

Security Analytics Framework Validation based
on Threat Intelligence

Viktor Sowinski-Mydlarz, Vassil Vassilev, Karim Ouazzane and Anthony Phipps

London Metropolitan University Cyber Security Research Centre, Tower Building, 166-220 Holloway Road,
{w.sowinskimydlarz, v.vassilev, k.ouazzane, tsaphip1}@londonmet.ac.uk

Abstract – Logical analysis of the ontology of digital
security in banking helps us to identify the possible entry
points for illegal access. The threats described in the
ontology are detected by Machine Learning engines.
The theoretical analysis is validated by verifying the
framework and Machine Learning algorithms.
Intelligence Graphs (original term) which are adding the
actions to knowledge graphs to form workflows, are a
base for validation of the framework through simulated
execution of the scenarios specified in them.

The output is a method for analysing live network
traffic data (machine learning algorithm) combined with
semantic model to give a hybrid framework for threat
intelligence in digital banking, leading to a complete
threat detection platform. The model is validated using
operation workflows, namely 12 scenarios of banking
“journeys” under the duress of various threats.

In this work we are presenting the validation of the
framework by simulation of the banking operations and
transactions stemming from the Ontology of Digital
Banking used as a model of the banking infrastructure
(assets, vulnerabilities and threats included).

For better understanding of the subject matter, the
authors would like to refer the reader to a previous
article on general framework we developed.

Keywords – Security Analytics, Threat Intelligence,
Machine Learning, Digital Banking, Knowledge Graphs

1. Introduction.

Scenario-based Methodology for Validation of
Frameworks combines the methodology for validating of
the logical model through simulation, with the
methodology for verifying the methods and algorithms
for detection/classification/prediction through use of
simulated, synthetic, historical, or real data. The
simulation is of the framework in action, which requires
only the analytical model and the emulation of events
and actions without actually executing them. Core of
this methodology is what we are calling "Intelligence
Graphs". Here we describe validating the framework
using scenarios for executing controlled transactions
under threat. Scenario testing is conducted employing
scenarios obtained from the use cases. Using scenario
testing, complex logic can be tested applying easy to
evaluate statements describing the functionality to be
tested. The journey through the banking processes
under the duress of cyber threats involves entities such
as events (which are asynchronous) and rules affecting
the flow of data. Actions (describing transitions between
situations) are decided on by either events, rules, or
user input. The test procedure is to start with initial

situation (normal or abnormal, in case of vulnerability)
and proceed through intermediate states where threats
manifest, affecting the banking procedures leading
either to a deadlock or normal situation after the threat
has been mitigated. Running analytics and applying
corrective (COR) actions helps avoiding deadlocks. The
framework model which combines the ontology with the
security policies for incorporating threat intelligence has
been validated using a representative set of scenarios
for executing transactions under threat. There have
been 12 scenarios designed for the validation of the
framework.

2. Literature Review.
2.1. Attack trees as foundation for knowledge

graph in our approach.

Schneier’s attack tree model paved the way for using
graphs in threat intelligence. [2] Attack tree is a
conceptual diagram describing how assets (targets) can
be attacked. It is multi levelled with a root node, children
nodes and leaves. Children nodes represent conditions
to be satisfied for parent nodes to be true. If the root is
satisfied, the attack is successful. Nodes are satisfied
by their direct child nodes. For instance, if there is one
grandchild node under the root, the steps need to be
taken in the process of the attack – satisfying grandchild
node conditions for the parent node to be true, then its
parent for root node to be true. Alternatives are
represented by AND / OR operators. Attack trees can
give a false sense of security as overlooking an attack
vector becomes easy. The results are reliant on the
initial cost estimates, which are often inaccurate. Attack
trees do not consider secondary factors. The dashboard
developed for our framework serves not only as a
graphical user interface but also constructs an
interactive dynamic graph. This graph is not an attack

FIGURE 1. INTELLIGENCE GRAPHS FOR
MODELLING TRANSACTIONS UNDER THREAT.

tree per se, it serves the same purpose of describing an
attack though. The difference is that our graph is not
hierarchical as an attack tree.

2.2. Elements of threat modelling relevant to our
model structure.

Threat modelling allows to identify, categorize, convey,
and analyse threats. It helps to mitigate risks and protect
the infrastructure by improving security. It takes place in
planning, design, and implementation phases.
Modelling lets the developers better comprehend their
software and its components. This knowledge quantifies
positive and negative impact on the system. The
number of resources (time constraints, financial) needs
to be proportional to the possible risks. The model is the
basis for the security decisions and policies used to
safeguard the product. There are several benefits
coming from keeping security at the vanguard of
development through threat modelling. Continuous
monitoring of threats and an up-to-date threat profile
can mitigate risks. Threat intelligence is crucial for
delivering considerable protection and secure coding.
[3] The elements of threat modelling are:

 Assets: Data and hardware to be protected.
 Threats: The way hacker can affect the system.
 Vulnerabilities: The gaps in the security allowing the

hacker in. The steps in the process can be listed as:
 Identifying the assets.
 Outlining architectural context of the asset being

processed. It may include the software framework,
version, and other architectural details.

 Breaking down application and its processes,
including all the sub-processes that are running the
application. Data flow diagram (DFD) is created.

 Identifying and listing threats in a descriptive way.
 Classifying the threats (parallel instances) to

identify in the application in a structured and
repeatable manner.

 Rating the severity of the threat.

Threat modelling should be performed in case of a
change in the system’s architecture and as soon as the
architecture is ready. Also, it should be run after a
security incident has occurred or new vulnerabilities are
introduced. It is not required to carry out threat
modelling at the early stages of the SDLC (Software
Development Life Cycle).

TABLE 1. THREATS IN TYPICAL SCENARIOS OF ONLINE TRANSACTIONS.

2.3. Knowledge Graphs as combination of
Semantic Web and Machine Learning.

A model of a knowledge domain designed by
specialised experts using intelligent machine learning
algorithms constitutes a knowledge graph. [4] The terms
“knowledge graph” and “knowledge base” are often
used interchangeably, leading to a wrong assumption
that they are synonymous. They can also be used as

synonyms of ontology. Google Knowledge Graph is
known as a knowledge base, same as YAGO (“Yet
Another Great Ontology”). [5] The creators rarely
differentiate between ontology, knowledge graph and
knowledge base. The latter is built by associating
entities, relations, and data with the ontology.
Incomplete, incoherent, and imprecise information
transforms into a complete, integrated, and accurate
knowledge graph. Ontology can be defined as a set of

Scenario

Threat(s)

Threat Present In Potential Dead-end or

Normal Situation

Update with Spyware Spyware / Baiting
S2_Infected_Attachmnt
S23_Infected_Software S5_Normal_State

Login with Spyware Spyware S0_Browser_Started S5_User_Logged_In

Transfer with Spyware Spyware S13_Infected_Malware S10_User_Logged_Out

Balance with DdoS DdoS Attack S0_User_Logged_In S4_User_Logged_Out

View Balance Quid Pro Quo Quid Pro Quo S12_Support_Imitated S8_User_Logged_Out

Vishing & Smishing Vishing & Smishing S0_Normal_State S5_Payment_To_Crim

Session Hijacking Session Hijacking S2_User_Authentctd S5_Card_Removed

Email Spam Received Email Spam S0_Spam_Received S9_Machine_Overtaken

Cross channel with Pretext Pretexting S0_IT_Support_Imitd S5_Payment_To_Crim

Scareware & Rogue Scareware, Rogue S1_Infection_Simulatd S6_Machine_Overtaken

ATM Infected ATM
Infected

S0_ATM_Not_Updated S10_Payment_To_Crim

axioms defining knowledge in a specific domain. It can
be visualized as a graph and describes complex
relationships between classes and individuals.

Knowledge graphs are also known as semantic
networks. They represent interconnected entities (such
as situations, events, items, and actions in our
ontology). In fact, knowledge graphs are similar to
ontologies. The knowledge is visualized as a graph. The
knowledge graphs are a different viewpoint at the same
reality (the ontology) but it is convenient for two reasons
- because it can be visualized, and because it can be
used for contextual focusing on fragments of the
ontology which combine only some classes (nodes of
the graph) and relevant properties (edges of the graph).
This is particularly important because we are going to
model scenarios for validation of the framework in the
form of intelligence graphs. [6]

3. Validation procedure.

3.1. The validation of the framework using

scenarios.

The twelve scenarios correspond to twelve mini
ontologies derived from the main ontological model,
keeping the same format (OWL/RDF). They have been
developed using a graph language (RDF), and they are
related to the two levels of the framework (the
ontological and logical level). It means that besides
OWL logic, also SWRL rules apply to all scenarios. The
context of the ontological classes was used for
automatic generation of the security policies and control
over the simulation. The OWL ontology axioms were
interpreted into SWRL rules format. SWRL was
embedded into the ontology and was extracted from
relationships between classes. To recognize that the

relationship between classes entails a rule, the class is
checked if it belongs to situations and that the object
property is an action. The head of the rule contains the
resulting situation. The automated rule generation
facility is still work in progress. The essence of the
method is to combine the ontology with the policies in a
purely relational model (the graph does not have
taxonomic relations).

3.2. Methodology.

The testing methodology deviates from the software
engineering methodology by three points:

 It requires building models of the transactions under
threat using the modelling languages of the
framework (the Intelligence Graphs).

 It requires validating the models by experts (i.e., the
Lloyds bank professionals who approved the
graphs).

 It is a part of a collaboration combining model
validation and functional testing with integration
testing using components belonging to colleagues
(namely dashboard designed by Dr Paweł
Gąsiorowski) and by simulating other components
which are still to be implemented real-time event
notification).

It is worth mentioning that the framework as it is now
incorporates one manual component, namely decision
making for executing particular operation in a given
situation in the presence of alternatives. In the future
this can be automated by adding an algorithm for
decision making based on risk assessment, now the
framework is interactive and requires user intervention
though.

TABLE 2. SCENARIOS FOR VALIDATION.

The twelve diagrams in Section 4.1. Validation
Scenarios are based on extracts from the main
ontology, using the same description logic as the main
model does for representing real life situations. Each of
these Intelligence Graphs represents a banking journey
in the presence of one or more threats, starting with
initial situation which can be “internet browser started”
for example, with following situations of connecting to
online banking, logging in, and selecting operation.
Initial situation is represented in green for a typical
starting state and red for the abnormal. Various events
happen on the way, triggering actions directing the
diagram flow. Events are shown in blue on the
diagrams. The situations which are final and do not lead
to other situations are so called “deadlocks” and are
presented in red. Examples of such a situation are
“disconnected” and “invalid credentials”. The journey
happens under the duress of threat which is shown in
black. Items in yellow are generic entities from the
context of situations, they are simple classes connected
to them in the ontology. Example would be antivirus
software, session ID, amount of money extorted by
criminals.

3.3. Source of scenarios.

The twelve scenarios correspond to twelve mini
ontologies derived from our main ontological model,
keeping the same format (OWL/RDF). They have been
developed using a graph language (RDF), and they are
related to the two levels of the framework (the
ontological and logical level). It means that besides OWL
logic, also SWRL rules apply to all scenarios. The
context of the ontological classes can be used for
automatic generation of the security policies and control
over the simulation. The OWL ontology axioms can be
interpreted into SWRL rules format. SWRL is embedded
into the ontology and can be extracted from
relationships between classes. To recognize that the
relationship between classes entails a rule, we need to
check if the class belongs to situations and that the
object property is an action. The head of the rule
contains the resulting situation.

4. Experimental Framework Validation.

The two-dimensional nature of the framework requires
a complex validation process, which cannot be finalized
completely since it remains open for addition of more
analytical engines and software components. Because
of this complexity, we will demonstrate only a partial
validation of the framework, selecting relevant
components on the different levels of the framework.
The scenarios of controlled execution of the
transactions under security threat, which allow both
analytical verification using dry run of the scenarios as

well as actual testing in simulation mode, will play an
integral role in this procedure.

4.1. Validation Scenarios.

The policy rules represent only a fragment of the actual
policy of organisations and do not pretend to be
complete. Their formulation has been dictated by the
need to represent the working scenarios. In principle, it
is possible to validate the rules formally by applying the
procedure for checking the satisfiability of Horn clauses
in clausal logic, which is the theoretical model of SWRL,
but this would be a long, repetitive, and unnecessarily
complex process without much practical value. Instead
of this, the validation of the rules has been done by
traversing the ontology for determining if there are
applicable rules, which cannot be fired in any situation
represented in the ontology due to impossibility to
satisfy the restrictions in the conditional part, and rules,
which do not lead to any situation in the ontology,
prescribed in the consequent part of the rules.
Additionally, they have been consulted with experts
from the Cyber Security Division of Lloyds Banking
Group in London, which have been advising the Cyber
Security Research Centre during working on the project
for Analysing the Logical Vulnerability.

The rule validation is founded on 1) analytical
formulation, based on literature investigation 2) expert
confirmation, based on Lloyds bank professional’s
approval and 3) experimental verification by scenarios
simulation. The last process can be treated as a dry run
of the scenarios, mentioning which rules are fired
(satisfy the conditions) and how the scenarios continue
after they are fired (where do they go after the
consequent part of the rule is executed). Description of
each of twelve cases for simulation gives reasons why
it has been chosen.

Situation in the diagram is denoted by an empty circle ○
for starting situation and by solid circle ● for final
situation. Event is symbolized by a square □. The
symbol for threat is a diamond ◊ and generic items are
represented by a triangle △. Solid line arrow ➝ signifies
an action, dashed arrow ⇢ occurrence, dotted stem
arrow ⤑ intervention. Open headed arrow ⟶ stands for
having a subclass. Green rectangle means a starting
situation ID whilst red rectangle is a final situation ID.
Blue rectangle is an event ID, black is a threat ID and
yellow is an item name. Situation IDs begin with prefix
“S_” and a number, event IDs begin with prefix “E_” and
a number. Actions’ prefix is an “a_” and a number
constructed from index of domain situation and index of
range situation. Situations, events, threats, items, and
actions are all ontology concepts.

1. Update Antivirus with Spyware scenario shows the journey from initial situation of antivirus not
being updated causing vulnerability leading to Spyware and Baiting threats initiating. This basic set-up
relates to a common threat of spyware stemming from not using updated antivirus that can affect
anyone, not necessarily in banking IT infrastructure. This is a starting point in many intrusions.

FIGURE 2. UPDATE ANTIVIRUS WITH SPYWARE.

2. Login with Spyware describes logging in in the presence of spyware threat, starting with
opening the browser and ending with login either successful or refused. This is the next step in the
intrusion process. Logging in is an everyday activity for any user and it can result in credentials being
stolen.

FIGURE 3. LOGIN WITH SPYWARE.

3. Money Transfer with Spyware shows extortion of money by the means of keylogging. After
logging in, banking operation of money transfer is chosen, and this case shows how it can be affected
by and misused by fraudsters.

FIGURE 4. MONEY TRANSFER WITH SPYWARE.

4. View Balance with dDOS describes attempts at checking the account balance in case where
server and network are crashed by Denial-of-Service attack. dDOS attacks are most common threats
which financial organisations must deal with. Hence, we show how it affects banking operations (viewing
balance in this example).

FIGURE 5. VIEW BALANCE WITH DDOS.

5. View Balance with Quid Pro Quo is like the previous one, this time threat is the hacker
overtaking the PC by pretending to be customer service. Fraudsters often use this method to gain
control over user’s machine in which case viewing balance can lead to stealing credentials.

FIGURE 6. VIEW BALANCE WITH QUID PRO QUO.

6. Vishing & SMishing are voice phishing (over the telephone) or SMS phishing. Hoaxed phone
number is called in case of vishing or malicious link is clicked in the SMS. These are quite common
attacks, simple to execute and inconspicuous, the victim is easily deceived.

FIGURE 7. VISHING & SMISHING.

7. Withdrawal with Session Hijacking starts with card inserted and ends with card removed. In this
case credentials are stolen by the means of Session Hijacking. This attack is more sophisticated and
uses stolen identity to execute payments to criminals.

FIGURE 8. WITHDRAWAL WITH SESSION HIJACKING.

8. Sending Email Spam deals with hacker sending hoaxed emails from overtaken PC. The goal
of sending spam is distributing malware which can be used in different types of intrusions. This is an
entry point for many attack vectors and a common way to gain control over random PCs.

FIGURE 9. SENDING EMAIL SPAM.

9. Email Spam Received complements the previous scenario closing the loop of sending spam,
overtaking another PC, and sending spam again. The process repeats itself infecting even more
machines.

FIGURE 10. EMAIL SPAM RECEIVED.

10. Cross Channel with Pretexting deals with redirecting to hacker website by a phone call from
hacker pretending to be IT support. The result is either money sent to criminals or transaction cancelled
by running analytics. Pretexting is also a common type of attack, in this scenario happening over two
channels, mobile phone and website. This case demonstrates a cross-channel threat.

FIGURE 11. CROSS CHANNEL WITH PRETEXTING.

11. Scareware & Rogue are two similar threats that deceive the user leading to believe that their
PC is infected already. Rogue requests ransom whilst scareware offers a fake antivirus program for
removing a non-existent threat. From the user perspective these threats look like legitimate tools for
removing malware from their PC.

FIGURE 12. SCAREWARE & ROGUE.

12. ATM Infected is a real-life scenario in which the ATM operating system is infected and
overtaken by hacker, allowing to swallow the card, steal the card details and extort the money. This
scenario is based on real events.

FIGURE 13. ATM INFECTED.

4.2. Directed graphs.

For representing the scenarios, we used directed
graphs which are sets of objects called vertices or
nodes that are connected by edges. These objects are
Situations in our graphs. Edges are directed from one
vertex to another and effectively are ordered pairs of
vertices (Actions in our framework). Directed graphs are
sometimes called digraphs or directed networks. Our
graphs have stereotyped nodes and edges and are
related to state chart diagrams - one of the five types of
UML diagrams used to model the dynamic nature of a
system. In these, various states of an object during its
lifetime are defined and changed by events. They are
useful for modelling reactive systems (responding to
external or internal events). Graphs describe the flow of
control from one state to another. States are defined as
a condition of an existing object which changes when
an event is triggered. In our terminology Action is the
trigger for changing the system from one state
(Situation) to another.

As can be seen in the diagrams, the vulnerabilities are
identified in situations where the threats appear first.
The potential deadlocks (situations without exit) are
shown also. In the scenarios the corrective actions
mitigating the threats lead to normal situations allowing
the flow of the scenario to be resumed. The decision
which path (arch) to take from the situation (node) is
made based on the applicable rule or occurrence of an
event. Events are asynchronous and can appear in the
scenario at any point. The vulnerabilities or gaps in the
security are entry points for threats and identifying them
early allows to mitigate threats easily. Deadlocks can be
caused by inconsistencies in the model or rules and
identifying them helps to keep the infrastructure
functioning properly. The scenarios can be used for
SWRL rule extraction as they describe a part of the
system, making them simpler to process.

4.3. Implementation.

The environment is based on 5 docker containers -
Airflow to create model and process tasks, PostgreSQL
for storing metadata, Kafka for data streaming,
Zookeeper for managing sessions and topics and
MLflow for showing models' statistics, comparison, and
incremental learning. Docker Compose is a tool for
defining and running multi-container Docker
applications. The variables passed by AirFlow were
created from the threat scenario ontologies using parts
of original Sycamore project code. The Threat variable
states the type of attack vector. Filename specifies the
PCAP file used for initial model training. The three
packet_types determine the TShark filters on packet
and types of packets analysed. Detection is done using
filters applied to packets, based on patterns of three
elements (suspicious packets) which if correlated,

signify a threat. For instance, in “Transfer With dDOS”
scenario, suspicious packets are:

"packet_type_1": "GET.*HTTP.*1.1",

"packet_type_2": "POST.*HTTP.*1.1",

"packet_type_3": "HTTP\\/1.1\\s200\\sOK",

We are working on the implementation of other
scenarios to be executed through ML algorithms and
orchestrated by Airflow dashboard.

FIGURE 14. AIRFLOW DASHBOARD LOG FOR
TRANSFER WITH DDOS SCENARIO

We will now discuss the workflow of Directed Acyclic
Graphs inside the containers (Oak software). The Initial
Model DAG loads and pre-processes the PCAP data
converting it into CSV and parsing into a Pandas
dataframe. The data is divided into training and testing
sets, 10000 samples are set aside for streaming
simulation. The model is constructed and fitted with
class weights (as the dataset is imbalanced, there is a
need for a mechanism to emphasise underrepresented
labels). The Neural Network / SVM classifier is stored in
current_model folder. The Updating DAG can be
executed now. Normally it runs in 5 minutes intervals
streaming data from Kafka producer through broker to
the consumer. Broker acts as an intermediate between
producer and consumer using a topic which is a hosting
stream. Samples are converted into JSON, encoded,
and pushed to the topic. From there they are retrieved,
decoded, and converted back to NumPy array stored in
a file in to_use_for_training folder. The current model is
loaded, and its score is evaluated to adjust class
weights. Scores between original and adjusted model
are compared. If adjusted model outperforms the
original one, it replaces the old one which is archived.
The statistics (metrics) are sent to MLFlow container
and shown in the dashboard. Alternatively, instead of
streaming the data from the server the streaming
process is simulated using samples set aside by the
Initial DAG.

5. Summary.

First, we formulated some explicit requirements for the
scenarios. Completeness means that the scenario set
was consulted with Lloyds Bank. Maximal determinism
entails that the scenarios always continue in the lack of
threats (if there is no threat present the journey persists
until committing transaction). Minimal non-determinism
requires that there is no more than one choice of path
in the case of present threats. Isolation signifies that
there are no overlapping paths in the scenario graphs.
Consistency implies that the journey always leads to
transaction commit.

The asynchronous events in the scenarios trigger the
execution of actions. The actions themselves generate
events which may trigger further actions. Therefore, we
verified the event capturing mechanism of the
framework. It is based on data analysis for detection of
potential intrusions, identifying known threats or
classifying unknown threats. Validation of the
framework is based on the use of the intelligence graphs
to demonstrate the capability of the framework to deal

with typical scenarios by detecting the threats through
ML, identifying them by checking the situations in which
they appear in the ontology of threats, selecting
appropriate counteraction using the security rules and
planning their execution as containerized services. The
validation of the hybrid framework is achieved through
running 12 simulation scenarios describing the flow of
control from one state to another.

6. Future work.

New algorithms stemming from this work comprise of
rule indexing and index-based inference. Rule indexing
produces contextual information about the ontological
classes that can be used for automatic generation of the
security policies and control over the simulation. The
semantic context of situations, events and actions is
found using the indexing scheme. For indexing,
automatic rule generation and simulating the bank
“journey” across the scenarios Java programming
language is used in conjunction with Jena API. There
are multiple suggestions for future conceptual
development within the same framework. Automatic

FIGURE 15. IMPLEMENTATION COMPONENTS.

generation of the intelligence graphs from OWL+SWRL
is possible. Automated rule generation can be explored.
Rules can be extracted from ontology axioms using
starting situation, its declared properties, and ranges of
properties. Generating sequential plans and execution
workflows is worth examining also.

References:

1. Vassilev, V., Sowinski-Mydlarz, V.,
Gasiorowski, P. et al., "Intelligence Graphs for
Threat Intelligence and Security Policy
Validation of Cyber Systems". In: P. Bansal,
M. Tushir, V. Balas and R. Srivastava (eds.),
Advances in Intelligent Systems and
Computing, Vol. 1164, pp. 125-140. Springer
(2020); ISSN 978-981-15-4991-5.

2. Czagan D. (2014) “Qualitative Risk Analysis
with the DREAD Model”. Infosec [online]
Available at:
https://resources.infosecinstitute.com/topic/qua
litative-risk-analysis-dread-model/ [Accessed
27 Mar. 2022].

3. RashiGarg (2018) “Computer Network | Threat
Modelling”. GeeksforGeeks [online] Available
at: https://www.geeksforgeeks.org/computer-
network-threat-modelling/ [Accessed 27 Mar.
2022].

4. Ehrlinger, L. and Wöß, W. (2016) “Towards a
Definition of Knowledge Graphs”. Institute for
Application Oriented Knowledge Processing,
Johannes Kepler University. [online] Available
at: https://jena.apache.org/ [Accessed 27 Mar.
2022].

5. Max Planck Institute for Informatics (2019)
“YAGO: A High-Quality Knowledge Base”. Max
Planck Institute for Informatics. [online]
Available at: https://www.mpi-
inf.mpg.de/departments/databases-and-
information-systems/research/yago-
naga/yago/ [Accessed 27 Mar. 2022].

6. Chowdhury, S. (2018) “Knowledge Graph: The
Perfect Complement to Machine Learning”.
Towards Data Science. [online] Available at:
https://towardsdatascience.com/knowledge-
graph-bb78055a7884 [Accessed 7 Nov. 2019].

