
A Pure HTTP/3 Alternative to MQTT-over-QUIC in
Resource-Constrained IoT

Darius Saif∗, Ashraf Matrawy†
Carleton University, Department of Systems and Computer Engineering∗, School of Information Technology†

Email: Dariussaif∗,Amatrawy†@sce.carleton.ca

Abstract—In this paper, we address the issue of scalable, inter-
operable, and timely dissemination of information in resource-
constrained IoT. Scalability is addressed by adopting a publish-
subscribe architecture. To address interoperable and timely
dissemination, we propose an HTTP/3 (H3) solution that exploits
the wide-ranging improvements made over H2. We evaluated our
solution by comparing it to a state-of-the-art work: MQTT-over-
QUIC. Because QUIC and H3 have undergone standardization in
tandem, we hypothesized that H3 would take better advantage of
QUIC transport than an MQTT mapping would. Performance,
network overhead, and device overhead were investigated for
both protocols. Our H3-based solution satisfied our timely dis-
semination requirement by offering a key performance savings
of 1 RoundTrip Time (RTT) for publish messages to arrive at the
broker. In IoT networks, with typically high RTT, this savings is
significant. On the other hand, we found that MQTT-over-QUIC
put marginally less strain over the network.

Index Terms—IoT, QUIC, HTTP/3, MQTT, Standards

I. INTRODUCTION

To realize an Internet of Things (IoT), many low-cost wire-
less devices must be deployed in a variety of locations. These
sensory devices are often limited in computing resources,
storage, and battery. Because of these characteristics, it is im-
perative that lightweight and energy efficient communication
standards be used between sensors themselves, gateways, and
fog networking nodes [1]. The heterogeneous nature of IoT
makes interoperability ever-more important, giving rise to the
Web of Things (WoT) [2] for protocols like MQTT and HTTP.

QUIC, an emerging protocol, has become an area of interest
in IoT. It is a cross-layer standard that offers integrated
security, reduced connection establishment time, and advanced
stream multiplexing. It has been found that QUIC can out-
perform TCP+TLS in networks with higher loss and Round-
Trip Time (RTT) [3]. Such conditions are present in resource-
constrained IoT. Researchers [4], [5] have thus mapped MQTT
to run over QUIC and evaluated it against MQTT-over-TCP.

QUIC, however, was designed and tuned to carry HTTP
traffic, forming the basis of HTTP/3 (H3). Given that, our
research objective is to determine whether a pure H3 publish-
subscribe (pub-sub) architecture can provide even further gains
than MQTT-over-QUIC. We hypothesize that, because of the
vertical integration of H3 and QUIC, H3 is better positioned
to take full advantage of QUIC transport, instead of MQTT.

To this end, the contributions of this paper are i.) addressing
scalable, interoperable, and timely dissemination of informa-
tion in resource-constrained IoT networks, and ii.) comparison
in three categories between MQTT-over-QUIC and against an
H3-enabled pub-sub application of our creation.

II. RELATED WORK

Saif et al. [6] compared web-page performance of H3 draft
27 and H2 in more traditional networks. A suite of metrics
was used to shed light on Quality of Experience (QoE). It was
shown that H3 was more impervious to network impairment,
even though H3’s QoE scoring was marginally worse than H2.

Lars Eggert [7] showed that IoT devices are capable of
running QUIC. Two development boards with 32-bit micropro-
cessors were examined running QUIC via Quant and picoTLS.
Storage space, battery consumption, as well as memory and
CPU usage on the boards were monitored while various QUIC
transactions (downloads) took place. It was found that QUIC
required about 63KB of flash, 16KB of heap memory, 4KB
of stack memory, and 0.9J energy per transaction. This was
deemed sufficient and that, with further optimizations, QUIC
could run on 16-bit processors as well. This work, unlike ours,
did not include H3, however.

Kumar and Dezfouli [4] outfitted Chromium’s GQUIC to
carry MQTT. Because MQTT and QUIC both run in user-
space, they had written inter-process communication APIs and
redesigned various data structures to make their solution func-
tional. Raspberry Pi 3 Model B’s were used as the subscribers,
publishers, and broker. Three network categories were used
in their testing: wired, wireless, and long distance. During
connection establishment, MQTT-over-QUIC reduced packets
exchanged with the broker by up to 56.25%. To test Head-
of-Line Blocking (HoLB), packets were randomly dropped.
MQTT (over TCP) was shown to have higher latency in every
network configuration. Memory and processor utilization of
the broker were also monitored for half-open connections.
Although MQTT-over-QUIC used slightly more resources,
it relinquished up to 83.24% and 50.32% more processor
and memory usage respectively compared to MQTT. Lastly,
MQTT-over-QUIC was found to be more resilient to when the
broker’s IP changed mid-transaction.

Fernandez et al. [5] had also ported MQTT over to QUIC
and compared it against TCP. A pure GO implementation [8]
of QUIC was integrated with Eclipse Paho and VolantMQ.
These packages were used as the publisher and broker, respec-
tively. Their implementation was made available open-source.
They used NS-3 to emulate different network profiles: WiFi,
4G, and satellite. On each profile, testing of single and multiple
MQTT connections were investigated. In the single connection
tests, the time delta starting from 1000 packets being published
to the last of such messages being pushed to a subscriber

ar
X

iv
:2

10
6.

12
68

4v
3

 [
cs

.N
I]

 2
7

O
ct

 2
02

1

was recorded. They found that QUIC outperformed TCP in
every configuration, by up to 40%. Connection establishment
time was the focus of the multiple connection testing. After
publishing one message, the connection to the publisher and
broker was closed. Afterwards, another message was published
on a new connection. QUIC proved to perform slightly better
than TCP and also exhibited less variation.

Rather than creating specific conversion code and changing
data structures to support MQTT over QUIC transport – which
can introduce sub-optimal performance – our work considers
a pure H3 pub-sub implementation. Our implementation was
compared against Fernandez et al.’s [5] MQTT-over-QUIC.

III. H3 PUBLISH-SUBSCRIBE ARCHITECTURE

Previous versions of HTTP were deemed to be inappropriate
for IoT due to the nature of its connection management [9].
Connection setup times were lengthy and subject to HoLB.
Both of these factors were greatly reduced in H3 because
of its 0 or 1-RTT establishment times in addition to QUIC’s
knowledge of streams in the transport layer. Because of these
significant gains, we explore the viability of H3 pub-sub.

HTTP was not built for pub-sub, but its APIs are versatile
enough to handle it and is also highly interoperable. For
the purposes of this paper, an HTTP pub-sub architecture
was adapted from Drift [10]. The way Drift handles pub-sub
functions over HTTP is shown in Table I. In each case below,
the client encodes the topic name into the URL.

Topic Exists HEAD Server returns 200 if it exists, else 404.

Create Topic PUT Server sanity checks the topic name and
creates the topic if checks pass.

Delete Topic DELETE Server cleans up topic data and unsub-
scribes all parties from the topic.

Publish to
Topic

POST Client encodes topic name in URL and in-
cludes data in message body, server stores
information and pushes to subscribers.

Subscribe to
Topic

GET Client spawns a listener for incoming
events, server appends node to the list of
nodes subscribed to the topic.

TABLE I
H3 PUBLISH-SUBSCRIBE SEMANTIC MAPPINGS

We retooled Drift to run over H3. Drift was chosen due to its
few dependencies and open-source code written in GO. Since
Fernandez et al.’s [5] implementation was also executed with
GO, this made for a more fair comparison. In our testing, the
underlying QUIC code [8] was common to H3 pub-sub and
MQTT-over-QUIC.

Firstly, we scrapped the entirety of Drift’s transport pack-
age, because it was based on a GO module of H2 [11]. We
fully replaced and upgraded this functionality with the equiv-
alents from QUIC-GO’s H3 stack package. These changes
posed consequences in Drift’s client package. This package
housed the methods used for mapping pub-sub concepts to
HTTP APIs, as outlined in Table I. Minor amendments to these
methods were necessary in order for us to better accommodate
H3 APIs, due to differences in implementation between the H3
and original H2 modules.

Likewise, we also upgraded the server package code to run
H3. This was taken care of by adding an H3 listener call
from QUIC-GO into the server package along with a Cookoo
[12] based HTTP handler. Cookoo, a chain-of-command GO
framework, was used for the management of topics and
publishers/subscribers on the broker entity.

IV. NETWORK MODELLING

NetEm [13] was leveraged to meet this paper’s focus on
realistic resource-constrained IoT network conditions. Because
Eggert established the validity of running QUIC on IoT de-
vices in [7], a proof-of-concept approach is used in this paper
through the means of emulation. Delay and rate throttling rules
were applied to outgoing packets on the publisher and broker
network interfaces, as shown in Figure 1:

Fig. 1. Emulated Network Topology

The 3GPP’s Narrowband-IoT (NB-IoT) network parameters
were used in this paper. Given NB-IoT’s high RTT and modest
data rates [14], such attributes make it a suitable choice for
resource-constrained IoT. The network parameters [14] of NB-
IoT’s second generation standard were incorporated into our
environment. These parameters are summarized in Table II:

Downlink Rate 127 kbit/s
Uplink Rate 159 kbit/s

Round-Trip Time 2 seconds

TABLE II
NB-IOT CAT NB2 NETWORK PARAMETERS

V. EXPERIMENTAL SYSTEM SETUP

Ubuntu 18.04.4 (kernel 4.15.0-88) Virtual Machines (VMs)
were deployed in Oracle’s VirtualBox for the roles of pub-
lishers, subscribers, and the broker. All VMs were allocated
4 processors and 6GB of memory. To allow for VM-to-
VM communications, they were configured using a Host-
only Ethernet Adapter. The PC hosting the VMs was a 64-bit
Windows 10 machine (24GB RAM and Intel i5-836U CPU).

In our setup, default tuning of QUIC-GO [8] release v0.20.1
powered both the H3 and MQTT-over-QUIC implementations.
Transport specific factors, like 0-RTT, are expected to equally
affect both and are therefore not considered. Thus, we focus
on the application layer differences between H3 and MQTT.

The setup adhered to the IETF draft 29 QUIC standard
[15] and the quic transport parameters in each protocol’s

Client Hello were identical. Both also used CUBIC congestion
control [16] and path MTU discovery. MQTT-over-QUIC used
basic authentication. Dynamic table QPACK was not used for
H3; only the static table and encoded string literals were em-
ployed. QPACK [17] is H3’s method of header compression.

NetEm rules provisioned on the broker accounted for the
downlink rate and half the RTT value, in accordance to the
NB-IoT parameters of Table II. Conversely, the uplink rate and
half the RTT value from Table II were imposed with NetEm
on the publisher/subscriber’s network interface card.

VI. RESULTS

A. Performance Indicators

1) Time to First Data Frame: This was the delta between
the publisher’s initial Client Hello and its first data frame (H3
DATA FRAME or MQTT PUBLISH packet, respectively). As
shown in Figure 2, this measurement was independent of the
size of the message. What was striking, however, was that
MQTT-over-QUIC required one additional RTT for the publish
message content to be sent – delaying the message by seconds.

Fig. 2. Time to First Data Frame with Increasing Message Size

This was due to MQTT’s application level connection setup
overhead when any form of authentication is used. The first
packet a publisher must send to the broker is a CONNECT
packet. As per MQTT’s specification ”If a Client sets an
Authentication Method in the CONNECT, the Client MUST
NOT send any packets other than AUTH or DISCONNECT
packets until it has received a CONNACK packet” [18]. This
added an additional RTT which was not necessary in our pure
H3 pub-sub implementation.

2) Time to Connection Close & Throughput: Five publisher
clients, staggered by one second, each sent one 1KB message
to the broker. Packet loss falling within the typical bounds for
NB-IoT [19] was applied with a uniform distribution.

All of the H3 transactions completed by the 8 second
mark, whereas MQTT-over-QUIC lagged roughly 1.4 seconds
behind. Also, H3 achieved a 24% higher peak throughput at
the connection level but MQTT-over-QUIC’s peak throughput
for the aggregate of connections was 2.88% higher. Figure
3 shows the connection-level plots for each implementation,
with data points aggregated over 200ms intervals.

Fig. 3. Interleaved Clients Publishing via MQTT and H3

B. Network Overhead
The total amount of bytes and packets exchanged between

the broker and publisher was examined for messages of
increasing size (1 to 10KB). Figure 4 shows that H3-based
transactions required more data exchange than MQTT-over-
QUIC – meaning higher network overhead. Still, the two im-
plementations were quite competitive: the average increase of
bytes transmitted was found as 3.23%. Similarly, the number
of packets transmitted for H3 transactions were, on average,
11% more than MQTT-over-QUIC.

Fig. 4. Transaction Size vs. Increasing Message Size

Because of NB-IoT’s large RTT, the default tuned QUIC
transport was rather aggressive. By the time the broker’s re-
sponse to the publisher’s initial establishment request arrived,
six additional retry Client Hello packets were sent by the
publisher. This elicited further server responses, attributing to
unnecessary data exchange. Such occurred in every transaction
for both implementations (nullifying its effects), which led to
the somewhat inflated numbers in Figure 4.

C. Device Overhead
Keeping in mind the intended IoT environment, resource

consumption was given careful consideration. To this end, the
Linux command ps was employed in order to give further
insights. For the duration of each publish process, ps was
sampled every 100ms for CPU utilization.

The CPU consumption is reported as a percentage – that is,
the ratio of CPU time used to the process’ duration. Figure 5
shows that the CPU usage of H3 was not only unpredictable,
but also much higher than that of MQTT-over-QUIC.

Fig. 5. Peak CPU Usage with Increasing Message Size

A GO profiler, pprof, was used to investigate memory.
The total number of bytes allocated in heap memory were
investigated for both H3 and MQTT-over-QUIC. The profiler’s
MemProfileRate was driven to 0 in order to record all allocated
blocks. Results were collected from 10KB publish messages
and the top command was used to identify the 5 most memory-
hungry functions. These results are shown in Figures 6 and 7:

Fig. 6. Top 5 Memory Consumers for H3

The flat columns represent memory that was allocated, and
held, by that particular function whereas cum columns are
inclusive of the function’s children. The sum% column is the
summation of the current, and all previous, flat% values.

Fig. 7. Top 5 Memory Consumers for MQTT-over-QUIC

H3 used approximately 10 times the memory as MQTT-
over-QUIC. The cause of this disparity is due to H3’s TLS
configuration. Functions for decoding and parsing the x509
certificate and its fields account for the vast majority of this
gap. The x509 certificate overhead also largely attributed to
the extra CPU. pprof was run in CPU profiling mode for H3
and it uncovered that 37.5% of H3’s time occupying the CPU
went towards dealing with the x509 certificate.

VII. CONCLUSIONS

In this paper, an H3 pub-sub alternative to MQTT-over-
QUIC for resource-constrained IoT was designed and ex-

plored. This implementation retained features akin to MQTT
and was quite competitive in terms of network overhead.
A savings of 1-RTT during publishing went to H3’s favor
because of its cross-layer integration with QUIC. The signifi-
cance of this result is that, in IoT networks, messages can be
received (and pushed to subscribers) seconds faster.

H3 was more taxing than MQTT-over-QUIC on the end
device – for resource-constrained IoT, this poses a clear trade-
off. It dipped further into the device’s CPU and memory. Code
profiling with pprof in our test environment found this was
primarily due to implementation-specific factors.

QUIC/H3 have proven themselves as having strong potential
for scalable, interoperable, and timely communication for IoT.
In that vein, points of our future work include i.) extending our
test environment for more realistic conditions, ii.) non-default
stack tuning, and iii.) exploring alternatives to x509 for H3.

REFERENCES

[1] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A Survey of
Communication Protocols for Internet of Things and Related Challenges
of Fog and Cloud Computing Integration,” ACM Computing Surveys
(CSUR), vol. 51, no. 6, pp. 1–29, 2019.

[2] D. Raggett, “The Web of Things: Challenges and Opportunities,” Com-
puter, vol. 48, no. 5, pp. 26–32, 2015.

[3] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, et al., “The QUIC Transport Protocol: Design and Internet-Scale
Deployment,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pp. 183–196, 2017.

[4] P. Kumar and B. Dezfouli, “Implementation and Analysis of QUIC for
MQTT,” Computer Networks, vol. 150, pp. 28–45, 2019.

[5] F. Fernández, M. Zverev, P. Garrido, J. R. Juárez, J. Bilbao, et al., “And
QUIC meets IoT: Performance Assessment of MQTT over QUIC,” in In-
ternational Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), pp. 1–6, IEEE, 2020.

[6] D. Saif, C.-H. Lung, and A. Matrawy, “An Early Benchmark of Quality
of Experience Between HTTP/2 and HTTP/3 using Lighthouse,” in
International Conference on Communications (ICC), IEEE, 2021.

[7] L. Eggert, “Towards Securing the Internet of Things with QUIC,” in
Workshop on Decentralized IoT Systems and Security (DISS), 2020.

[8] “A QUIC Implementation in Pure Go.” https://github.com/
lucas-clemente/quic-go. Accessed: 2019-12-03.

[9] T. Yokotani and Y. Sasaki, “Comparison with HTTP and MQTT on
Required Network Resources for IoT,” in International Conference
on Control, Electronics, Renewable Energy and Communications (IC-
CEREC), pp. 1–6, IEEE, 2016.

[10] “Drift: An HTTP/2 Pub/Sub service.” https://github.com/technosophos/
drift. Accessed: 2020-12-14.

[11] “HTTP/2 Package.” https://pkg.go.dev/golang.org/x/net/http2. Accessed:
2021-09-11.

[12] “Cookoo: A Chain of Command Framework Written in GO.” https://go.
googlesource.com/net/+/master/http2/. Accessed: 2021-09-11.

[13] S. Hemminger et al., “Network Emulation with NetEm,” in Linux
Conference Australia, vol. 844, Citeseer, 2005.

[14] A. D. Zayas and P. Merino, “The 3GPP NB-IoT system architecture for
the Internet of Things,” in International Conference on Communications
Workshops (ICC Workshops), pp. 277–282, IEEE, 2017.

[15] M. Bishop, “Hypertext Transfer Protocol Version 3 (HTTP/3),” Internet-
Draft draft-ietf-quic-http-29, Internet Engineering Task Force, 2020.

[16] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS operating systems review, vol. 42, no. 5,
pp. 64–74, 2008.

[17] C. B. Krasic, M. Bishop, and A. Frindell, “QPACK: Header Compression
for HTTP/3,” Internet-Draft draft-ietf-quic-qpack-21, Internet Engineer-
ing Task Force, Feb. 2021.

[18] “MQTT Version 5.0,” Standard, OASIS, https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf, 2019.

[19] “NB-IoT, LoRaWAN, Sigfox: An up-to-date Comparison,” Whitepaper
version 1.3, Deutsche Telekom AG, Friedrich-Ebert-Allee 140, 53113
Bonn, Germany, April 2021.

https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://github.com/technosophos/drift
https://github.com/technosophos/drift
https://pkg.go.dev/golang.org/x/net/http2
https://go.googlesource.com/net/+/master/http2/
https://go.googlesource.com/net/+/master/http2/

	I Introduction
	II Related Work
	III H3 Publish-Subscribe Architecture
	IV Network Modelling
	V Experimental System Setup
	VI Results
	VI-A Performance Indicators
	VI-A1 Time to First Data Frame
	VI-A2 Time to Connection Close & Throughput

	VI-B Network Overhead
	VI-C Device Overhead

	VII Conclusions
	References

