
A Comparison of Particle Swarms Techniques for the Development of
Quantitative Structure-Activity Relationship Models for Drug Design

Walter Cedeño & Dimitris Agrafiotis
Johnson & Johnson Pharmaceutical R&D

665 Stockton Drive
 Exton, PA 19341

wcedeno@prdus.jnj.com
dagrafio@prdus.jnj.com

Abstract

The development of quantitative structure-activity
relationship (QSAR) models for computer-assisted
drug design is a well-known technique in the
pharmaceutical industry. QSAR models provide
medicinal chemists with mechanisms for predicting the
biological activity of compounds using their chemical
structure or properties. This information can
significantly reduce the time to discover a new drug.
This work compares and contrasts particle swarms to
simulated annealing and artificial ant systems
techniques for the development of QSAR models based
on artificial neural networks and k-nearest neighbor
and kernel regression. Particle Swarm techniques are
shown to compared favorably to the other techniques
using three classical data sets from the QSAR
literature.

1. Introduction

The design of new drugs with the suitable
physicochemical properties is a challenge faced by the
pharmaceutical industry on a daily basis. Techniques
that can reduce the time to design new drugs and
improve the quality of drug candidates can
significantly decrease the cost to bring new drugs to
the market.

The increasing amount of information available in
digital form has prompted scientist to develop novel
data mining methodologies to help process and
interpret large volumes of data faster and with greater
reliability. Artificial intelligence methods, such as
artificial neural networks (ANN) [1], classification and
regression trees (CART) [2], and k-nearest neighbor
classifiers (KNN) [3], have been used extensively for
this purpose [4][5].

These methods are used in drug design to correlate
some measure of biological activity with a set of
physicochemical, structural and/or electronic
properties, known as descriptors, of the compounds
under investigation. It is assumed that the biological
activity of a compound is related to its chemical
structure, and can therefore be inferred from a carefully
chosen set of molecular descriptors. The key challenge
is to determine which set of descriptors correlates best
with biological activity. Since it is not possible to
know in advance which molecular features are most
relevant to the problem at hand, a comprehensive set of
descriptors is usually employed, chosen based on
experience, software availability, and computational
cost.

Quantitative structure-activity relationship (QSAR)
models for computer-assisted drug design are a well-
known technique in the pharmaceutical industry to
correlate biological activity with compounds
properties, known as features. QSAR models based in
ANN, CART, or KNN provide medicinal chemists
with mechanisms for predicting the biological activity,
such as drug potency and toxicity, of compounds using
their chemical structure or properties. This information
can significantly reduce the time to discover a new
drug. However, is well known, both in the chemical
and statistical fields, that the number of features used
in a QSAR model can greatly affect its accuracy. The
presence of noise and irrelevant or redundant features
can cause the method to learn the idiosyncrasies of the
individual samples and lose sight of the broad picture
that is essential for generalization beyond the training
set [6]. This problem is compounded when the number
of features is also relatively small, as is often the case
in molecular design. If the number of features is
comparable to the number of training patterns, the
parameters of the model may become unstable and
unlikely to replicate if the study were to be repeated.

The large number of descriptors available, which can
be used as features for the QSAR model, also increases
the risk of chance correlations [7]. Comparing the
results against randomly generated results is commonly
used to verify that the risk of chance correlations is low
or does not exist.

Two techniques, feature selection and feature
weighting, are often used to remedy this situation and
improve the accuracy of a classification or regression
technique. In feature selection, the goal is to select a
subset of the features that can best predict the
biological activity of compounds. Feature selection is
often used to create QSAR models based on ANN. In
feature weighting the goal is not only to select a subset
of features, but also to define their relative influence
for predicting the biological activity of compounds.
Feature weighting is often used to create QSAR
models based on KNN. In this work, we compare and
contrast the use particle swarms to artificial ants and
simulated annealing techniques for the development of
QSAR models based on ANN and KNN.

The following section provides an overview of
feature selection and feature weighting. Section 3
presents an overview of the KNN regression technique.
Section 4 presents an overview of ANN for regression.
Section 5 presents the background for particle swarms.
Section 6 describes our implementation of binary
particle swarms for feature selection. Section 7
describes niching particle swarms, a technique to
encourage the formation of niches during the search.
Section 8 provides the background for simulated
annealing. Section 9 provides the background for
artificial ant systems. Section 10 provides the results
from comparing the various techniques. Finally,
Section 11 provides our conclusions for this work.

2. Feature Selection and Feature
Weighting

Feature selection is often used in QSAR to find the
best set of compound properties that can improve the
accuracy of the regression technique. Feature selection
works by identifying a small subset of necessary and
sufficient features that can be used as input to the
underlying predictor. Feature selection algorithms can
be divided into three main categories [8]: 1) those
where the selection is embedded within the basic
regression algorithm, 2) those that use feature selection
as a filter prior to regression, and 3) those that use
feature selection as a wrapper around the regression.
The latter has a long history in statistics and pattern
recognition, and is the method of choice for QSAR.

Feature selection can be viewed as a heuristic
search, where each state in the search space represents

a particular subset of the available features. In all but
the simplest cases, an exhaustive search of the state
space is impractical, since it involves n!/(n-r)!r!
possible combinations, where n is the total number of
available features and r is the number of features
selected. Several search algorithms have been applied
to this problem, ranging from simple greedy
approaches such as forward selection or backward
elimination [9], to more elaborate methodologies such
as simulated annealing [10], evolutionary
programming [11], genetic algorithms
[12][13][14][15], artificial ants [16], and more recently
particle swarms [17][18].

Feature selection is a special case of a general
technique known as feature weighting [19][20]. In
feature weighting a weight value is associated with
each feature. The weight value is usually a number in
the interval [0, 1] and denotes the contribution of the
feature in the learning algorithm. In feature selection
weight values are 1 or 0 indicating whether the feature
is used or not, no partial feature information is allowed.
The aim of feature weighting is to find the relative
importance of each feature. In some cases, using partial
information from each feature has been shown to
benefit the learning algorithm [21][22][23].

3. K-Nearest Neighbor and Kernel
Regression

The k-nearest neighbor method (KNN) is an
intuitive method used extensively for classification.
Given a pattern to classify, KNN works by selecting
the k most similar patterns from a set of well-known
classified data (training data) and choosing the class
with the most representatives in the set. Similarity
between elements is typically measured using the
Euclidean distance in some appropriate feature space
or some other suitable metric. KNN is a lazy algorithm,
i.e., it defers data processing until needed. The
algorithm uses local information and adapts well to
changes in the training data. Two main drawbacks of
KNN are its susceptibility to noise and the curse of
dimensionality. These can be alleviated using
normalization and feature weighting to calculate the
distance between patterns according to the equation

 ∑
=

−=
n

i
iii qpwqpd

1

2)(),((1)

where n is the number of features, pi and qi are the i-

th feature values for patterns p and q respectively, and
wi the weight for the i-th feature. The implementation
of KNN used in this work is based on k-d trees in order

to reduce the computational cost associated with
calculating distances [24].

Kernel regression is a closely related non-
parametric methodology that uses local information to
obtain a prediction. The main difference from KNN is
that kernel regression is used for predicting an
unknown value where as KNN is used for selecting the
k patterns to use for prediction. In this work, we want
to predict the biological activity for a compound q
based on the weighted average of the biological
activity of known compounds in the neighborhood of
q. A kernel function is used to give more weight to
compounds that are closer more similar to q in
descriptor space.

The patterns to use for prediction are the k most
similar chemical compounds with known biological
activity. Similarity between compounds is measured
using a suitable set of molecular features. We use KNN
to select the k most similar compounds to a compound
q and apply kernel regression using the kernel function

),(1

1),(
qpd

qpf
+

= (2)

where d(p,q) is the KNN distance as given in equation
1. The prediction for q is obtained by

∑

∑

=

== k

ii
i

k

ii
ii

qpf

qpfy
qy

),(

),(
)(' (3)

where k is the number of nearest neighbors selected for
q, pi is the i-th nearest neighbor of q, yi is the known
response value of pi, and f(p, q) the kernel function
given in equation 2.

4. Artificial Neural Networks

Artificial Neural Networks attempts to mimic

biological neural systems by modeling the low-level
structure of the brain. ANN have been used extensively
as a regression technique due to their ability to model
non-linear systems. Our analysis was based on three-
layer, fully connected multilayer perceptrons, trained
with the standard error back-propagation algorithm.
The logistic transfer function

)1/(1)(xexf −+= (4)

was used for both hidden and output layers. During
feature selection, each network was trained for 200
epochs, using a linearly decreasing learning rate from
1.0 to 0.01 and a momentum of 0.8. During each
epoch, the training patterns were presented to the
network in a randomized order. To minimize the risk
of back-propagation getting trapped in local minima in
synaptic weight space, each model was trained 3 times,
and the model with the lowest training error was
retained.

5. Particle Swarms

Particle swarms (PS) is a relatively new

optimization paradigm introduced by Kennedy and
Eberhart [25]. The method is based on the observation
that social interaction, which is believed to play a
crucial role in human cognition, can serve as a valuable
heuristic in identifying optimal solutions to difficult
optimization problems. Particle swarms explore the
search space using a population of individuals, each
with an individual, initially random, location and
velocity vector. The particles then “fly” over the state
space, remembering the best solution encountered.
Fitness is determined by an application-specific
objective function f(x). During each iteration, the
velocity of each particle is adjusted based on its
momentum and the influence of the best solutions
encountered by itself and its neighbors. The particle
then moves to a new position, and the process is
repeated for a prescribed number of iterations. In the
original PS implementation [26], the trajectory of each
particle is governed by the equations:

))(())(()()1()(21 txprtxprtvtv iibiiii −+−+=+ ηη

 (5)
and

)1()()1(++=+ tvtxtx iii (6)

where xi and vi are the current position and velocity of
the i-th particle, pi is the position of the best state
visited by the i-th particle, b(i) is the particle with the
best fitness in the neighborhood of i, and t is the
iteration number. The parameters η1 and η2 are called
the cognitive and social learning rates, and determine
the relative influence of the memory of the individual
versus that of its neighborhood. In the psychological
metaphor, the cognitive term represents the tendency
of organisms to repeat past behaviors that have proven
successful or have been reinforced by their
environment, whereas the social term represents the
tendency to emulate the successes of others, which is
fundamental to human sociality. In effect, these terms

introduce a tendency to sample regions of space that
have demonstrated promise. r is a random number
whose upper limit is a constant parameter of the
system, and is used to introduce a stochastic element in
the search process.

Kennedy defined four models of PS. The full
model, which places equal influence to the cognitive
and social influence, the social-only model, which
involves no cognitive learning, the cognitive-only
model, which has no social component, and the selfless
model, which is a social-only model in which the
individual is excluded from consideration in
determining its neighborhood’s best. The
neighborhood represents a subset of the population
surrounding a particular particle. The neighborhood
size defines the extent of social interaction, and can
range from the entire population to a small number of
neighbors on either side of the particle (i.e. for the i-th
particle, a neighborhood size of 3 would represent
particles i-1, i, and i+1).

The present work employs Shi and Eberhart’s
[27][28] variant of the PS algorithm, which makes use
of an inertia weight, w, to dampen the velocities during
the course of the simulation, and allow the swarm to
converge with greater precision:

))(())(()()1()(21 txprtxprtvtv iibiiii −+−+=+ ηηω

 (7)

Larger values of ω induce larger transitions and

thus enable global exploration, whereas lower values
facilitate local exploration and fine-tuning of the
current search area.

This work examines the use of particle swarms as a
wrapper around ANN and KNN with kernel regression.
When used with ANN, the location vector for each
particle corresponds the subset of features used for the
regression model. A new technique, called binary
particle swarms, is introduced to convert location
values to 0 or 1. For KNN, the location vector for each
particle corresponds to the feature weights. The swarm
searches for the best subset of features and
corresponding weights that minimize the regression
error in the training data. All weights are limited to
values in the range [0, 1]. Location vectors that move
outside this range are normalized at run time. In the
present study, only a fixed number of features with the
highest weight values were used to construct the actual
models.

6. Binary Particle Swarms

The particle swarm algorithm, which was originally

intended for searching multidimensional continuous

spaces, can be adapted to the discrete problem of
feature selection by viewing the location vectors of the
particles as probabilities and employing roulette wheel
selection to construct candidate subsets. In this scheme,
the elements of the location vectors xij and pij can only
take the values 0 and 1 to indicate whether the jth
feature is selected in the ith particle (subset). A
discretization step is introduced following the
application of equation 6, which converts the fractional
coordinates, xij, to binary values using probabilistic
selection. During this step, the fractional values of xij
are treated as probability thresholds to determine
subset membership. Two possibilities can be
envisioned to prevent overfitting: (1) to select each
feature on the basis of its own probability and employ
an objective function that penalizes solutions
containing a large number of features, such as Rao’s
lack-of-fit [29]; (2) to select a predefined number of
features on the basis of the ratio of the number of
training patterns to the number of freely adjustable
parameters in the model. In the latter case, which is the
one employed in this work, the features comprising the
model are determined by roulette wheel selection. In
this method, each feature is assigned a slice of a
roulette wheel whose size is equal to the probability
assigned to that feature. The subset is assembled by
spinning the wheel and selecting the features under the
wheel’s marker. This process is repeated k times,
where k is the number of desired features in the model
(duplicates are excluded).

The actual probabilities, Pij, are computed by
equation 8:

 ∑
=

=
n

j
ijijij xxP

1

αα (8)

where xij is the fractional coordinates obtained by
applying equation 6 (confined in the interval [0, 1])
and α is a scaling factor referred to as selection
pressure. If α is greater than 1, the selection tends to
emphasize highly fit individuals, whereas if it is less
than 1, the differences between the individuals are
attenuated and less fit individuals have an increased
chance of being selected. To eliminate redundant
computation, the program caches all visited states and
their fitness into a lookup table, implemented as a
sorted vector of pointers with O(n log n) insertion and
retrieval time.

7. Niching Particle Swarms

Encouraging niches in Partcle Swarms have been

used successfully in applications of drug design and

multimodal function optimization. NichePSO [30]
locates niches through the growing of subswarms from
an initial population of particles using a cognitive
model PS. Niching Particle Swarms [18] (NPS)
introduces a new neighborhood operator to encourage
inetraction among nearby particles. NPS has been
successfully applied to drug design in the past and it’s
the technique of choice here.

In NPS, niching (speciation) is introduced in PS by
encouraging social interaction among similar particles.
During each iteration, the neighborhood best for each
particle is selected from a group of most similar
particles taken at random from the population. First,
the algorithm selects k groups of m particles chosen at
random with replacement from the population. Then
the most similar member to the current particle from
each group is selected. Finally, the best particle among
the most similar ones is selected as the neighborhood
best. Similarity is typically defined by the Euclidean
distance in feature space. The parameters m and k are
called the neighborhood size and neighborhood sample
size respectively, and are used to balance exploration
versus exploitation. Large values of m encourage the
selection of close neighbors, while large values of k
encourage the selection of better particles.

8. Simulated Annealing

Simulated annealing (SA) is a global, multivariate

optimization technique based on the Metropolis
Monte-Carlo search algorithm [31]. The method starts
from an initial random state, and walks through the
state space associated with the problem of interest by
generating a series of small, stochastic steps. As with
particle swarms, an objective function maps each state
into a value that measures its energy or fitness. While
downhill transitions are always accepted, uphill
transitions are accepted with a probability that is
inversely proportional to the energy difference between
the two states. This probability is computed using
Metropolis’ acceptance criterion

)/(KTEep ∆−= , (9)

where K is a constant used for scaling purposes and T
is an artificial temperature factor that controls the
ability of the system to overcome energy barriers. The
temperature is systematically adjusted during the
simulation in a manner that gradually reduces the
probability of high energy transitions. In this case a
Gaussian cooling schedule with a half-width of 5
deviation units was used.

To circumvent the problem of assigning the
appropriate value for K and to ensure that the transition

probability is properly controlled, an adaptive approach
is used. In this approach, K is not a true constant, but
rather it is continuously adjusted during the course of
the simulation on the basis of a running estimate of the
mean transition energy [32][33]. In particular, at the
end of each transition, the mean transition energy is
updated, and the value of K is adjusted so that the
acceptance probability for a mean uphill transition at
the final temperature is 0.1%. In general, schedules that
involve more extensive sampling at lower temperatures
seem to perform best, although it is also important that
sufficient time must be spent at higher temperatures so
that the algorithm does not get trapped into local
minima.

In the problem at hand, a state may represent the set
of feature weights used in KNN or the set of selected
features used in ANN. In both cases, the objective is to
minimize the regression error in the training data. For
KNN, two stochastic steps were evaluated: 1) after
each step a feature is randomly selected and a new
random value, in the interval [0, 1], is assigned to the
weight, and 2) after each step all feature weights are
adjusted by a random value in the interval [-0.25,
0.25]. All weight values are kept in the interval [0, 1].
For ANN, a simple stochastic step replaces a selected
feature with one chosen at random from the set of
available features.

9. Artificial Ant Systems

The algorithms based on artificial ant systems

(AAS) are inspired by the social behavior of ants in a
colony. Ants use deposits of pheromone as a
communication agent and are able to find the shortest
path between a food source and their nest [34]. As ants
travel in search of food they deposit pheromone on the
ground to mark their path. Ants move at random in
search of food, when they detect pheromone trails they
follow one of them with a probability proportional to
the amount of pheromone on the trail. As multiple ants
follow the same trail, depositing their own pheromone,
they reinforce the trail making it more attractive to
other ants. Initially, all paths to a food source are
equally probable. In time, the shorter paths encounter
more ants making round trips to the food source and
receive more pheromone. Thus, short paths become
increasingly more attractive to the ants. Eventually, all
ants follow the shortest trail.

The application of AAS to drug design is based on
the development QSAR models based on ANN. For a
detailed description of this application, see the work of
Izrailev and Agrafiotis [16].

10. Results and Discussion

The methods were tested on three well-known data

sets: antifilarial activity of antimycin analogues
(AMA) [9], binding affinities of ligands to
benzodiazepine/GABAA receptors (BZ) [35], and
inhibition of dihydrofolate reductase by pyrimidines
(PYR) [36]. These data sets have been the subject of
extensive QSAR studies, and have served as a test bed
for many feature selection algorithms.

Table 1: Data set size and ANN topology used.

Data Set N M F H
AMA 31 53 3 3
BZ 57 42 6 2
PYR 74 27 6 2

Table 1 summarizes the number of samples (N),

number of features (M) in the original data set, number
of features used in the models (F), and number of
hidden neurons (H) for the data sets. In all three cases,
the descriptor data were normalized to [0, 1] prior to
modeling with ANN and KNN with kernel regression.

There are multiple observations that need to be
point out from these data sets. First, using 10000
objective function evaluations for each run allows us to
compare the techniques under three scenarios. Given
the number of features selected for AMA, BZ, and
PYR data sets there are a total of 23426, 5245786, and
296010 possible feature subsets respectively. Given the
feature space size and the number of objective function
evaluations used, any of the techniques could examine
up to 42.7%, 0.2%, and 3.4% of the possible subsets
for the AMA, BZ, and PYR data sets respectively.
Obviously, we have a scenario were the number of
possible evaluations is relatively high compared to the
number of possible subsets as is the case for the AMA
data set. In the other scenarios we have a low
percentage of the subsets being examined, the case
with BZ data set, and somewhere in between, the case
with PYR data set. Techniques applied in conjunction
with KNN have the additional search space complexity
of finding the weights for the within the feature space
in order to obtain better results.

All programs were implemented in the C++
programming language. All calculations were carried
out on a Dell Inspiron 8100 laptop computer equipped
with a 1.133 GHz Pentium IV Intel processor running
Windows 2000 Professional.

Following common practice, the cross-validated
correlation coefficient, RCV, resulting from leave-one-
out (LOO) cross-validation was used to define the
quality of the resulting models. This value is based on

the training correlation coefficient R given by equation
10.

∑−∑

∑−∑

∑∑−∑

====

====
2

11

2
2

11

2

111

~~

~~

N

i
i

N

i
i

N

i
i

N

i
i

N

i
i

N

i
i

N

i
ii

yyNyyN

yyyyN
R

 (10)

where N is the number of training patterns, and iy

and iy~ are the measured and predicted activities of the
i-th compound, respectively.

The LOO cross-validation coefficient is obtained by
systematically removing one of the patterns from the
training set, building a model with the remaining cases,
and predicting the activity of the removed case using
the optimized weights. This is done for each pattern in
the training set, and the resulting predictions are
compared to the measured activities to determine their
degree of correlation.

Table 2: Top models selected by each method using
ANN.

Method Data Variables µ(RCV) σ(RCV)
ANN-NPS AMA 37,49,51 0.831 0.013
ANN-BPS AMA 31,35,49 0.831 0.009
ANN-SA AMA 31,37,49 0.837 0.008
ANN-AAS AMA 31,37,49 0.838 0.010
ANN-NPS BZ 1,4,6,9,15,23 0.906 0.012
ANN-BPS BZ 1,4,6,9,20,21 0.900 0.019
ANN-SA BZ 1,4,5,9,20,23 0.901 0.005
ANN-AAS BZ 0,1,5,9,11,14 0.890 0.009
ANN-NPS PYR 0,5,8,10,19,22 0.822 0.035
ANN-BPS PYR 0,5,10,16,19,22 0.808 0.014
ANN-SA PYR 1,2,3,5,19,22 0.795 0.015
ANN-AAS PYR 1,2,3,5,19,22 0.796 0.005

The best models identified using ANN were

retrained and cross-validated 50 times using LOO
cross-validation, in order to establish their true learning
and generalization capabilities. The best models
identified using KNN were obtained after 50 runs.
Since KNN does not involve any training and the
patterns in the test data do not participate in the
prediction of their own response values, the training R
corresponds to the LOO cross-validated RCV.

Table 2 provides a summary of the LOO cross-
validation results obtained for QSAR models based on
ANN. Comparing the results in Table 2 (summarized

in Figure 1) shows that NPS-ANN outperformed the
other methods for the BZ and PYR data sets by a slight
margin, though the results are probably statistically
insignificant. Equally inconclusive are the results for
the AMA data set, where NPS-ANN performed similar
to PS-ANN and slightly worse than SA-ANN and
ANT-ANN. However, NPS did demonstrate the ability
to form niches during the search. This allows the
method to escape local minimal and explore interesting
areas of the search space in parallel. Although these
results do not allow any definitive conclusions to be
drawn, they demonstrate the potential of NPS-ANN for
building QSAR models with good generalization
power. We believe that niching will prove more useful
with more complicated fitness landscapes that exhibit a
greater number of local minima.

Figure 1: LOO cross-validation values for the best
models discovered by ANN based methods.

These results provide a glimpse of the potential of

NPS-ANN for QSAR modeling. The success
demonstrated is, in part, due to the ability of NPS to
escape local minima and maintain multiple solutions
during the search. Further exploration of the effect of
the niching parameters could allow us to further
improve the technique. This should improve the ability
to select the best set of parameters for any given data
set and hopefully lead to better statistical models.

KNN-PS was compared to three other search
algorithms. Two of the algorithms are based on
simulated annealing, as described in a previous section,
and only differing on the logic used to modify the
current state. The third algorithm used is random
search. All algorithms were limited to 10000 objective
function evaluations. Particle swarms obtained best
results with a population size of 100 and the number of
steps set at 100. Simulated annealing algorithms used a
schedule with 30 different temperatures. Table 3
(summarized in Figure 2) lists the best models found
by each algorithm.

Table 3: Top models selected by each method using
KNN.

Method Data Set Variables K µ(RCV)
KNN-PS AMA 15, 31, 5 3 0.867
KNN-SA1 AMA 49, 18, 19 1 0.858
KNN-SA2 AMA 49, 19, 18 1 0.861
KNN-RA AMA 18, 49, 19 1 0.858
KNN-PS BZ 9, 3, 17, 1, 13, 2 2 0.885
KNN-SA1 BZ 10, 27, 2, 9, 3, 14 2 0.873
KNN-SA2 BZ 14, 3, 2, 9, 26, 1 3 0.863
KNN-RA BZ 22, 9, 3, 2, 14, 1 4 0.846
KNN-PS PYR 10, 4, 19, 0, 9, 11 3 0.842
KNN-SA1 PYR 4, 10, 9, 19, 11, 0 3 0.839
KNN-SA2 PYR 10, 4, 19, 9, 0, 11 3 0.838
KNN-RA PYR 17, 10, 19, 0, 4, 11 3 0.824

In the AMA data set, only PS was able to separate

itself from the other techniques. It not only found a
better model, but it did it with a different set of features
and using 3 neighbors. Although not shown, the AMA
results also show the importance of the weight values.
Although the difference between the SA1, SA2, and
RA best models is small, the slight difference between
the weights produced a better model for the SA2
method. Difference between the weight values is more
noticeable for the PS model, where the values are
1.000, 0.526, and 0.372 for features 15, 31, and 5
respectively. Similar observations were made for the
PS method for the other data sets. This suggests that
PS is naturally adept at working in continuous search
spaces, which is not a surprise since the technique was
created for that purpose.

For the BZ data set, the PS method obtained the
best model as well. A bigger difference exist between
the correlation coefficient values for all four methods.
Three features, 2, 3, and 9, are present in the best
models for all methods. Features 1 and 14 are present
in three of the four best models. Once again, the PS
method seems to adjust the weights successfully to get
better solutions. This data set seems to be the most
challenging for all methods. The differences on the
neighborhood size used for the best models and the
differences in the features selected suggests that. Better
solutions might be obtained by increasing the number
of objective function evaluations allowed or by trying
other kernel functions.

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

AMA BZ PYR

Data Set

B
es

t M
od

el
s

R
cv

KNN-PS
KNN-SA1
KNN-SA2
KNN-RA

Figure 2: LOO cross-validation values for the best
models discovered by KNN based methods.

Similar results were observed for the PYR data set.

The best model was obtained by the PS method. Most
methods found that features 0, 4, 9, 10, 11, and 19 are
the best features to use. All methods also found the
same neighborhood size. The advantage of PS over the
other models appears to be in its ability to successfully
find better weight values. A summary of the results can
be found in Figure 2 for all methods on all three data
sets.

Comparing the results obtained with ANN models
to those using KNN with PS optimization is not
straightforward. The PS approach appplied to KNN
does feature weighting, which is a more complex
problem than the feature selection technique employed
with ANNs. The method not only selects the best
features for the kernel regression model, but also
identifies their relative contribution. The search space
associated with this problem is more complex than the
binary problem of classical feature selection. One can
argue that the ANN is in fact performing an implicit
feature weighting while training, therefore simplifying
the problem to one of subset selection. Another
difference has to do with the regression techniques
used. ANN is a supervised learning technique and
requires training prior to applying the technique,
whereas KNN does not required training and relies on
the appropriate selection of k, the neighborhood size,
the kernel function, and appropriate weight values.

Comparing the results in Tables 2 and 3 shows that
KNN-PS outperformed the other methods for the AMA
and PYR data sets. KNN-PS did not do too well for the
BZ data set. This might be due, in part, to our choice of
kernel function. A different kernel function might do a
better job with the BZ data set.

11. Conclusions

Although these results do not allow any definitive

conclusions to be drawn, they demonstrate the
potential of particle swarms for building QSAR models
with good generalization power. Moreover, it allows us
to compare QSAR models based on KNN with those
based on ANN. KNN based models provides the
researcher with a weight vector that can help in
determining the relative importance of each feature.
One can argue that the weight of the selected features
leads to an easier interpretation of the model, which, in
some cases, may be a significant advantage over ANN.
On the other hand, KNN-based methods are
computationally more intensive, since they require a
search for the k-nearest neighbors before calculating
the predicted value. On the other hand, since there is
no training involved, KNN regression provides an
easier way to include new data in the model.

For ANN based models, niching particle swarms
seem to provide an advantage over binary particle
swarms. The algorithm enhances binary particle
swarms by encouraging niching among particles in the
population. The niching particle swarms algorithm was
able to identify QSAR models with slightly better
generalization power as measured by LOO cross-
validation in two of the three data sets tested. The
results suggest that localized exploration and
exploitation may lead to better results in some cases.
The ability to adjust the parameters that control how
much emphasis is put on niching proved to be helpful.
Further empirical work is necessary in order to fully
assess the effects of the niching parameters on the
ability of the algorithm to locate the global minimum.

Acknowledgements

The authors would like to thank the member of the
Molecular Design and Informatics group at Johnson &
Johnson Pharmaceutical R&D for many useful
discussions and support of this work.

References

[1] Devillers, J., Ed., Neural networks in QSAR and drug
design, Academic Press, 1996.

[2] Breiman,L., Friedman, J. H., Olshen, R. A. and Stone,
C. J., Classification and Regression Trees, Wadsworth Int.
Group, Belmont, California, USA, 1984.

[3] Parzen, E, On the Estimation of a Probability Density
Function and Mode, Ann. Math. Stat., Vol. 33, 1962, pp.
1065-1076.

[4] van de Waterbeemd, H., Ed., Chemometric methods in
molecular design, in Methods and Principles in Medicinal
Chemistry, Vol. 2, VCH, Weinheim, 1995.

[5] Hansch, L., and Leo , C., Exploring QSAR.
Fundamentals and applications in chemistry and biology,
American Chemical Society, Washington, DC, 1996.

[6] Manallack, D. T., Ellis, D. D., and Livingston, D. J.,
Analysis of linear and nonlinear QSAR data using neural
networks, J. Med. Chem., Vol. 37, 1994, pp. 3758-3767.

[7] Topliss, J. G. and Edwards, R. P. “Chance factors in
studies of quantitative structure-activity relationships”, J.
Med. Chem., Vol. 22, 1979, pp. 1238-1244.

[8] John, G., Kohavi, R., and Pfleger, J., Irrelevant features
and the subset selection problem, in Machine learning:
proceedings of the 11-th international conference, Morgan-
Kaufmann, 1994, pp. 121-129.

[9] Selwood, D. L., Livingstone, D. J.¸ Comley, J. C. W.,
O’Dowd, A. B., Hudson, A. T., Jackson, P., Jandu, K. S.,
Rose, V. S. and Stables, J. N., Structure-activity relationships
of antifilarial antimycin analogues, a multivariate pattern
recognition Study, J. Med. Chem., Vol. 33, 1990, pp. 136-
142.

[10] Sutter, J. M., Dixon, S. L., and Jurs, P. C., Automated
descriptor selection for quantitative structure-activity
relationships using generalized simulated annealing, J. Chem.
Info. Comput. Sci., Vol. 35, 1995, pp. 77-84.

[11] Luke, B. T., Evolutionary programming applied to the
development of quantitative structure-activity relationships
and quantitative structure-property relationships, J. Chem.
Info. Comput. Sci., Vol. 34, 1994, pp. 1279-1287.

[12] Rogers, D. R., and Hopfinger, A. J., Application of
genetic function approximation to quantitative structure-
activity relationships and quantitative structure-property
relationships, J. Chem. Info. Comput. Sci., Vol. 34, 1994, pp.
854-866.

[13] So, S., and Karplus, M., Evolutionary optimization in
quantitative structure-activity relationship: an application of
genetic neural networks, J. Med. Chem., Vol. 39, 1996, pp.
1521-1530.

[14] Yasri, A., and Hartsough, D., Toward an optimal
procedure for variable selection and QSAR model building,
J. Chem. Info. Comput. Sci., Vol. 41, 2001, pp. 1218-1227.

[15] Hasegawa, K., Miyashita, Y., and Funatsu, K., GA
strategy for variable selection in QSAR studies: GA-based
PLS analysis of calcium channel antagonists, J. Chem. Info.
Comput. Sci., Vol. 37, 1997, pp. 306-310.

[16] Izrailev, S., and Agrafiotis, D. K., Variable selection for
QSAR by artificial ant colony systems, SAR and QSAR in
Environ. Res., Vol. 13, No.3-4, 2002, pp. 417-423.

[17] Agrafiotis, D. K., and Cedeño, W. Feature selection for
structure-activity correlation using binary particle swarms, J.
Med. Chem., Vol. 45, 2002, pp. 1098-1107

[18] Cedeño, W., and Agrafiotis, D. K. "Application of
niching particle swarms to QSAR and QSPR", Proceedings
of the 14-th European Symposium on QSAR, Bournemouth,
UK, September 8-13, 2002.

[19] Wettschereck, D., Aha, D. W., and Mohri, T., “A review
and empirical evaluation of feature weighting methods for a
class of lazy learning algorithms”, Artificial Intelligence
Review, Vol. 11, Iss. 1-5, 1997, pp. 273-314.

[20] Aha, D. 1998. "Feature weighting for lazy learning
algorithms". In Liu, H., and Motoda, H., eds., Feature
Extraction, Construction and Selection: A Data Mining
Perspective. Norwell MA: Kluwer.

[21] Kohavi, R., Langley, P., & Yun, Y., “The utility of
feature weighting in nearest-neighbors algortihms”, In
Proceedings of the European Conference on Machine
Learning (ECML97) , 1997.

[22] Raymer , M. L., Punch, W. F., Goodman, E. D., Kuhn,
L. A., and Jain, A. K., “Dimensionality Reduction Using
Genetic Algorithms”, IEEE Transactions on Evolutionary
Computation, Vol. 4, 2000, pp. 164-171.

[23] Komosinski, M., Krawiec, K., “Evolutionary weighting
of image features for diagnosing of CNS tumors”, Artificial
Intelligence in Medicine, 2000, Vol. 19 (1), P: 25-38, ISSN:
0933-3657.

[24] D. K. Agrafiotis, and V. S. Lobanov, “An efficient
implementation of distance-based diversity metrics based on
k-d trees”, J. Chem. Info. Comp. Sci. , Vol. 39, 1999, pp. 51-
58.

[25] Kennedy, J., and Eberhart, R. C., Particle swarm
optimization, Proc. IEEE International Conference on Neural
Networks, Perth, Australia, IEEE Service Center,
Piscataway, NJ, IV, 1995, pp. 1942-1948.

[26] Kennedy, J., The particle swarm: social adaptation of
knowledge, IEEE International Conference on Evolutionary
Computation, Indianapolis, IN, IEEE Service Center,
Piscataway, NJ, 1997, pp. 303-308.

[27] Shi, Y. H., and Eberhart, R. C., A modified particle
swarm optimizer, IEEE International Conference on
Evolutionary Computation, Anchorage, AL, 1998a.

[28] Shi, Y. H., and Eberhart, R. C., Parameter selection in
particle swarm optimization, 7-th Annual Conference on
Evolutionary Programming, San Diego, CA, 1998b.

[29] Rao, C. R. Some problems involving linear hypotheses
in multivariate analysis. Biometrika 1959, 46, 49-58.

[30] Brits, R., Engelbrecht, A. P., and van den Bergh, F. A
niching particle swarm optimizer. Proceedings of the 4th

Asia-Pacific Conference on Simulated Evolution and
Learning 2002 (SEAL 2002), Singapore. pp. 692-696, 2002.

[31] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.,
“Optimization by simulated annealing”, Science, Vol. 220
(459), 1983, pp. 671-680.

[32] Agrafiotis, D. K., Stochastic algorithms for maximizing
molecular diversity, J. Chem. Info. Comput. Sci., 1997, 37,
841-851.

[33] Rassokhin, D. N., and Agrafiotis, D. K., Kolmogorov-
Smirnov statistic and its applications in library design, J.
Mol. Graphics Modell., 2000, 18, 370-384.Bowman, B.,
Debray, S. K., and Peterson, L. L. Reasoning about naming
systems. ACM Trans. Program. Lang. Syst., 15, 5 (Nov.
1993), 795-825.

[34] Dorigo, M.; Gambardella, L. M. IEEE Trans. EVol.
Comput. 1997, 1, 53-66 and references therein.

[35] Maddalena, D. J., Johnson, G. A. R., Prediction of
receptor properties and binding affinity of ligands to
benzodiazepine/GABAA receptors using artificial neural
networks, J. Med. Chem., 1995, 38, 715-724.

[36] Hirst, J. D., King, R. D., and Sternberg, M. J. E., J.
Comp.-Aided Mol. Design, 1994, 8, 405-420.

