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Abstract 
 

The development of quantitative structure-activity 
relationship (QSAR) models for computer-assisted 
drug design is a well-known technique in the 
pharmaceutical industry. QSAR models provide 
medicinal chemists with mechanisms for predicting the 
biological activity of compounds using their chemical 
structure or properties. This information can 
significantly reduce the time to discover a new drug. 
This work compares and contrasts particle swarms to 
simulated annealing and artificial ant systems 
techniques for the development of QSAR models based 
on artificial neural networks and k-nearest neighbor 
and kernel regression. Particle Swarm techniques are 
shown to compared favorably to the other techniques 
using three classical data sets from the QSAR 
literature.  
 
1. Introduction 
 

The design of new drugs with the suitable 
physicochemical properties is a challenge faced by the 
pharmaceutical industry on a daily basis. Techniques 
that can reduce the time to design new drugs and 
improve the quality of drug candidates can 
significantly decrease the cost to bring new drugs to 
the market.  

The increasing amount of information available in 
digital form has prompted scientist to develop novel 
data mining methodologies to help process and 
interpret large volumes of data faster and with greater 
reliability. Artificial intelligence methods, such as 
artificial neural networks (ANN) [1], classification and 
regression trees (CART) [2], and k-nearest neighbor 
classifiers (KNN) [3], have been used extensively for 
this purpose [4][5].  

These methods are used in drug design to correlate 
some measure of biological activity with a set of 
physicochemical, structural and/or electronic 
properties, known as descriptors, of the compounds 
under investigation. It is assumed that the biological 
activity of a compound is related to its chemical 
structure, and can therefore be inferred from a carefully 
chosen set of molecular descriptors. The key challenge 
is to determine which set of descriptors correlates best 
with biological activity. Since it is not possible to 
know in advance which molecular features are most 
relevant to the problem at hand, a comprehensive set of 
descriptors is usually employed, chosen based on 
experience, software availability, and computational 
cost. 

Quantitative structure-activity relationship (QSAR) 
models for computer-assisted drug design are a well-
known technique in the pharmaceutical industry to 
correlate biological activity with compounds 
properties, known as features. QSAR models based in 
ANN, CART, or KNN provide medicinal chemists 
with mechanisms for predicting the biological activity, 
such as drug potency and toxicity, of compounds using 
their chemical structure or properties. This information 
can significantly reduce the time to discover a new 
drug. However, is well known, both in the chemical 
and statistical fields, that the number of features used 
in a QSAR model can greatly affect its accuracy. The 
presence of noise and irrelevant or redundant features 
can cause the method to learn the idiosyncrasies of the 
individual samples and lose sight of the broad picture 
that is essential for generalization beyond the training 
set [6]. This problem is compounded when the number 
of features is also relatively small, as is often the case 
in molecular design. If the number of features is 
comparable to the number of training patterns, the 
parameters of the model may become unstable and 
unlikely to replicate if the study were to be repeated. 



The large number of descriptors available, which can 
be used as features for the QSAR model, also increases 
the risk of chance correlations [7]. Comparing the 
results against randomly generated results is commonly 
used to verify that the risk of chance correlations is low 
or does not exist. 

Two techniques, feature selection and feature 
weighting, are often used to remedy this situation and 
improve the accuracy of a classification or regression 
technique. In feature selection, the goal is to select a 
subset of the features that can best predict the 
biological activity of compounds. Feature selection is 
often used to create QSAR models based on ANN. In 
feature weighting the goal is not only to select a subset 
of features, but also to define their relative influence 
for predicting the biological activity of compounds. 
Feature weighting is often used to create QSAR 
models based on KNN. In this work, we compare and 
contrast the use particle swarms to artificial ants and 
simulated annealing techniques for the development of 
QSAR models based on ANN and KNN. 

The following section provides an overview of 
feature selection and feature weighting. Section 3 
presents an overview of the KNN regression technique. 
Section 4 presents an overview of ANN for regression. 
Section 5 presents the background for particle swarms. 
Section 6 describes our implementation of binary 
particle swarms for feature selection. Section 7 
describes niching particle swarms, a technique to 
encourage the formation of niches during the search. 
Section 8 provides the background for simulated 
annealing. Section 9 provides the background for 
artificial ant systems. Section 10 provides the results 
from comparing the various techniques. Finally, 
Section 11 provides our conclusions for this work. 
 
2. Feature Selection and Feature 
Weighting  
 

Feature selection is often used in QSAR to find the 
best set of compound properties that can improve the 
accuracy of the regression technique. Feature selection 
works by identifying a small subset of necessary and 
sufficient features that can be used as input to the 
underlying predictor. Feature selection algorithms can 
be divided into three main categories [8]: 1) those 
where the selection is embedded within the basic 
regression algorithm, 2) those that use feature selection 
as a filter prior to regression, and 3) those that use 
feature selection as a wrapper around the regression. 
The latter has a long history in statistics and pattern 
recognition, and is the method of choice for QSAR. 

Feature selection can be viewed as a heuristic 
search, where each state in the search space represents 

a particular subset of the available features. In all but 
the simplest cases, an exhaustive search of the state 
space is impractical, since it involves n!/(n-r)!r! 
possible combinations, where n is the total number of 
available features and r is the number of features 
selected. Several search algorithms have been applied 
to this problem, ranging from simple greedy 
approaches such as forward selection or backward 
elimination [9], to more elaborate methodologies such 
as simulated annealing [10], evolutionary 
programming [11], genetic algorithms 
[12][13][14][15], artificial ants [16], and more recently 
particle swarms [17][18]. 

Feature selection is a special case of a general 
technique known as feature weighting [19][20]. In 
feature weighting a weight value is associated with 
each feature. The weight value is usually a number in 
the interval [0, 1] and denotes the contribution of the 
feature in the learning algorithm. In feature selection 
weight values are 1 or 0 indicating whether the feature 
is used or not, no partial feature information is allowed. 
The aim of feature weighting is to find the relative 
importance of each feature. In some cases, using partial 
information from each feature has been shown to 
benefit the learning algorithm [21][22][23]. 

 
3. K-Nearest Neighbor and Kernel 
Regression  
 

The k-nearest neighbor method (KNN) is an 
intuitive  method used extensively for classification. 
Given a pattern to classify, KNN works by selecting 
the k most similar patterns from a set of well-known 
classified data (training data) and choosing the class 
with the most representatives in the set. Similarity 
between elements is typically measured using the 
Euclidean distance in some appropriate feature space 
or some other suitable metric. KNN is a lazy algorithm, 
i.e., it defers data processing until needed. The 
algorithm uses local information and adapts well to 
changes in the training data. Two main drawbacks of 
KNN are its susceptibility to noise and the curse of 
dimensionality. These can be alleviated using 
normalization and feature weighting to calculate the 
distance between patterns according to the equation 
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where n is the number of features, pi and qi are the i-

th feature values for patterns p and q respectively, and 
wi the weight for the i-th feature. The implementation 
of KNN used in this work is based on k-d trees in order 



to reduce the computational cost associated with 
calculating distances [24]. 

Kernel regression is a closely related non-
parametric methodology that uses local information to 
obtain a prediction. The main difference from KNN is 
that kernel regression is used for predicting an 
unknown value where as KNN is used for selecting the 
k patterns to use for prediction. In this work, we want 
to predict the biological activity for a compound q 
based on the weighted average of the biological 
activity of known compounds in the neighborhood of 
q. A kernel function is used to give more weight to 
compounds that are closer more similar to q in 
descriptor space. 

The patterns to use for prediction are the k most 
similar chemical compounds with known biological 
activity. Similarity between compounds is measured 
using a suitable set of molecular features. We use KNN 
to select the k most similar compounds to a compound 
q and apply kernel regression using the kernel function 
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where d(p,q) is the KNN distance as given in equation 
1. The prediction for q is obtained by 
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where k is the number of nearest neighbors selected for 
q, pi is the i-th nearest neighbor of q, yi is the known 
response value of pi, and f(p, q) the kernel function 
given in equation 2. 

 
4. Artificial Neural Networks 

 
Artificial Neural Networks attempts to mimic 

biological neural systems by modeling the low-level 
structure of the brain. ANN have been used extensively 
as a regression technique due to their ability to model 
non-linear systems. Our analysis was based on three-
layer, fully connected multilayer perceptrons, trained 
with the standard error back-propagation algorithm. 
The logistic transfer function  
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was used for both hidden and output layers. During 
feature selection, each network was trained for 200 
epochs, using a linearly decreasing learning rate from 
1.0 to 0.01 and a momentum of 0.8. During each 
epoch, the training patterns were presented to the 
network in a randomized order. To minimize the risk 
of back-propagation getting trapped in local minima in 
synaptic weight space, each model was trained 3 times, 
and the model with the lowest training error was 
retained. 

 
5. Particle Swarms 

 
Particle swarms (PS) is a relatively new 

optimization paradigm introduced by Kennedy and 
Eberhart [25]. The method is based on the observation 
that social interaction, which is believed to play a 
crucial role in human cognition, can serve as a valuable 
heuristic in identifying optimal solutions to difficult 
optimization problems. Particle swarms explore the 
search space using a population of individuals, each 
with an individual, initially random, location and 
velocity vector. The particles then “fly” over the state 
space, remembering the best solution encountered. 
Fitness is determined by an application-specific 
objective function f(x). During each iteration, the 
velocity of each particle is adjusted based on its 
momentum and the influence of the best solutions 
encountered by itself and its neighbors. The particle 
then moves to a new position, and the process is 
repeated for a prescribed number of iterations. In the 
original PS implementation [26], the trajectory of each 
particle is governed by the equations: 
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where xi and vi are the current position and velocity of 
the i-th particle, pi is the position of the best state 
visited by the i-th particle, b(i) is the particle with the 
best fitness in the neighborhood of i, and t is the 
iteration number. The parameters η1 and η2 are called 
the cognitive and social learning rates, and determine 
the relative influence of the memory of the individual 
versus that of its neighborhood. In the psychological 
metaphor, the cognitive term represents the tendency 
of organisms to repeat past behaviors that have proven 
successful or have been reinforced by their 
environment, whereas the social term represents the 
tendency to emulate the successes of others, which is 
fundamental to human sociality. In effect, these terms 



introduce a tendency to sample regions of space that 
have demonstrated promise. r is a random number 
whose upper limit is a constant parameter of the 
system, and is used to introduce a stochastic element in 
the search process.  

Kennedy defined four models of PS. The full 
model, which places equal influence to the cognitive 
and social influence, the social-only model, which 
involves no cognitive learning, the cognitive-only 
model, which has no social component, and the selfless 
model, which is a social-only model in which the 
individual is excluded from consideration in 
determining its neighborhood’s best. The 
neighborhood represents a subset of the population 
surrounding a particular particle. The neighborhood 
size defines the extent of social interaction, and can 
range from the entire population to a small number of 
neighbors on either side of the particle (i.e. for the i-th 
particle, a neighborhood size of 3 would represent 
particles i-1, i, and i+1). 

The present work employs Shi and Eberhart’s 
[27][28] variant of the PS algorithm, which makes use 
of an inertia weight, w, to dampen the velocities during 
the course of the simulation, and allow the swarm to 
converge with greater precision: 
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Larger values of ω induce larger transitions and 

thus enable global exploration, whereas lower values 
facilitate local exploration and fine-tuning of the 
current search area. 

This work examines the use of particle swarms as a 
wrapper around ANN and KNN with kernel regression. 
When used with ANN, the location vector for each 
particle corresponds the subset of features used for the 
regression model. A new technique, called binary 
particle swarms, is introduced to convert location 
values to 0 or 1. For KNN, the location vector for each 
particle corresponds to the feature weights. The swarm 
searches for the best subset of features and 
corresponding weights that minimize the regression 
error in the training data. All weights are limited to 
values in the range [0, 1]. Location vectors that move 
outside this range are normalized at run time. In the 
present study, only a fixed number of features with the 
highest weight values were used to construct the actual 
models. 

 
6. Binary Particle Swarms 

 
The particle swarm algorithm, which was originally 

intended for searching multidimensional continuous 

spaces, can be adapted to the discrete problem of 
feature selection by viewing the location vectors of the 
particles as probabilities and employing roulette wheel 
selection to construct candidate subsets. In this scheme, 
the elements of the location vectors xij and pij can only 
take the values 0 and 1 to indicate whether the jth 
feature is selected in the ith particle (subset). A 
discretization step is introduced following the 
application of equation 6, which converts the fractional 
coordinates, xij, to binary values using probabilistic 
selection. During this step, the fractional values of xij 
are treated as probability thresholds to determine 
subset membership. Two possibilities can be 
envisioned to prevent overfitting: (1) to select each 
feature on the basis of its own probability and employ 
an objective function that penalizes solutions 
containing a large number of features, such as Rao’s 
lack-of-fit [29]; (2) to select a predefined number of 
features on the basis of the ratio of the number of 
training patterns to the number of freely adjustable 
parameters in the model. In the latter case, which is the 
one employed in this work, the features comprising the 
model are determined by roulette wheel selection. In 
this method, each feature is assigned a slice of a 
roulette wheel whose size is equal to the probability 
assigned to that feature. The subset is assembled by 
spinning the wheel and selecting the features under the 
wheel’s marker. This process is repeated k times, 
where k is the number of desired features in the model 
(duplicates are excluded). 

The actual probabilities, Pij, are computed by 
equation 8: 
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where xij is the fractional coordinates obtained by 
applying equation 6 (confined in the interval [0, 1]) 
and α is a scaling factor referred to as selection 
pressure. If α is greater than 1, the selection tends to 
emphasize highly fit individuals, whereas if it is less 
than 1, the differences between the individuals are 
attenuated and less fit individuals have an increased 
chance of being selected. To eliminate redundant 
computation, the program caches all visited states and 
their fitness into a lookup table, implemented as a 
sorted vector of pointers with O(n log n) insertion and 
retrieval time. 

 
7. Niching Particle Swarms 

 
Encouraging niches in Partcle Swarms have been 

used successfully in applications of drug design and 



multimodal function optimization. NichePSO [30] 
locates niches through the growing of subswarms from 
an initial population of particles using a cognitive 
model PS. Niching Particle Swarms [18] (NPS) 
introduces a new neighborhood operator to encourage 
inetraction among nearby particles. NPS has been 
successfully applied to drug design in the past and it’s 
the technique of choice here. 

In NPS, niching (speciation) is introduced in PS by 
encouraging social interaction among similar particles. 
During each iteration, the neighborhood best for each 
particle is selected from a group of most similar 
particles taken at random from the population. First, 
the algorithm selects k groups of m particles chosen at 
random with replacement from the population. Then 
the most similar member to the current particle from 
each group is selected. Finally, the best particle among 
the most similar ones is selected as the neighborhood 
best. Similarity is typically defined by the Euclidean 
distance in feature space. The parameters m and k are 
called the neighborhood size and neighborhood sample 
size respectively, and are used to balance exploration 
versus exploitation. Large values of m encourage the 
selection of close neighbors, while large values of k 
encourage the selection of better particles. 

 
8. Simulated Annealing 

 
Simulated annealing (SA) is a global, multivariate 

optimization technique based on the Metropolis 
Monte-Carlo search algorithm [31]. The method starts 
from an initial random state, and walks through the 
state space associated with the problem of interest by 
generating a series of small, stochastic steps. As with 
particle swarms, an objective function maps each state 
into a value that measures its energy or fitness. While 
downhill transitions are always accepted, uphill 
transitions are accepted with a probability that is 
inversely proportional to the energy difference between 
the two states. This probability is computed using 
Metropolis’ acceptance criterion  
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where K is a constant used for scaling purposes and T 
is an artificial temperature factor that controls the 
ability of the system to overcome energy barriers. The 
temperature is systematically adjusted during the 
simulation in a manner that gradually reduces the 
probability of high energy transitions. In this case a 
Gaussian cooling schedule with a half-width of 5 
deviation units was used. 

To circumvent the problem of assigning the 
appropriate value for K and to ensure that the transition 

probability is properly controlled, an adaptive approach 
is used. In this approach, K is not a true constant, but 
rather it is continuously adjusted during the course of 
the simulation on the basis of a running estimate of the 
mean transition energy [32][33]. In particular, at the 
end of each transition, the mean transition energy is 
updated, and the value of K is adjusted so that the 
acceptance probability for a mean uphill transition at 
the final temperature is 0.1%. In general, schedules that 
involve more extensive sampling at lower temperatures 
seem to perform best, although it is also important that 
sufficient time must be spent at higher temperatures so 
that the algorithm does not get trapped into local 
minima. 

In the problem at hand, a state may represent the set 
of feature weights used in KNN or the set of selected 
features used in ANN. In both cases, the objective is to 
minimize the regression error in the training data. For 
KNN, two stochastic steps were evaluated: 1) after 
each step a feature is randomly selected and a new 
random value, in the interval [0, 1], is assigned to the 
weight, and 2) after each step all feature weights are 
adjusted by a random value in the interval [-0.25, 
0.25]. All weight values are kept in the interval [0, 1]. 
For ANN, a simple stochastic step replaces a selected 
feature with one chosen at random from the set of 
available features. 

 
9. Artificial Ant Systems 

 
The algorithms based on artificial ant systems 

(AAS) are inspired by the social behavior of ants in a 
colony. Ants use deposits of pheromone as a 
communication agent and are able to find the shortest 
path between a food source and their nest [34]. As ants 
travel in search of food they deposit pheromone on the 
ground to mark their path. Ants move at random in 
search of food, when they detect pheromone trails they 
follow one of them with a probability proportional to 
the amount of pheromone on the trail. As multiple ants 
follow the same trail, depositing their own pheromone, 
they reinforce the trail making it more attractive to 
other ants. Initially, all paths to a food source are 
equally probable. In time, the shorter paths encounter 
more ants making round trips to the food source and 
receive more pheromone. Thus, short paths become 
increasingly more attractive to the ants. Eventually, all 
ants follow the shortest trail. 

The application of AAS to drug design is based on 
the development QSAR models based on ANN. For a 
detailed description of this application, see the work of 
Izrailev and Agrafiotis [16]. 

 



10. Results and Discussion 
 
The methods were tested on three well-known data 

sets:  antifilarial activity of antimycin analogues 
(AMA) [9], binding affinities of ligands to 
benzodiazepine/GABAA receptors (BZ) [35], and 
inhibition of dihydrofolate reductase by pyrimidines 
(PYR) [36]. These data sets have been the subject of 
extensive QSAR studies, and have served as a test bed 
for many feature selection algorithms.  

 
Table 1: Data set size and ANN topology used. 

Data Set N M F H 
AMA 31 53 3 3 
BZ 57 42 6 2 
PYR 74 27 6 2 

 
Table 1 summarizes the number of samples (N), 

number of features (M) in the original data set, number 
of features used in the models (F), and number of 
hidden neurons (H) for the data sets. In all three cases, 
the descriptor data were normalized to [0, 1] prior to 
modeling with ANN and KNN with kernel regression. 

There are multiple observations that need to be 
point out from these data sets. First, using 10000 
objective function evaluations for each run allows us to 
compare the techniques under three scenarios. Given 
the number of features selected for AMA, BZ, and 
PYR data sets there are a total of 23426, 5245786, and 
296010 possible feature subsets respectively. Given the 
feature space size and the number of objective function 
evaluations used, any of the techniques could examine 
up to 42.7%, 0.2%, and 3.4% of the possible subsets 
for the AMA, BZ, and PYR data sets respectively. 
Obviously, we have a scenario were the number of 
possible evaluations is relatively high compared to the 
number of possible subsets as is the case for the AMA 
data set. In the other scenarios we have a low 
percentage of the subsets being examined, the case 
with BZ data set, and somewhere in between, the case 
with PYR data set. Techniques applied in conjunction 
with KNN have the additional search space complexity 
of finding the weights for the within the feature space 
in order to obtain better results. 

All programs were implemented in the C++ 
programming language. All calculations were carried 
out on a Dell Inspiron 8100 laptop computer equipped 
with a 1.133 GHz Pentium IV Intel processor running 
Windows 2000 Professional. 

Following common practice, the cross-validated 
correlation coefficient, RCV, resulting from leave-one-
out (LOO) cross-validation was used to define the 
quality of the resulting models. This value is based on 

the training correlation coefficient R given by equation 
10. 
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where N is the number of training patterns,  and iy  

and iy~  are the measured and predicted activities of the 
i-th compound, respectively. 

The LOO cross-validation coefficient is obtained by 
systematically removing one of the patterns from the 
training set, building a model with the remaining cases, 
and predicting the activity of the removed case using 
the optimized weights. This is done for each pattern in 
the training set, and the resulting predictions are 
compared to the measured activities to determine their 
degree of correlation.  

 
Table 2: Top models selected by each method using 
ANN. 

Method Data Variables µ(RCV) σ(RCV)
ANN-NPS AMA 37,49,51 0.831 0.013 
ANN-BPS AMA 31,35,49 0.831 0.009 
ANN-SA AMA 31,37,49 0.837 0.008 
ANN-AAS AMA 31,37,49 0.838 0.010 
ANN-NPS BZ 1,4,6,9,15,23 0.906 0.012 
ANN-BPS BZ 1,4,6,9,20,21 0.900 0.019 
ANN-SA BZ 1,4,5,9,20,23 0.901 0.005 
ANN-AAS BZ 0,1,5,9,11,14 0.890 0.009 
ANN-NPS PYR 0,5,8,10,19,22 0.822 0.035 
ANN-BPS PYR 0,5,10,16,19,22 0.808 0.014 
ANN-SA PYR 1,2,3,5,19,22 0.795 0.015 
ANN-AAS PYR 1,2,3,5,19,22 0.796 0.005 

 
The best models identified using ANN were 

retrained and cross-validated 50 times using LOO 
cross-validation, in order to establish their true learning 
and generalization capabilities. The best models 
identified using KNN were obtained after 50 runs. 
Since KNN does not involve any training and the 
patterns in the test data do not participate in the 
prediction of their own response values, the training R 
corresponds to the LOO cross-validated RCV.  

Table 2 provides a summary of the LOO cross-
validation results obtained for QSAR models based on 
ANN. Comparing the results in Table 2 (summarized 



in Figure 1) shows that NPS-ANN outperformed the 
other methods for the BZ and PYR data sets by a slight 
margin, though the results are probably statistically 
insignificant. Equally inconclusive are the results for 
the AMA data set, where NPS-ANN performed similar 
to PS-ANN and slightly worse than SA-ANN and 
ANT-ANN. However, NPS did demonstrate the ability 
to form niches during the search. This allows the 
method to escape local minimal and explore interesting 
areas of the search space in parallel. Although these 
results do not allow any definitive conclusions to be 
drawn, they demonstrate the potential of NPS-ANN for 
building QSAR models with good generalization 
power. We believe that niching will prove more useful 
with more complicated fitness landscapes that exhibit a 
greater number of local minima.  

 

 
Figure 1: LOO cross-validation values for the best 
models discovered by ANN based methods. 

 
These results provide a glimpse of the potential of 

NPS-ANN for QSAR modeling. The success 
demonstrated is, in part, due to the ability of NPS to 
escape local minima and maintain multiple solutions 
during the search. Further exploration of the effect of 
the niching parameters could allow us to further 
improve the technique. This should improve the ability 
to select the best set of parameters for any given data 
set and hopefully lead to better statistical models. 

KNN-PS was compared to three other search 
algorithms. Two of the algorithms are based on 
simulated annealing, as described in a previous section, 
and only differing on the logic used to modify the 
current state. The third algorithm used is random 
search. All algorithms were limited to 10000 objective 
function evaluations. Particle swarms obtained best 
results with a population size of 100 and the number of 
steps set at 100. Simulated annealing algorithms used a 
schedule with 30 different temperatures. Table 3 
(summarized in Figure 2) lists the best models found 
by each algorithm. 

 
Table 3: Top models selected by each method using 
KNN. 

Method Data Set Variables K µ(RCV)
KNN-PS AMA 15, 31, 5 3 0.867
KNN-SA1 AMA 49, 18, 19 1 0.858
KNN-SA2 AMA 49, 19, 18 1 0.861
KNN-RA AMA 18, 49, 19 1 0.858
KNN-PS BZ 9, 3, 17, 1, 13, 2 2 0.885
KNN-SA1 BZ 10, 27, 2, 9, 3, 14 2 0.873
KNN-SA2 BZ 14, 3, 2, 9, 26, 1 3 0.863
KNN-RA BZ 22, 9, 3, 2, 14, 1 4 0.846
KNN-PS PYR 10, 4, 19, 0, 9, 11 3 0.842
KNN-SA1 PYR 4, 10, 9, 19, 11, 0 3 0.839
KNN-SA2 PYR 10, 4, 19, 9, 0, 11 3 0.838
KNN-RA PYR 17, 10, 19, 0, 4, 11 3 0.824

 
In the AMA data set, only PS was able to separate 

itself from the other techniques. It not only found a 
better model, but it did it with a different set of features 
and using 3 neighbors. Although not shown, the AMA 
results also show the importance of the weight values. 
Although the difference between the SA1, SA2, and 
RA best models is small, the slight difference between 
the weights produced a better model for the SA2 
method. Difference between the weight values is more 
noticeable for the PS model, where the values are 
1.000, 0.526, and 0.372 for features 15, 31, and 5 
respectively. Similar observations were made for the 
PS method for the other data sets. This suggests that 
PS is naturally adept at working in continuous search 
spaces, which is not a surprise since the technique was 
created for that purpose. 

For the BZ data set, the PS method obtained the 
best model as well. A bigger difference exist between 
the correlation coefficient values for all four methods. 
Three features, 2, 3, and 9, are present in the best 
models for all methods. Features 1 and 14 are present 
in three of the four best models. Once again, the PS 
method seems to adjust the weights successfully to get 
better solutions. This data set seems to be the most 
challenging for all methods. The differences on the 
neighborhood size used for the best models and the 
differences in the features selected suggests that. Better 
solutions might be obtained by increasing the number 
of objective function evaluations allowed or by trying 
other kernel functions. 
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Figure 2: LOO cross-validation values for the best 
models discovered by KNN based methods. 

 
Similar results were observed for the PYR data set. 

The best model was obtained by the PS method. Most 
methods found that features 0, 4, 9, 10, 11, and 19 are 
the best features to use. All methods also found the 
same neighborhood size. The advantage of PS over the 
other models appears to be in its ability to successfully 
find better weight values. A summary of the results can 
be found in Figure 2 for all methods on all three data 
sets. 

Comparing the results obtained with ANN models 
to those using KNN with PS optimization is not 
straightforward. The PS approach appplied to KNN 
does feature weighting, which is a more complex 
problem than the feature selection technique employed 
with ANNs. The method not only selects the best 
features for the kernel regression model, but also 
identifies their relative contribution. The search space 
associated with this problem is more complex than the 
binary problem of classical feature selection. One can 
argue that the ANN is in fact performing an implicit 
feature weighting while training, therefore simplifying 
the problem to one of subset selection. Another 
difference has to do with the regression techniques 
used. ANN is a supervised learning technique and 
requires training prior to applying the technique, 
whereas KNN does not required training and relies on 
the appropriate selection of k, the neighborhood size, 
the kernel function, and appropriate weight values. 

Comparing the results in Tables 2 and 3 shows that 
KNN-PS outperformed the other methods for the AMA 
and PYR data sets. KNN-PS did not do too well for the 
BZ data set. This might be due, in part, to our choice of 
kernel function. A different kernel function might do a 
better job with the BZ data set. 

 

11. Conclusions 
 
Although these results do not allow any definitive 

conclusions to be drawn, they demonstrate the 
potential of particle swarms for building QSAR models 
with good generalization power. Moreover, it allows us 
to compare QSAR models based on KNN with those 
based on ANN. KNN based models provides the 
researcher with a weight vector that can help in 
determining the relative importance of each feature. 
One can argue that the weight of the selected features 
leads to an easier interpretation of the model, which, in 
some cases, may be a significant advantage over ANN. 
On the other hand, KNN-based methods are 
computationally more intensive, since they require a 
search for the k-nearest neighbors before calculating 
the predicted value. On the other hand, since there is 
no training involved, KNN regression provides an 
easier way to include new data in the model. 

For ANN based models, niching particle swarms 
seem to provide an advantage over binary particle 
swarms. The algorithm enhances binary particle 
swarms by encouraging niching among particles in the 
population. The niching particle swarms algorithm was 
able to identify QSAR models with slightly better 
generalization power as measured by LOO cross-
validation in two of the three data sets tested. The 
results suggest that localized exploration and 
exploitation may lead to better results in some cases. 
The ability to adjust the parameters that control how 
much emphasis is put on niching proved to be helpful. 
Further empirical work is necessary in order to fully 
assess the effects of the niching parameters on the 
ability of the algorithm to locate the global minimum. 
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