Extensions to LwM2M for Intermittent Connectivity
and Improved Efficiency

Abdulkadir Karaagac, Matthias Van Eeghem, Jen Rossey, Bart Moons, Eli De Poorter, Jeroen Hoebeke
Ghent University - imec, IDLab, Department of Information Technology
Ghent, Belgium
Email: abdulkadir.karaagac @ugent.be, jeroen.hoebeke @ugent.be

Abstract—In order to extend the Internet technologies into
constrained networks, there have been several research efforts
and innovations over the past few years. These efforts resulted in
several networking standards and protocols which have led to the
emergence of the Internet of Things (IoT). Within this enormous
ecosystem of protocols, the Lightweight Machine-to-Machine
(LwM2M), a standard for device and service management, is
a very promising candidate to achieve global interoperability,
especially when constrained devices are involved. In this paper,
we propose extensions to the LwM2M in order to improve com-
munication efficiency and introduce Intermittent Connectivity,
which will improve support for Low-Power Wide Area Networks
(LPWANS) in LWM2M. For this purpose, we introduce two new
object models, namely, Notify and Batch. The Notify Object
enables the creation of reverse interaction models and Ready-
to-Receive (RTR) functionality, which allows LwM2M clients
to send periodic updates of resources without any need for a
request and to notify LwM2M servers that it is ready to receive
downlink messages and to keep the network connectivity open if
it is necessary for downlink communication. Finally, the Batch
object allows LwM2M servers to perform actions on multiple
resources in a device via a single request.

Index Terms—IoT, CoAP, LwWwM2M, LPWAN, Batch

I. INTRODUCTION

As a result of the latest advances in the Internet of Things
(IoT) technologies, a wide range of new possibilities and
applications emerge with a significant number of devices
(sensors, actuators, vehicles, wearables, implants etc.) being
connected to the Internet: 30 billion devices by 2020 [1].
The majority of these intelligent things are envisioned to be
constrained in terms of processing capability, memory and
energy as well as to have low unit price and long battery life.
Due to these limitations, widely-used Internet protocols are
not appropriate for constrained devices. Therefore, a new set
of open protocols and standards were designed to be used by
these devices in order to integrate with the rest of the Internet.

In this context, several standards and novel wireless tech-
nologies (e.g. LPWANs) have been proposed in order to
achieve energy and resource efficient communication for con-
strained devices. Under the lead of Internet Engineering Task
Force (IETF), many working groups have been formed for the
realization of IP-based connectivity for constrained devices
[2], [3], [4]. Moreover, several research and standardization
initiatives are gathered and constituted to target interoper-
ability and M2M understandability in the IoT. For instance,
oneM2M [5], Open Mobile Alliance (OMA) [6] and Internet

Protocol for Smart Objects (IPSO) Alliance [7] are leading
global organizations that deliver specifications and architecture
for efficient Machine-to-Machine (M2M) communication and
global interoperability for the future of the IoT. The combina-
tion and coordination of these protocols creates a standardized
way for integrating these constrained devices into the Internet,
which makes them an important enabler of the IoT.

Lightweight M2M (LwM2M) is a device and service man-
agement protocol from Open Mobile Alliance (OMA) and
offers series of fundamental functionalities for IoT devices
including secure bootstrapping, resource and device discovery,
efficient transfer of management and application data. Accord-
ing to OMA LWM2M specification, all the interactions (read,
write etc.) are initiated by the LWM2M server. Therefore, a
client can only start sending notifications for certain resources
only upon observation requests for those resources. This
feature creates a limitation for several IoT solutions where
the application logic on the IoT device being programmed
to periodically send an update of a set of resource values or
where there is a sensor data to be collected from devices in
LPWAN Networks where the nodes can be in sleep mode for
a long period of time and for Network Address Translation
(NAT) connected devices.

Therefore, in this paper, we propose extensions to LwWM2M
protocol in order to overcome these issues and also improve
the communication efficiency. First of all, we introduce the
Ready-to-Receive (RTR) functionality in LWM2M by means
of the Notify object, which can improve support for Networks
with Sleepy or NAT connected Devices. The Notify Object
can also be used to create reverse interaction model to get
periodic updates of resources without any need for a request.
In addition, we also create the ability to write to and read from
a subset of resources of an object or multiple resources over
different objects using a single request with a newly proposed
object: the Batch. Also theoretical and practical analyses are
provided in order to demonstrate the contribution of Batch to
achieve more efficient communication in LwM2M.

The remainder of the paper is organized as follows. Sec-
tion Il provides a detailed background about the LwM2M
protocol. In Section III, the LWM2M extensions for Intermit-
tent Connectivity are described. And in Section IV, the Batch
object is introduced in details with theoretical and practical
analysis about its contribution in the network performances.
Finally, Section V concludes the paper.

II. THE LWM2M PROTOCOL

LwM2M is an efficient and secure client-server protocol,
from the Open Mobile Alliance (OMA), with several func-
tionalities for managing resource constrained IoT devices [8].
LwM2M defines efficient interactions for remote application
management via several interfaces built on top of the CoAP
protocol, which is a web transfer protocol for resource con-
strained devices and networks, standardized by IETF CoRE
working group [9]. The overview of the typical LwM2M
interaction model and the structure of a LwM2M object model
is presented in Figure 1.

Object #0

Object #1

M2M
Application

Resource |
Resource 2

Resource 17
Resource 3

Resource 18

LwM2M
Client

Resource 4

Resource 27
Resource 5

LwM2M
server

Object #2
Resource |

Resource 17
LwM2M
Client

Resource 18

Resource 27

Fig. 1. An overview of LWM2M APIs and Data Models.

The LwM2M protocol relies on uniform object models
which are collections of mandatory and optional resources rep-
resenting atomic pieces of information. These object models
are sets of pre-structured URI templates and registries of object
identifiers with semantics attached. This provides machine-
readable representations of the semantics.

LwM2M clients hold multiple objects, each with a unique
identifier: the object ID. Some objects are mandatory (e.g.
LwM2M Security) and some are optional. Each object
can have zero or more instances. Every instance shares
the same set of resources but the exact values in these
resources can differ from instance to instance. Each re-
source within these objects has a Resource ID (RID), which
uniquely defines the resource. Referencing a specific resource
is done using the Uniform Resource Identifier (URI) /ob-
Jject_id/instance_id/resource_id and /object_id/instance_id is
used to reference a specific object instance.

The LwM2M defines resources with different access types
(Read, Write, Read/Write, Execute) and with a wide range of
data types, such as String, Integer, Float along with homoge-
neous lists of these types [8]. But it is not possible to mix
types within a single list. The standard supports a number of
data formats; TLV (Type-Length-Value), JSON, Plain Text and
binary data formats.

III. INTERMITTENT CONNECTIVITY IN LWM2M

Since the LwM2M specification only defines interactions
which are initiated by the LWM2M server, client cannot
instantiate any communication (after bootstrapping and reg-
istration). Due to this limitation, for the devices which are

only reachable for a certain amount of time after each uplink
communication (NAT, Firewalls, port filtering etc.) and for the
devices that are reachable for downlink communication only
after an uplink packet (LPWAN Networks), as illustrated in
Figure 2, the LwWM2M protocol needs further consideration.
Otherwise the LWM2M server will not be able to reach to the
client. A concrete example could be a sensor sending a value
per hour and sleeping for the remaining time.

In order to overcome these issues, we propose extensions
to LWM2M protocol and we introduce the Ready-to-Receive
functionality by means of a new object: Notify. This function-
ality allows clients to send a notification to a predefined URI,
to inform the server that they are awake for downlink messages
and/or keep the connection open for downlink messages. Then
already buffered or notification-upon created messages/re-
quests can be transmitted upon the notification. Also a NAT-
connected device can stay connected for downlink requests if
the notification periodicity can be adjusted according to the
NAT session timeout.

The details about the Notify object is provided in Table I.
Resource URI represents a Web Link to the URI of the
resource or instance that the updates will include. SSID
represents the resource defining which external server that the
update should be sent to. While, URI Path is the exact path on
the server to write the update to using a PUT operation. The
payload of this update message is the value of the resource
with defined in Resource URI. Further, periodicity defines how
often an notification should be sent and Send Confirmable
Message lets the user define which type (confirmable, non-
confirmable) of CoAP message should be sent. Finally, No
Response is used to make the server not to send a response
to specific (or all) types of messages as described in [10].
In this model (also for following sections), the IDs for the
proposed objects (2346, 2347, 5913 etc.) are not standardized,
but have been selected among the unassigned IDs according
to the LWM2M Object and Resource Registry [11]. However,
a final ID assignment should go via registration procedure.

TABLE I
THE NOTIFY OBJECT (ID: 2347).

RID Name R/W Type Description

5915 Resource URI R/W String (Link) Link to the URI of the target resource.
5916 SSID R/W Integer Short Server ID.

5917 URI Path R/W String URI path on the server.

5918 Periodicity R/W Integer Period of uplink transmissions (sec).
5919 Confirmable R/W Boolean Set CoAP messages to be Confirmable.
5920 No-Response R/W Boolean Enable No-Response option in message.

The Notify object is also offering functionality to create
reverse interaction model, which allows a user/server to reg-
ister on a device to periodically receive updates for resources
defined in Resource URI. This creates a solution for several
IoT solutions where the application logic on the IoT device
being programmed to periodically send an update of a set of
resource values to a configured or pre-defined server address.
Such a mechanism can also save an important amount of
resources especially in case of several clients (thousands), as
investigated in Section IV-C3.

LwM2M
Server

° L]
ce
LightweightM“M e

146

f

SigFox
Network
LoRaWAN
Network
——————————— () /Zzzz>
Ak VO Y. WY | R /)/\,, NB-loT User
So NB-loT === —O Equipments
\\ Network (UEs)
\
1

\ ==
o |

SigFox
Endpoints

LoRa GW

¥ LoRa L
- - O LoRa

Endpoints

I

NB-10T —

eNodeB

Endpoints behind
NAT/FW

Internal
Network

Fig. 2. The Intermittent Connectivity for LPWAN Networks and Networks behind NAT/FW.

IV. THE BATCH

Although the LwWM2M protocol is providing efficient inter-
actions for transferring service and application data, there are
still some limitations. Currently, LWM2M allows reading an
entire object instance or a certain resource by using a single
request, however it is not possible to read a subset of resources
of an object or multiple resources over different objects using a
single request. So, separate requests have to be sent in order to
read the values of multiple resources. Similarly, it only allows
an object instance to be updated partially or entirely using a
single request. This means that it is possible to edit multiple
resources simultaneously as long as they belong to the same
object instance. As is the case with reading, it is not possible
to write to multiple resources across object instances using a
single request.

In this context, IPSO defines Composite Objects where
multiple objects can be combined using the Web Linking
Framework [12]. However, this only provides semantic infor-
mation about the objects which are linked, but it does not allow
aggregating related or non-related objects or a subset of re-
sources in a single request or response. Alternatively, recently
proposed CoAP methods (FETCH, PATCH and iPATCH) [13],
which enable to access and update only a certain part of a
resource, improve the efficiency compared to primary CoAP
methods. However they do not allow operations on multiple
resources across different objects and they introduce a level of
overhead due to added target resource URIs in the requests.

A. The LwM2M Batch Object

The Batch object is a new custom LwM2M object that
allows the user to perform actions on multiple resources in
a device by sending a single request. The overall Batch object
is presented in Table II with two mandatory resources, named
Batch Configuration and Batch Value.

TABLE II
THE BATCH OBJECT (ID: 2346).

RID Name R/W Type Description

5913 Batch R/W String (List) ~ The list of aggregated re-
Configuration sources.

5914 Batch Value R/W String (List) Values of the resources de-

fined in Batch configuration.

The Batch Configuration (5913) resource allows users to
specify the resources that they are interested in, whereas the
Batch Value (5914) resource allows the user to read from
or write to the resources defined in the Batch Configuration.
Both of these resources have type of ’list of strings’ and are
both readable and writable. If the aggregated resource are
integers, floating point numbers or booleans, their encoding
in the Batch Value would not be efficient at the moment, but
a more efficient encoding (e.g cbor) for the value resource of
the Batch object can be studied.

B. The Batch Operation

An example flow of the Batch create, read and write
operations is visualized in Figure 3. In this example, the Batch
configuration is first set to contain two resources: /x/y/z and
/a/b/c. The second step simply reads what was just written. The
configuration and value resources are directly linked with each
other: the first string in the Batch value resource corresponds
to the first URI in the Batch configuration etc. In the example,
the value 42 corresponds to the resource /x/y/z, and ’test
message” is the value of resource /a/b/c. In the third step, the
Batch value resource is read. The values of the resources in
the Batch configuration are collected into a list and returned.
Those values are collected into a list of strings and returned in
a single request. The fourth step shows the operation to edit
the values of multiple underlying resources at a time.

LwM2M LwM2M

Set the Batch object's configuration Convert the list to a string for the client

PUT {"id": 5913, "values": ["/x/y/z", "la/blc"] Write /batchObjectld/instanceld/5913

on /batchObjectid/instanceld/5913 ['Ixlylz", "lalblc"]

200 OK
{ "status": "CHANGED"}

2.04 Changed

Read the Batch object's Read the Batch object's configuration

GET /batchObjectld/instanceld/5913 Read /batchObjectld/instanceld/5913

200 OK
LI {'status": "CONTENT", "content"
T {lid": 5913, "values": ['/xly/z", "/alblc" [}

2.05 Content
["Ixlylz", “falblc"]

Read the Batch object's value Read the Batch object's value

GET /batchObjectld/instanceld/5914

Read /batchObjectid/instanceld/5914

200 OK 2.05 Content

T {"status”: "CONTENT", "content": {"id": 5914, T [42", "test message’] =

"values": ['42", // Value for /x/y/z
"test message" / Value for /a/b/c

I

Set the Batch object's value Convert it to something the client can read

PUT {"id": 5914, "value": Write /batchObjectld/instanceld/5914

"1994", // New value for /x/y/z [1994", "another message']

"another message" / New value for /a/b/c

n

L 200 OK L
{ "status": "CHANGED"}

2.04 Changed —

Fig. 3. A sequence diagram showing the interaction with the Batch object.

Since each operation on batch object applies to each of
the aggregated resources, Read-only and Write-only resources
cannot be aggregated into a single batch. Therefore, there
needs to be a validation process for the content of the batch
during creation.

When using the Batch object, updating multiple resources
is an atomic operation. Either all resources of the batch are
updated or none are, e.g. in case the packet is lost for ex-
ample. However, using individual requests to update multiple
resources in or across objects, the data in the resources might
be partially updated in case of the loss or delay of a subset
of packets, and therefore left in an invalid state. With Batch,
one can ensure that all necessary resources are updated jointly
which will ensure that the object is not left in an invalid state.

The Batch object also supports CoAP Observe functionality,
which allows CoAP clients to observe resources on CoAP
servers. If a value of a resource is changed through the Batch
object, the Batch object makes sure to propagate this change
to all of the potential observers of this resource. The reverse is
done as well: if a resource is present in the Batch configuration
and it is changed externally (i.e. not through the Batch object),
observers of the Batch object are notified of a change as well.

C. Evaluation: The Contribution of the Batch

In this section, we performed theoretical and practical anal-
ysis of various communication scenarios involving LwM2M
devices in order to investigate the potential contribution of the
Batch approach. For this purpose, we compared the commu-
nication performance (required data to exchange, latency) for
operations on several resources by means of first the Batch,
which aggregates all the resources, and then multiple separate
requests.

1) Theoretical Analysis: As it can be expected, the Batch
approach is resulting in aggregated payload with larger packet
sizes. However, due to the smaller number of requests and
responses, the Batch object can provide a lot more efficient
operations in terms of the total number of bytes to be ex-
changed. In order to demonstrate this efficiency improvement,
we defined a simple scenario where a LwWM?2M server performs
Read requests on different number of resources (each holds a
response with an information of 4 Bytes long) in a LwWM2M
client. The amount of data (bytes) to be exchanged in order
to perform these Read operations is provided in Figure 4
for varying number of resources to be read in TLV and
JSON encoding schemes. This figure shows the fact that the
Batch operation can improve the communication efficiency
drastically compared to the case of using multiple requests.
However, it is important to emphasize that the improvement
of the Batch operation would change based on the number,
type and length of the resources to be aggregated.

1400

JSON (Single)

-

1200 | = = = JSON (Batch)

TLV (Single)

1000 - TLV (Batch)

r
@

£

=}

5 800

ged to

h

Bytes

Number of resources requested
Fig. 4. The amount of bytes required to complete multiple requests.

Similarly, as the number of packets to be exchanged is
decreased with the use of Batch, the total latency for certain
operations will also diminish. In order to demonstrate this, we
performed a simple analysis for the use of the Batch operation
in a bandwidth-constrained LPWAN technology, using LoRa
as a suitable example [14]. In a LoRA network, the total
latency for a number of packet exchange would result in the
total latency of all requests and responses along with the delay
coming from the duty cycle regulations and a constant value:

latency = Z airtime(reqn)+airtime(respn)+D(an)+C (1)
i=1

In this equation, the airtime represents the packet trans-
mission time and it depends mostly on the spreading factor
(SF7-SF12), coding rate and bandwidth used [15]. According
to the LoRA airtime calculator [16], 1 single request consists
of 16 bytes CoAP header and 11 bytes payload, which adds
up to 27 bytes packet length, resulting in 82 ms of airtime.
Requesting 6 resources separately would thus result in 492 ms
of sending time. Aggregating 6 of these requests in a single
Batch, would require a single 16 bytes CoAP header and 66
bytes of payload. These 82 bytes result in 164 ms of airtime,
or 3 times less airtime for the same amount of data. So, the

Batch object decreases the number of request and response
messages, so it decreases the total airtime of the LoRa packets.
Secondly, D(a,) represents the delay which would come from
the duty cycle regulations (e.g. 1% in EU 868) and it is directly
proportional to packet airtime. Therefore, it will also decrease
as the Batch operation decreases the total communication
airtime. The constant (C) part consists of the processing delay
and the time to transfer packets between the gateway and the
cloud and this constant delay will add up and be larger for the
sending multiple requests.

However, combining multiple resources will not always re-
sult in a gain in efficiency. Whenever the size of the aggregated
response message is larger than the maximum transfer unit
(MTU) allowed to be sent over the network, the message
will be split into multiple packets. This is expected to impact
the communication performance negatively. This now poses
a trade-off: using single requests requires a separate packet
to be sent for every resource, but from a certain number of
resources, the Batch object’s packet size will exceed the MTU
and it will also require multiple packets using block transfer.
This second option could cause the Batch object to become
less efficient.

2) Practical Evaluation - Exposing Device Location: In
order to see how well this idea stacked up against the state
of the art, the Batch object and related functionalities are
implemented for both a LwM2M client and server. For the
LwM2M client, an open source C implementation of LwM2M,
named Anjay, was used [17]. And for the server side, an open
source LwM2M Server implementation, called Leshan, was
used [18]. In order to achieve target functionalities, Anjay and
Leshan were extended with the proposed Batch object and the
reverse interaction model.

In this evaluation, an external system (Localization Server)
calculates the position (X,Y,Z) of a device and notifies the
device of its new position. The Localization Server holds
a LwM2M server, that the positioned device registered, and
performs operations on the Position object instance, presented
in Table III, available on the positioned devices.

TABLE III
THE LWM2M POSITION OBJECT (ID: 3360).

RID Name R/W Type Description

5701 Sensor Units R/W String Measurement Units Definition.
5702 X Value R/W Float The measured value along X axis.
5703 Y Value R/W Float The measured value along Y axis.
5704 Z Value R/W Float The measured value along Z axis.
5516 Uncertainty R/W Float The accuracy of the position.
5518 Timestamp R/W Time The time of location measurement.
5750 Application Type R/W String The Application Type.

Since Localization Server calculates coordinates at once, the
X Value, Y Value and Z Value (5702, 5703, 5704) resources
are updated every time a new position triple is received. For
this purpose, two different approaches are evaluated. In the
first, each new position is sent over three separate packets
(x,y,z). In the second approach, when using the Batch object,

after the registration of the LwM2M client registers with
the localization server, the localization server creates a Batch
object instance and immediately set the Configuration resource
value to the corresponding resource IDs in the Position object
as illustrated in Figure 5.

< LESHAN SECURITY

Multivalue TLv- |Singlevalue TLV~

Batch Object
c

Instance 0
Batch Configuration o

9

0=/3360/0/5702, 1=/3360/0/5703,
2=/3360/0/5704

0=73.050003, 1=29.280001,
224580000

Batch Value Observe B | W || Read || Wiite

Fig. 5. A sample Batch Object Instance in LwM2M Server (Leshan).

In each approach, the position is updated 10 times. The
packets for creating the Position object and creating the Batch
object are included in the calculations. The impact of having
to create these instances in the first solution becomes smaller
over time. The measured data traffic values are provided in
Table IV. These values show that Batch approach provides
a lot more efficiency than updating the (X, y, z) coordinates
separately in three different requests.

TABLE IV
DATA TRAFFIC FOR DIFFERENT POSITION UPDATING POLICIES.
Batch Three req.

Bytes exchanged 2.065 4.203
Bytes sent 1.403 2.522
Bytes received 662 1.681
Payload sent (in bytes) 899 1.220
Payload received (in bytes) 158 379
Packets exchanged 24 62

3) The combination of Batch and Reverse Interaction
Model: Another limitation of LwM2M is that it is not possible
to get periodic updates of multiple resources in a single packet,
without having to send requests. This is what we attempt to
solve by combining the Batch with the reverse interaction
model created with the Notify object. In this subsection
we evaluate potential performance improvement for such an
operation.

In this experiment, an external system wants to know the
temperature (/3303/0/5700), humidity (/3304/0/5700), coordi-
nates (X,Y,Z: /3360/0/5702, /3360/0/5703, /3360/0/5704) and
battery state (/3/0/9) of a device with a period of 15 minutes.
For this purpose, three different approaches are considered.
In the first approach, the external system makes six separate
requests to the resources every 15 minutes, while the second
approach uses the Batch object and the external system sends
a single request for the Batch object’s value every 15 minutes.
The last approach is based on a Notify Object instance which
holds a target Resource URI that links to a Batch Object
Instance. This operation will create a reverse interaction model
which automatically sends updates of the Batch every 15
minutes to the external system.

The results, as presented in Table V, are calculated for 96
updates in total (24h / 15min) and the JSON data format is
used. These results show that the Batch is almost six times
more efficient than making six separate requests. The reverse
interaction model is improving the efficiency even more by
sending the data automatically to the registered server.

TABLE V
RESULTS FOR GETTING RESOURCE VALUES OVER MULTIPLE OBJECTS.

Sep. requests Batch Reverse Batch
Bytes exchanged 95.904 30.259 23.658
Bytes sent 39.168 6.774 173
Bytes received 56.736 23.485 23.458
Payload sent (in bytes) 14.976 2.700 131
Payload received (in bytes) 32.544 19.411 19.411
Packets exchanged 1.152 194 98

D. To BATCH or Not To BATCH

The previous sections show that the Batch object can
improve communication efficiency in LwM2M, however there
might be cases or scenarios where the Batch approach does
not improve the performance, even decrease in certain cases.
Therefore, there are certain factors which should be taken into
consideration while deciding whether or not to use Batch.

First of all, the number of aggregated resources and their
types are crucial factors which define the contribution of the
Batch operation. For instance, if total payload size of an
aggregated response message exceeds MTU, the performance
of Batch operation would decrease.

Secondly, another factor that should be considered is packet
loss. Using the Batch requires only a single response, while
separate requests require multiple responses. That means, in
case of packet loss, all aggregated data will be lost.

In case of observing a Batch object, with every resource in
the Batch configuration (even those unchanged) being included
in every notification, the packets containing the updated values
are larger than needed. This means that, depending on how
many resources the CoAP client wants to observe, how often
each resource provides an update and how long the continued
interest has to be shown, the CoAP client should thus choose
between observing multiple resources at a time or observing
a Batch object instance.

Moreover, security should also be taken into account. Due
to the significant overhead added by security protocols, the
probability of exceeding the MTU will be a lot higher and
the efficiency of Batch operation might diminish. Of course,
security will also impact individual requests, but this trade-off
should be studied further.

V. CONCLUSION

Although the LwM2M protocol is providing powerful and
efficient functionalities for IoT devices, it has still some
limitations. Therefore, in this paper, we propose extensions
to the LWM2M protocol in order to improve communication
efficiency and introduce Intermittent Connectivity in LwM2M.

The proposed Notify Object enables a Ready-to-Receive
functionality, which allows a LwM2M client to notify
LwM2M servers that it is ready to receive downlink messages
and to keep the network connectivity open if it is necessary for
downlink communication (e.g. NAT-connected devices). This
object can be also used to create reverse interaction model
where LwM2M clients can send periodic updates without
any need for a request. In addition, the Batch object allows
LwM2M servers to perform actions on multiple resources in a
device via a single request. Despite resulting in larger packet
sizes, the Batch approach can improve the communication
efficiency. However, there are certain factors that should be
taken into account in the decision process of the Batch usage:
number of resources, resource types, encoding type, update
rates, resource data size and network MTU. Such factors affect
the efficiency of the Batch operation and the unthoughtful
usage of Batch object can lead to performance drops.

ACKNOWLEDGMENT

Part of this research was funded by the Flemish FWO SBO
S004017N IDEAL-IoT (Intelligent DEnse And Longe range
IoT networks) project, and by the ICON project MAGICIaN.
MAGICIaN is realized in collaboration with imec, with project
support from VLAIO and Innoviris. Project partners are imec,
Orange Belgium, Televic Healthcare, Restore and Citymesh.

REFERENCES

[1] A. Nordrum, “Popular Internet of Things Forecast of 50 Billion Devices
by 2020 Is Outdated,” August 2016.

[2] “IPv6 over Low power WPAN (6LoWPAN).”
http://datatracker.ietf.org/wg/6lowpan, accessed on 1 June, 2018.
[3] “Routing Over Low power and Lossy networks (ROLL).”

http://datatracker.ietf.org/wg/roll, accessed on 1 June, 2018.

[4] “Constrained RESTful Environments
http://datatracker.ietf.org/wg/core/, accessed on 1 June, 2018.

[5] oneM2M, “White Paper: The interoperability enabler for the entire M2M
and IoT ecosystem,” January 2015.

[6] Open Mobile Alliance. http://openmobilealliance.org/, accessed on 1
June, 2018.

[7] Internet Protocol for Smart Objects (IPSO) Alliance. https://www.ipso-
alliance.org/, accessed on 1 June, 2018.

[8] Open Mobile Alliance, “Lightweight Machine to Machine Technical
Specification,” February 2017.

[9] Z. Shelby, K. Hartke and C. Bormann, “The Constrained Application

Protocol (CoAP),” RFC 7252, IETF, June 2014.

A. Bhattacharyya and S. Bandyopadhyay and A. Pal and T. Bose, “Con-

strained Application Protocol (CoAP) Option for No Server Response,”

August 2016.

Open Mobile Alliance, “OMA LightweightM2M (LwM2M) Object and

Resource Registry.”

J. Jimenez, M. Koster and H. Tschofenig, “IPSO Smart Objects,” January

2016.

P. van der Stok, C. Bormann and A. Sehgal, “PATCH and FETCH

Methods for the Constrained Application Protocol (CoAP),” April 2017.

N. Sornin, M. Luis, T. Eirich, T. Kramp, O. Hersent, “LoRa specification.

Technical report,” January 2015.

A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A Study of LoRa:

Long Range and Low Power Networks for the Internet of Things,”

Sensors, September 2016.

The Things Network, LoRa(WAN) airtime calculator.

https://docs.google.com/spreadsheets/d/1QvcKsGeTTPpr9icj4 XkKXq4r

27Tc2j0gsHLrnplzM3I, accessed on 1 June, 2018.

AVSystem, “Anjay: open-source LwM2M Library.”

https://www.avsystem.com/products/anjay, accessed on 1 June, 2018.

Eclipse, “Leshan: An OMA Lightweight M2M (LWM2M) implementa-

tion in Java.” https://eclipse.org/leshan/, accessed on 1 June, 2018.

(CORE)”

[10]

(11]
[12]
[13]
[14]

[15]

[16]

(171

(18]

