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Abstract—Although deep neural networks have achieved great
performance on classification tasks, recent studies showed that
well trained networks can be fooled by adding subtle noises. This
paper introduces a new approach to improve neural network
robustness by applying the recovery process on top of the
naturally trained classifier. In this approach, images will be
intentionally corrupted by some significant operator and then be
recovered before passing through the classifiers. SARGAN - an
extension on Generative Adversarial Networks (GAN) is capable
of denoising radar signals. This paper will show that SARGAN
can also recover corrupted images by removing the adversarial
effects. Our results show that this approach does improve the
performance of naturally trained networks.

Index Terms—Adversarial attack, Adversarial defense, Noise
reduction, Image preprocessing, GAN.

I. INTRODUCTION

The area of machine learning has been studied and re-
searched for many decades. In recent years, the progress
in computational power and the increase in data sizes and
varieties have enabled a vast improvement in the performances
of deep learning algorithms. This has brought forward many
applications of machine learning to image recognition, speech,
and natural language processing, some of which surpasses
human performances [1]. Nevertheless, these well trained
networks can easily be fooled by some clever changes to the
input. Various works from [2] and [3] showed that impercep-
tible perturbations could significantly increase the error rate
of a classifier. On the other hand, [4] found that images that
do not look like anything to human eyes can fool a network
classifier into mislabeling these data with high confidence.
Thus, there has been active research on designing robust

networks that can withstand adversarial attacks. One popular
approach is adversarial training [3], in which the dataset
is injected with the adversarial instances so that networks
can be familiarized with the attacks. On the other hand, [5]
uses optimization against the ”first-order” adversary approach
which shows promising results on a variety of adversarial
attacks.

In contrast to prior research which focuses mainly on build-
ing robust networks, this paper introduces a new method of
data preprocessing to prevent adversarial attacks. Thus, instead
of trying to build a network that can withstand adversarial
attacks, our goal is to build a system that is capable of
removing the perturbation from the data before it passes
through a classifier. Specifically, we will corrupt data with
noises and then recover it using a variation of generative neural
networks. The motivation for this approach is a well trained
denoiser network can remove extra noise and any possible
adversarial perturbation, hence the target classifier may yield
higher performance on these preprocessed data. In this paper,
our contributions include:
• Demonstrating that SARGAN - an extension of GAN -

can denoise images corrupted with various operators.
• Using SARGAN network as a preprocessing step to clean

up noisy images before passing instances to a classifier.

II. MARTERIALS AND METHOD

A. Materials

1) Adversarial Attacks: Adversarial attacks in machine
learning are attacks where the main purpose is to fool an
AI agent. [2] and [6] showed that with knowledge about
the specific deep neural network classifier, it is possible
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to generate adversarial instances that can fool the targeted
classifier. This is often referred to as white box attack. [4]
introduced a more sophisticated attack where the adversarial
model can generate instances which could be misclassified as
some specific classes. Besides white box attack, adversarial
attacks can also be achieved without any knowledge of
the internal structure of the targeted neural networks [7].
The approach that [7] took is called black box attack. This
approach posed a real threat to machine learning in application
since it does not need to know the detailed parameters of the
targeted system. One could imagine such adversarial attacks
may be carried out against a facial recognition security system
and thus bypass that security layer. Thus, in order to apply
machine learning to any critical systems, a robust defense
mechanism has to be developed to minimize such threats.

2) SARGAN: Generative Adversarial Networks (GANs) is
one of the state-of-the-art deep learning algorithms that was
developed by [8]. To extend on the idea of GAN, [9] created
SARGAN with the purpose of denoising synthetic aperture
radar signals. Conventional method to recovering corrupted
data such as OMP [10] and SP [11] basically solve l1 or l0
norm minimization problem. These methods, while proven to
be sufficient, are often expensive and time consuming because
of their NP-hard nature [12]. With a twist to the generative
model, SARGAN has been shown to outperform existing
compressive sensing methods [9]. The key difference between
SARGAN and GANs is that while GANs generative model
requires random noise input [8], the input of SARGAN is the
corrupted/missing observation of some sources [9]. The basic
structure of SARGAN generator is similar to the standard
encoder-decoder network. SARGAN’s loss function on the
other hand minimizes a combination of content loss, which
encourages the integrity preservation of recovered data, and
adversarial loss, which encourage the generator to create more
convincing instances.

B. Method

A common approach to adversarial defense is training neu-
ral networks with adversarial instances. This can be achieved
by either including adversarial examples in the training set or
creating worst-case adversarial examples online using tech-
niques such as projected gradient descent by [5]. Each of
these two approaches has its own drawback. While the former
often compromises the performance on a natural uncorrupted
instance, the latter is highly resource intensive and time
consuming. More recently, [13] have discovered that while
adversarial perturbation is small in the input space, the mali-
cious operator is more significant in magnitude at the inner
layer of the trained networks. To enhance the robustness
of adversarial training, [13] added denoising blocks at the
intermediate layers. Another denoising approach is done by
[14] where a denoising neural network is trained separately
from a classifier. Specifically, the denoiser is an autoencoder
that learns the adversarial perturbations instead of the original
image. In this paper, we propose a new approach that does

not require training with adversarial example but instead, we
would attempt to wash away any adversarial effects on an
image if exist using image preprocessing. This approach would
contain the following steps:

i) Using SARGAN model to train a network that can
recover corrupted images, specifically denoising image
in this case.

ii) Adding random noise to a given an image (natural or
adversarially corrupted).

iii) Recover the noisy image with the SARGAN model
Our first goal is to first corrupt data with noise and build
a generative model that can recover corrupted data. The
corrupting method we will use is additive white Gaussian noise
in which white noise will be added to each image X = [xij ] to
gain the corrupted image Y . Another corrupting operator we
also use to train SARGAN is mask coverage where we will
cover a small patch of the image. Given a square area with
width w and top left corner at k, k that is relatively small to
the size of the image, the operator is

Z = [zij ]|zij =

{
−xij k ≤ i ≤ (k + l) and k ≤ j ≤ (k + l)

0 otherwise
(1)

and the corrupted image is

Y = X + Z (2)

1) Denoising with SARGAN: Given training data {Xi, Yi}
where each Xi is an image and Yi is the corrupted image, the
SARGAN network [9] is trained by solving

argminθG

n∑
i=1

L(GθG(Yi), Xi) (3)

where GθG is the generative model with parameters θG.
The SARGAN model was created to reconstruct synthetic
aperture data which is originally in the time domain. Thus,
to feed the data into the generator network, the data have
to be transformed to the frequency domain using Fourier
transformation. Since our targeted data are images, we do not
need to apply the transformation. The loss function is a linear
combination of two terms: a content loss and an adversarial
loss

L(GθG(Y ), X) = `content(GθG(Y ), X) + λ`adversarial(GθG(Y ))
(4)

where

`content(GθG(Y ), X) = ‖GθG(Y )−X‖1

`adversarial(GθG(Y )) = − log((DθD ((GθG(Y )))

In `adversarial(GθG(Y )) above, we have DθD is the discriminator
network with weights θD. To evaluate the correctness of the
reconstructed instance, we calculate PSNR between original
and reconstructed data where PSNR is calculated as follow:

MSE =
1

m× n

m−1∑
i=0

n−1∑
j=0

[Xij −GθG(Y )ij ]
2 (5)



PSNR = 10× log10(
(maxXij)

2

MSE
) (6)

2) Adversarial Attack with Projected Gradient Descent
(PGD): The method that we use to create adversarial examples
is the projected gradient descent attack. The idea is very
much similar to the gradient descent approach in training a
neural network. During training, we want to minimize the loss
value with respect to the pair of network output and label. In
PGD attack, we create the adversarial instances by going the
opposite direction:

argmaxδ∈∆L(FθF (X + δ), Y ) (7)

Thus, given a network F , we want to find a perturbation δ
that maximizes the loss for a given output. Ideally, we can
bound δ to some small value so that the noise is unnoticeable
to human eyes. It is also worth noting that a new δ needs to
be calculated for each image.

III. EXPERIMENTS

The datasets that we use in this paper are the CIFAR-10
and CIFAR-100 datasets by [15], MNIST dataset by [16] ,
and fashion-MNIST dataset by [17].

A. Denoising images with SARGAN

For MNIST dataset, given that the image data is in the range
0, 1, we trained four SARGAN models with the input images
having white Gaussian noise with a standard deviation between
0.0, 0.5 added and the other with a mask coverage of size 4 by
4 to 6 by 6. The position of the mask is also picked randomly
within a few pixels from the image center.

(a)

(b)

Fig. 1: SARGAN recovery on MNIST data corrupted by
Gaussian noise (a) and mask coverage (b). On the Left
column: original images, Center column: corrupted images,
Right column: recovered images.

The trained SARGAN is then tested against 100 images
and sample results can be seen in Figure 1 (a) and (b). We
also calculate the peak signal-to-noise ratio (PSNR) values
between original and reconstructed images. The average PSNR
values are 26.2 for Gaussian noise recovery and 28.7 for mask

coverage recovery. The process is similar for the Fashion-
MNIST dataset.

Fig. 2: SARGAN recovery on FashionMNIST images cor-
rupted by Gaussian noise.

For the CIFAR-10 and CIFAR-100 datasets, SARGAN is
trained with 50, 000 instances which are corrupted by white
Gaussian noise with a standard deviation between 0 and 0.12.
We chose a smaller white noise because CIFAR-10 images
are larger and contain more complicated features than MNIST
images. After training, SARGAN network then is tested

(a)

(b)

Fig. 3: SARGAN recovery on CIFAR-10 (a) and CIFAR-100
(b) images corrupted by Gaussian noise

against 10, 000 new images. The average PSNR value of the
test images is 26.4 for CIFAR-10 and 18.83 for CIFAR-100.
From testing on two datasets with two corrupting operators,
we see that SARGAN can reconstruct images reasonably.

Fig. 4: Classifier network architecture for MNIST, Fashion-
MNIST and CIFAR-10 datasets



TABLE I: Accuracy of classifiers trained with natural images testing on natural images, natural images with adversarial
perturbation (adversaries), adversaries + Gaussian noise passing through 1 SARGAN, 2 SARGANS, 3 SARGANS and 4
SARGANS

Nat. Imgs Adv. Imgs Adv. Imgs Adv. Imgs Adv. Imgs Adv. Imgs
1 SARGAN 2 SARGANs 3 SARGANs 4 SARGANs

MNIST 99.12% 0.66% 46.9% 88.96% 89.1% 89.08%
Fashion-MNIST 90.66% 0% 21.61% 53.22% 70.51% 71.76%

CIFAR-10 89.11% 0.99% 21.15% 45.83% 45.89% 51.58%
CIFAR-100 60.83% 0.69% 24.23 % 23.86% 24.26% 29.29%

B. Preprocessing adversarial instances

The SARGAN network trained in section 3.1 is then used
to preprocess the images as described in step (ii) of Section
II-B. To experiment on the adversary-removing ability of the
SARGAN denoisers, we first need to construct the adversarial
instances. We use the PGD attack with cross-entropy loss
on the targetted model described in the section below. With
each dataset, we estimate the smallest possible adversarial
parameter ε described by [5] where the accuracy of the
model classifying adversarial instances approaches 0% and
use those ε to create adversarial instances. The ε we used
for MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100 are
0.15, 0.08, 0.01 and 0.005 accordingly. For each dataset, we
use 10, 000 images for testing. These adversarial instances
are then corrupted using additive white Gaussian noise and
reconstructed by SARGAN.

In terms of the classification task, for the MNIST and
Fashion-MNIST datasets, we build a simple architecture with
2 convolutional layers of 32 and 64 kernels, each followed by
a maxpooling layers followed by a dense layer. The detailed
architecture is shown in Figure 4. For the CIFAR-10 and
CIFAR-100 datasets, we use transfer learning with a ResNet-
50 model trained on Imagenet and adapt it to the two datasets.

C. Filterting adversarial instances with multiple SARGAN
denoisers

As we experimented with using a SARGAN autoencoder-
decoder as a denoiser, we want to explore the idea of using
multiple SARGAN denoisers to test the performance against
a single denoiser. In this experiment, we pass the images with
additive Gaussian noise through some number of denoisers
(from one to four) to see if adding more denoisers would help
increase the adversarial robustness of the system. We train
the SARGAN denoisers sequentially by using the output of
the previous denoiser as training input for the next denoiser
and use the clean original image as the training target. For
example, denoiser 2 would take the output of denoiser 1 as
input and the corresponding clean image from the dataset as
the target output. The first SARGAN denoiser is trained as
described in section III-A.

D. Robustness of Denoiser against adversarial instances

Lastly, we test the robustness of SARGAN denoisers with
respect to adversarial perturbation magnitude. With our denois-
ers trained with Gaussian noise, we gradually increase the per-

TABLE II: Comparison of accuracy of classifiers trained on
regular images vs PGD trained for 4 datasets. The compar-
isons includes regular images, adversarial images and reg-
ular/adversarial images with additional Gaussian noise and
processed through 4 SARGAN denoisers.

Nat. Trained PGD Trained

MNIST

Reg. Images 99.12% 98.41%
Reg. Images + 4 SARGANs 98.07% 97.05%

Adv. Images 0.66% 95.55%
Adv. Images + 4 SARGANs 89.08% 93.01%

F-MNIST
Reg. Images 90.66% 76.88%

Reg. Images + 4 SARGANs 85.4% 76.11%
Adv. Images 0% 67.43%

Adv. Images + 4 SARGANs 71.76% 70.06%

CIFAR-10
Reg. Images 89.11% 88.63%
Adv. Images 0.99% 34.43%

Adv. Images + 4 SARGANs 51.58% 58.94%

CIFAR-100
Reg. Images 60.83% 61.08%
Adv. Images 0.69% 12.03%

Adv. Images + 4 SARGANs 29.29% 36.5%

turbation limit ε and observe the effectivenese of preprocessing
images with SARGAN compared with no preprocessing.

IV. DISCUSSION

A. Classification performance

With the result from using series of SARGAN Gaussian
denoiser as a preprocessing method, we showed that by
intentionally adding Gaussian noise to adversarial images
and passing them through the denoisers, it is possible to
wash away a significant level of adversarial perturbation. As
shown in Table I, using four SARGANs yields the best result
in terms of classification accuracy for model trained with
natural images and tested on adversarial images across all
four datasets. For all datasets, the naturally trained classifier
yield near 0% accuracy when given adversarial instances
generated from the test sets. After passing through a series
of four SARGANs, the accuracy on these instances improved
to 89.08%, 71.76%, 51.58% and 29.29% for MNIST, Fashion-
MNIST, CIFAR-10 and CIFAR-100 accordingly.

In addition, we also evaluate our approach against PGD
trained method described by [5]. We compare the performance
of a regularly trained classifier with a PGD trained with
respect to regular images, adversarial images generated by
PGD attack and regular/adversarial images with our prepro-
cessing approach. From table II, we can observe that with



Fig. 5: Preprocessing images with multiple SARGAN denoisers scheme

Fashion-MNIST, CIFAR-10 and CIFAR-100, using a SAR-
GAN preprocessing approach together with a naturally trained
classifier yields better results than PGD trained classifiers
without any preprocessing step. Also, SARGAN preprocessing
helps increasing the accuracy for both natural and PGD trained
classifier. On MNIST and Fashion-MNIST, applying SAR-
GAN preprocessing on regular images only reduce accuracy by
a small percentage point for both regular and PGD trained net-
work, the reduction in accuracy are mostly within 1 percentage
point except for Fashion-MNIST naturally trained classifier
at 4% point accuracy reduction. Thus, experiments showed
that the benefits of removing adversarial effects significantly
outweigh the cost of accuracy for both regular and adversarial
images.

B. Robustness against adversarial instances

Beside evaluating the accuracy of our preprocessing method
against PGD training, we test the robustness of our model
against stronger adversarial instances as describe in Section
III-D. Experimental results in Figure 6 and Figure 7 showed
that SARGAN preprocessing is qute robust against perturba-
tion increase for MNIST and Fashion-MNIST datasets. With
harder datasets like CIFAR-10 and CIFAR-100, preprocessing
adversarial instances with denoisers also flatten the curve and
delay the accuracy deficiency much better than without using
the denoisers. The overall observable trend is that while the
accuracy of a regular classifier drop to near-zero very quickly
as we use any significant value of ε, the same classifier with
our prepocessing approach can withstand a stronger adversarial
attacks longer before the performance drops to the same low
level as without a preprocessing step.

While the adding the preprocessing step does not make the
performance of a naturally trained classifer better than a PGD
trained network, the SARGAN recovery method has shown its
ability in flattening the adversarial effect. More importantly,
while this work also utilizes autoencoders like [14], the key
difference and advantage of this preprocessing approach is
that unlike adversarial training and denoising in [14] and
[13] where a specific type of corrupted images is included
in the training, the preprocessing approach does not make any
assumption on the type of adversarial attacks. Thus, it is highly
generic and can be applied to any form of low noise adversarial
attack, regardless of attacks based on any Lp norm. We believe
that while the idea of adding white noise on top of the input is
counter-intuitive at first glance, it is novel. Instead of focusing
on building a neural network that can withstand adversarial

(a) MNIST

(b) FashionMNIST

Fig. 6: Accuracy on classifier trained on clean images and
tested on adversarial images of MNIST and Fashion-MNIST.
In Blue: adversarial images without any preprocessing. In
Orange: adversarial images with Gaussian noise added and
preprocessed with 4 SARGAN denoisers.

attacks, we instead ask the question of how to remove the
adversarial effects from data. This method can be thought
of as a filter to remove the malicious operator. Since many
adversarial attack methods like [3] and [2] are very subtle
numerically and visually, by first corrupting data with noises,
the adversarial effects may be diluted or even dominated by
the random white noise. Thus, a well trained generator can
reconstruct the natural instances from this corrupted instance.

V. CONCLUSION

Our results showed that while the performance of SARGAN
recovery method is not yet at the same level with state of the
art robust trained model, this method provides a new angle
to designing robust systems. Specifically, it can be used as a
filtering step before passing an instance to the model and will
improve accuracy of the model whether the classifier is trained



(a) CIFAR-10

(b) CIFAR-100

Fig. 7: Accuracy on classifier trained on clean images and
tested on adversarial images of CIFAR-10 and CIFAR-100.
In Blue: adversarial images without any preprocessing. In
Orange: adversarial images with Gaussian noise added and
preprocessed with 4 SARGAN denoisers.

with regular images or adversarial images. In addition, we also
shows that a series of SARGAN denoiser trained in the same
fashion is more effective in washing away the adversarial effect
than one single SARGAN denoiser. Beyond this work, we plan
to apply this method to other forms of adversarial attacks
as well as optimize the model to better filtering adversarial
effects. If we could increase the classification performance of
our adversarial filtering approach to the same level with state
of the art adversarial defense, it will provide an alternative
approach to adversarial defense as our approach separates
the adversarial robustness from direct classification model
training and instead looks at it as an adversarial filtering
problem, which allow researchers to study and focus on the
classification and adversarial filtering tasks separately.
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