the same time
remove systematic biases in expression ratios. Mathe-
matically,

a∗ ← ā/σa, b∗ ← b̄/σb (6)

whereσa andσb stand for the standard deviation of
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{ai} and{bi} respectively. This leads to

(a,b)n&s = ||b∗ − a∗||.

In Section 3.2, it will be shown that such a norm ex-
ists and, moreover, it is rank-wise equivalent to the ma-
trix norm adopted in Tavazoie’s test (with row normaliza-
tion/standardization) [11].

3.2 Relationship of Matrix and Vector Norms

(a) (b)

(c)

Figure 1. This figure illustrates the vectorization pro-
cess: (a) a matrix norm can be used to evaluate whether
a candidate vectorb should or should not be associated
with A. (b) the reference matrix A is represented by a
reference vectorr. (c) A vector norm (e.g. the Euclidean
norm can be used to measure the similarity betweenr
and b, which will be rank equivalent to the similarity
betweenA and b.

Consider an I × J bicluster A = {aij ; i =
1, . . . , I andj = 1, . . . , J}. Assume that there are two col-
umn candidate vectorsb andb′ competing with each other
to become an added member of biclusterA. The ranking
betweenb andb′ is traditionally dependent on the matrix
norms such as||[A|b]||normal and||[A|b′]||normal. In order
to simplify the analysis, we introduce a notion of vectoriza-
tion, in which a “reference vector” and a “test vector” are
defined, cf. Figure 1.

• If a row/column vector exists such that it can ade-
quately represent the row/column properties of the cur-
rent matrix, the vector will be called a “reference vec-
tor”.

• Only one candidate row/column vector, namely “test
vector”, is evaluated in each step of the expansion of
the matrix.

The usage of matrix norms and vector norms becomes in-
terchangeable when the following conditions are met:

1. every matrix, sayA, can be represented by a vectorr ,
r = f(A), and

2. there exists rank-equivalent (defined below) vector-
norm corresponding to the targeted matrix-norm.

Definition 1 (Rank-Equivalence)

Two measurements (1)metric M (a matrix norm)
and (2) metric V (a vector norm) are said to be rank-
equivalent if metric M (A,b) > metric M (A,b′) im-
plies that metric V (r,b) > metric V (r,b′), and vice
versa, wherer = f(A) is the vector representation of the
reference matrixA.

The equivalence between several key matrix and vector
norms (symbolically denoted by “⇔”) is established in the
following theorem.

Theorem 1 (Rank-equivalence of matrix and vector norms)

The vectorization processes of all of the following matrix
norms lead to their correspondingrank-equivalent vector
norms. Such rank equivalence is denoted by “⇔”.

1. Constant-value matrix norm:

||[A|b]||constant−value ⇔ ||[µ, µ, ..., µ]T − b||

whereµ is the mean of all elements inA.

2. Additive coherent model:

||[A|b]||normal ⇔ (r,b)normal

wherer = f(A) and ri ≡ 1
J

∑J
j=1 aij .

3. Additive and multiplicative coherent model:

||[A|b]||n&s ⇔ (r,b)n&s

The proof is given in Appendix A.

3.3 Advantages of Vectorization

If the equivalence conditions are met, the matrix proxim-
ity metric can now be equivalently expressed as the distance
between two vectors, i.e., the reference vectorr = f(A)
and the test vector. This process is called vectorization.
There are many advantages of vectorization: (1) it leads
to a substantial computational saving; and (2) the notion
of vector distance considerably simplifies the analysis and
facilitates visualization of gene/condition patterns.
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3.3.1 Computational saving

Note that the complexity associated with different metrics
can be very different. In fact, the computation burden for a
matrix norm versus a vector norm can be drastically dif-
ferent even though they could be rank equivalent. More
specifically, the formula in Eq. 18 has a complexity of
O(I). Therefore, by using the vector metrics, the evalu-
ation of all the candidates would amount to a total time
O(NI), whereN is the column size of the entire expression
matrix. This represents a significant computational saving
compared with the computation time ofO(NIJ) required
by a nonrecursive method to compute the (equivalent) ma-
trix norm.

Note that by swapping “row” and “column”, the same re-
cursive scheme can be used to perform row-wise expansion.
By the same recursive scheme, the expansion of a matrix by
one row would amount to a much reduced timeO(MJ),
whereM is the row size of the expression matrix.3

3.3.2 Visualization facilitated by vectorization

As evident in Figure 2, vectorization allows the separation
between negative and positive patterns to become directly
visualizable. This is illustrated by the FDA-like visualiza-
tion of the 9-dimensional vectors corresponding to the 9
conditions selected in the biclustering process. This shows
that univariate analysis will not yield as a good separation
as multivariate analysis, pointing to the adoption of multi-
metric fusion classifiers.

4 Univariate Analysis of Expression Data

The prevailing trend of existing biclustering algorithms
is to adopt a univariate (i.e., single metric) for evaluating
new members of a bicluster. The one-by-one biclustering
scheme described in the following subsection adopts such
an approach.

4.1 One-by-One Biclustering Scheme

A bicluster can be effectively formed in a step-by-step
basis. In such a scheme, two strategies (expansion and con-
traction) may be adopted to identify each gene group (or
condition group):

1. The contraction strategy starts with a bicluster of ex-
ceeding size, then from which one vector is pruned at
a time, until all dissimilar vectors are eliminated from
the group. For greater details, see [3].

3Furthermore, the same recursive scheme can be used to perform
row/column deletion from a matrix with the same cost-effectiveness.
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Figure 2. Vectorization allows an FDA-like visual-
ization of vector-norm distances between genes under
various coherence models. Here “+” represents pos-
itive (ribosomal) genes while square represents neg-
ative (non-ribosomal) genes. (a) additive-coherent
row-preprocessing vs. no-preprocessing; (b) additive-
multiplicative-coherent row-preprocessing vs. additive-
coherent row-preprocessing; (c) additive-multiplicative
coherent row-preprocessing vs. no-preprocessing; and
(d) combined view of using all the three preprocessing
schemes.

2. The expansion strategy, on the other hand, begins with
a core set of vectors, then similar vectors are admitted
to the group in a one-by-one basis. A proper criterion
for expansion has to be designed so that it will first ad-
mit the candidate gene (or condition) that bears closest
resemblance with the current subgroup. The process
continues until all candidate vectors receive a proper
evaluation and most (if not all) similar vectors are ad-
mitted to the group. The bicluster ultimately formed
will depend on an intimate tradeoff between a maxi-
mum size (in terms of the number of genes/conditions)
and a closest intra-group proximity.

Therefor, we advocate a “one-by-one” supervised clus-
tering strategy for several motivations. First, plenty of prior
information on known gene groups should be fully utilized
to guide the grouping of genes. Furthermore, overlapping
of groups allows a gene (or condition) to be simultaneously
associated with multiple groups. Consequently, the focus
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is to determine whether a gene should be admitted by a
gene group, instead of having to select the single best group
(among multiple choices) to host the gene under considera-
tion. This one-by-one grouping strategy, forming one-group
at a time, was proposed by Mirkin (1996) [10], which starts
with a single cell in the matrix and gradually expands it to
reach a maximal constant bicluster.

There are two stages in the supervised training strategy:
(1) training phase and (2) classification phase.

4.1.1 Training Phase

We start with the given knowledge of a certain gene group,
and eventually derive a reference vector for the group. We
consider the given gene group as positive (in-group) train-
ing data and the rest of the genes as negative (off-group)
training data. The training procedure is as follows:4

1. Condition Initialization

Based on the set of all (80) known ribosomal genes, we
search the best condition pair (out of a total ofC17

2 −
17 = 119 pairs) with the shortest distance. The names
of ribosomal genes can be found in [13].

2. Condition Selection

Starting from the two best conditions, we grow
the condition group via the corresponding coherence
model and stop the growing until the distance metric
reaches a threshold. In this work, we found 9 condi-
tions from the 17 conditions in the yeast data.

3. Gene Initialization

Based on the 9 conditions, we search from the set of
all (80) known ribosomal genes in the training set the
best pair (out of a total ofC80

2 = 3080 pairs) that gives
the the shortest distance. At this point in the training
procedure, our bicluster has a size of2× 9.

4. Gene Selection

Starting from the2×9 bicluster, we grow the bicluster
(in gene dimension) by selecting a gene that is clos-
est to the bicluster from all of the remaining genes
(= 2884−No. of genes in the bicluster). The selected
gene is then packed to the bicluster to form one with
an additional row. The process is repeated until the
distance between the selected genes and the current bi-
cluter is smaller than a threshold.

Note that the searching phase involves searching for a
row/column to be added to the current bicluster. We wish

4For presentation simplicity, we assume that the training procedure is
applied to the yeast data downloadable from [1]. However, the procedure
is also applicable to other microarray data.

to select a row/column such that it bears the strongest re-
semblance with the current bicluster, i.e., it incurs a mini-
mum increase in error residue. According to the theorem in
Section 3.2, the search of candidateb can be replaced by a
vector distance formulation||b−r||, wherer = f(A) is the
vector representation ofA.

4.1.2 Classification/prediction phase

Test data are divided into two groups: in-group and off-
group. The former includes the ribosomal genes in the bi-
cluster plus those not in the bicluster, whereas the latter
includes all non-ribosomal genes within or not within the
bicluster. For those genes (ribosomal or not) that are in
the bicluster, their corresponding residuals have been com-
puted in the training phase and as a result do not need to
be computed again. However, it is necessary to compute
the residuals for those genes that are not in the bicluster.
This can be achieved by packing those genes one-by-one
to a base bicluster formed by the ribosomal genes found in
the training phase. None of the genes used in the classifica-
tion/prediction phase was used in the training phase.

Once we have the residuals of the in-group and off-group
genes, we can classify the genes (g) by comparing their
residual (r(g)) with a threshold (ζ), as follows:

If r(g)
{

< ζ g is ribosomal
≥ ζ g is not ribosomal

(7)

These binary decisions give us the number of false positives
and the number of false negatives, from which we can com-
pute the sensitivity, precision, and specificity.

4.2 Performance of Univariate Proximity Metrics

Figure 3 illustrates the ribosomal genes found in the bi-
clusters based on various vector metrics: from left to right
(1) constant-value model, (2) additive coherent model, and
(3) additive-and-multiplicative coherent model. A bar rep-
resents the corresponding gene is ribosome (i.e., a true posi-
tive), whereas a white bar represents the corresponding gene
is not ribosome (i.e., a false positive). The numbers on top
of the diagrams are the numbers of genes in the biclusters
that are in fact ribosome.

Figure 4 shows the sensitivity against precision of nine
different combinations of preprocessing schemes for the
conditions and genes. Evidently, different combinations
lead to different gene classification/prediction performance.

4.3 Univariate versus Multivariate Biclustering

As evidenced by Figure 3, a gene group (blue bars) found
by one metric can be substantially different from those
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Figure 3. Diagrams showing the positive and negative
training genes in the biclusters successfully found by us-
ing various metrics: (1) constant-value metric, (2) addi-
tive coherent model, and (3) additive-and-multiplicative
coherent model. (a) The bar-code is ordered in terms
of ranking by various metrics. The numbers on top of
the diagrams are the numbers of genes in the biclus-
ters that are in fact ribosome. The veritcal axis is the
“Gene Rank”. A genes with lower ranks give smaller
MSR than genes with higher ranks. (b) Now the vertical
axis is the index corresponding to the gene name instead
of its ranking. The figure suggests that the three met-
ric provide complementary information, making them
ideal candidates for multi-metric fusion.

found by others. Figure 6 also shows that a single measure-
ment leading to the discovery of one co-expressed group
can obscure the finding of another differently co-expressed
similarity groups. In Figure 2, when the positive and neg-
ative genes are projected onto one metric axis only, the
amount of overlapping between the positive and negative
genes becomes larger. Therefore, it will be difficult for a
single metric to adequately explain the mutual regulation
process between the genes.

The above results suggest that applying a single metric
will fall short from an acceptable classification accuracy in-
cluding sensitivity and specificity. Therefore, we advocate
a new approach making use of combined metrics, which is
the main theme of the subsequent section.
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Figure 4. For ribosomal genes, this illustrates the sen-
sitivity against precision of nine different combinations
of preprocessing processes for the conditions and genes.
In the legend, “GMetric: m CMetric: n” mean that
Metrics m and n were applied to the genes and condi-
tions, respectively. In other words, it corresponds to Box
(m,n) in Table 1.

5 Multivariate Analysis

5.1 Sub-structural Study: Single Centroid Versus
Multiple Centroids

Traditionally, it is assumed that a gene group can in
general be adequately represented by a single substructure.
However, it has been observed that there exists multiple
substructures within the same (say, ribosomal gene) group.
For example, as shown in Figure 6, the ribosomal gene
group appear to contain at least two (if not more) substruc-
tures. Such an observation lead to two ideas:

1. When there are multiple substructures, the Gaussian
Mixture Model (GMM) may be adopted to effectively
model the subcluster structure. In other words, deci-
sion making may need to rely on more than one thresh-
olds.

2. Vectorization may be a useful tool to enhance our un-
derstanding on the substructures and their impact on
the various metrics.

One centroid would be sufficient to serve as the refer-
ence vectors if there is only a single substructure in the
gene group of interest. Consider Cheng and Church’s addi-
tive coherence model (with row normalization), the centroid
is represented by one (and only one) reference vector, say

8



r̄. The single substructure assumption allows us to assume
that most candidate vectors̄b are centered around̄r, thus
they can be expressed asr̄ corrupted by additive noise, i.e.,
b̄ = r̄ + n:

(r,b)normal = ||b̄− r̄|| = ||n|| = σ2.

Without loss of generality, assume that there are two cen-
troids, c.f. Figure 5, and they are represented by two refer-
ence vectors:̄r andr̄′ with variancesσ andσ′, respectively.
A candidate vector̄b may be expressed as eitherr̄ (the pri-
mary centroid) or̄r′ (the secondary centroid), corrupted by
additive noise:

b̄ =
{

r̄ + n if it belongs to the primary substructure
r̄′ + n′ if it belongs to the secondary substructure

(8)
Then the distance to the primary centroid will be (1)

(r,b)normal = ||b̄− r̄|| = ||n|| = σ (9)

if b belongs to the primary substructure; or (2)

(r,b)normal = ||b̄− r̄|| = ||̄r′ − r̄ + n′||
=

√
(||̄r′ − r̄||2 + σ′2) = σ∗ (10)

if b belongs to the secondary substructure.
It is therefore expected that the distance values of the

gene group will fall into two regions, with the mean distance
of one region approximately equal toσ while the otherσ∗.

5.2 SVM-MOE Fusion Classifiers

There are plenty of supervised algorithms available for
building classifiers that can combine the scores from dif-
ferent metrics, notably are SVM, multilayer perceptrons,
and decision-based learning rules, see e.g., [8]. To design a
more flexible classifier architecture, we propose an MOE ar-
chitecture in which each local expert computes a local score
based on a single metric. Thereafter, the (fuzzy) SVM [8]
is used to fuse different scores to produce the final confi-
dence. In a hierarchical MOE, a multi-subcluster structure
could also be accommodated by each local expert module
(see Figure 7).

The multivariate training strategy follows that of univari-
ate evaluation. We advocate the adoption of both positive
(in-group) and negative (off-group) training data. The data
provide us two (or more) different metrics to be fused by
the SVM classifier.

The choice of measurements for multivariate evaluation
must be very different from that used for univariate evalu-
ation. The selection criteria for the metrics adopted for the
fusion network include:

1. The metric must by itself (i.e. univariate) deliver a
sound performance.

Figure 5. Analysis on multiple substructures: Vector
representation of two reference vectors corresponding
to two distinct substructures in the same gene group.
Depicted here are the two distances from the candidate
vectors (shown as solid circles) to the primary reference
vector r̄. The shorter distance (the dotted line) suggests
that the candidate is from the primary subcluster, cf.
Eq. 9. The longer distance (the dashed line) indicates
that the candidate is from the secondary subcluster, cf.
Eq. 10. The theoretical prediction of two substructures
is supported by Figure 10.

2. The metrics to be selected for fusion classifier must
offer complementary information.

Theoretically speaking, constant-value metric, Box(1,1) in
Table 1, and normalized-standardized metric, Box(3,3) in
Table 1, would form a good team for fusion because they
offer complementary information to each other. This is due
to the fact that Box(1,1) uses least pre-processing (in fact
none at all) while Box(3,3) has most preprocessing. The
sensitivity-precision curves shown in Figure 8 also support
the idea of teaming up the constant-value metric with the
additive-multiplicative metrics for fusion purpose. The ad-
vantage of such selection of fusion metrics is shown in Fig-
ure 9(a). Figure 9(b) further shows that such fusion yields
improvement in terms of sensitivity-specificity curves.

5.3 Performance of Multi-metric Fusion Schemes

Figure 10(a) illustrates the decision boundary created by
an SVM and the training data. Figure 10(b) shows the dis-
tribution of test data with respect to the decision boundary
obtained. Note that training data set and test data set are
mutually exclusive.

Let us now take a closer look at the performance of
the fuzzy-SVM (FSVM) in terms of its ability in classify-
ing and/or discovering ribosomal genes. Also reported are
cross-validation accuracies in terms of sensitivity, precision,
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Figure 6. This figure illustrates the existence of sub-
structures in the ribosomal gene group. The lower sub-
structure will be a good choice for the primary reference
vector, while the upper for the secondary reference vec-
tor. In viewing this figure, please keep in mind that an
offset has been artificially added to the second substruc-
ture so that the difference of the waveform structures
can be better displayed.

and specificity. The experiments are based on the yeast’s
microarray data set [1]. Figure 8 illustrates the sensitivity-
precision curve based on 50 random simulations, to assure
the statistically significance of the results. The sensitivity-
precision curve corresponding to the fusion scheme clearly
outperforms any univariate evaluations, including additive-
coherent and additive-multiplicative-coherent metrics.

The color version of these figures and the Matlab pro-
grams that generate the results can be found in the web page
[12] accompanying this paper.

6 Conclusion

In conclusion, let us summarize some novel ideas, which
in the authors’ opinion are quite distinct from the previous
approaches, introduced by the paper:

1. A notion of vectorization allows the conversion of
matrix-norm metrics into rank equivalent vector-norm
metrics, leading to efficient gene/condition addition-
deletion algorithms for expanding and/or contracting
biclusters. It simplifies analysis and can potentially
achieve computational saving. The notion of rank
equivalence also allows a consolidation of many rank-
equivalent metrics.

2. A novel multi-metric and multi-substructure fusion
classifier is proposed under a mixture-of-experts archi-
tecture. This leads to a different criterion for the selec-
tion of optimal metrics to be fused. The performance
improvement over univariate evaluation appears to be
very promising.

FSVM

FSVM

coherence model #1

substructure 1A substructure 1B

FSVM

coherence model #2

substructure 2A substructure 2B

Confidence Level

Figure 7. An MOE architecture with each local expert
computing a score based on a single metric. Then dif-
ferent scores are combined by a fuzzy-SVM (FSVM) [8]
to produce the final confidence level. In a hierarchical
MOE, each local expert module could also accommo-
date a multi-subcluster structure.
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Appendix A: Proof of Rank Equivalence

1. The equivalence between the constant-value matrix
norm and constant-value vector norm can be easily
verified.

RepresentingA by r = f(A):

r = [µ, µ, . . . , µ]T ,

whereµ denotes the mean of all elements inA. Note
that whenJ is a large number, then the mean of all
elements in[A|b] is approximately equal toµ. Then
we have

min
c
||[A|b]− c[E|[1, 1, . . . , 1]T ]||F
≈ ||[A− µE]||F + ||b− [µ, µ, . . . , µ]T ||. (11)

Noting that the first term does not depend on the can-
didate vector, only the second term has an effect on the
ranking, therefore, the constant-value matrix norm is
rank equivalent to the vector norm:

||b− [µ, µ, ..., µ]T ||.
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Figure 8. Sensitivity versus precision curves for
(a) fusion of constant-value metric and additive-
multiplicative metric and (b) fusion of additive metric
with combination of additive-multiplicative metric and
constant-value metric. In the legend, cngm means that
Metrics m and n were applied to genes and conditions,
respectively.

2. Without loss of generality, assuming the candidate vec-
tor is the(J + 1)th (column) vector:

bi = ai,J+1. (12)

The vector norm is denoted as(r,b)normal. The ma-
trix norm is denoted asr(I, J + 1) = ||[A|b]||normal.
The residue matrix normr(I, J + 1), useful for mea-
suring the homogeniety of[A|b], is rank-equivalent to
the Euclidean distance

||̄r− b̄||.

where

r̄i = αi(J)− µ(I, J) (13)

b̄i = ai,J+1 − βJ+1(I) (14)
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Figure 9. (a) The sensitivity-precision results support-
ing the idea of teaming up the constant-value metric
with the additive-multiplicative-coherent metrics for fu-
sion purposes. (b) Fusion performance in terms of sen-
sitivity and specificity. In the legend, cngm means that
Metrics m and n were applied to genes and conditions,
respectively.

Consider anI×J biclusterA = {aij ; i = 1, . . . , I andj =
1, . . . , J}. We define the mean squared residual (MSR) as

r(I, J) =
1

IJ

I∑

i=1

J∑

j=1

(aij − αi(J)− βj(I) + µ(I, J))2 ,

(15)
whereαi(J) = 1

J

∑J
j=1 aij are the row means,βj(I) =

1
I

∑I
i=1 aij are the column means, andµ(I, J) =

1
IJ

∑I
i=1

∑J
j=1 aij is the overall mean of the biclusterA.

We have the following recursive relationships

αi(J + 1) = αi(J) +
ai,J+1 − αi(J)

J + 1
(16)

µ(I, J + 1) = µ(I, J) +
βJ+1(I)− µ(I, J)

J + 1

11



r(I, J + 1) =
1

I(J + 1)

{
IJr(I, J) +

J

J + 1

I∑

i=1

g̃2
i

}
(17)

where

g̃i = βJ+1(I)− µ(I, J)− ai,J+1 + αi(J) = r̄i − b̄i (18)

The last equality is due to Eq. 13 and Eq. 14. Eq. 17- Eq.
14 directly verify thatr(I, J +1) < r′(I, J +1) if and only
if (r,b)normal < (r,b′)normal. Thus the proof. ¤
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Figure 10. Illustration of the use of 41 positive test pat-
terns (ribosomal) and 200 test patterns (non-ribosomal)
from the yeast data set. (a) The decision boundary is
produced by an SVM classifier trained by 80 positive
training data and 200 negative training data. Light blue
crosses “X” represent positive training patterns. Light
blue circles represent negative training patterns. (b) The
prediction performance based on 41 positive test data
and 200 negative test data. Light violet squares repre-
sent positive test patterns. Light green plus “+” repre-
sents negative test patterns. Note that the testing data
and training data used here are mutually exclusive. The
decision boundary is established by the training data
only.
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