
1

Video on Demand Streaming Using RL-based
Edge Caching in 5G Networks

Rasoul Nikbakht, Sarang Kahvazadeh, Josep Mangues-Bafalluy
Centre Tecnològic Telecomunicacions Catalunya (CTTC)

08860 Castelldefels, Spain.
Email: {rnikbakht, skahvazadeh, jmangues}@cttc.es

Abstract—Edge caching can significantly improve the 5G
networks’ performance both in terms of delay and backhaul
traffic. We use a reinforcement learning-based (RL-based)
caching technique that can adapt to time-location-dependent
popularity patterns for on-demand video contents. In a
private 5G, we implement the proposed caching scheme
as two virtual network functions (VNFs), edge and remote
servers, and measure the cache hit ratio as a KPI. Combined
with the HLS protocol, the proposed video-on-demand (VoD)
streaming is a reliable and scalable service that can adapt
to content popularity.

Index Terms—Edge caching, Video-on-demand streaming,
Reinforcement Learning (RL), 5G, OSM

I. INTRODUCTION

It is expected that by 2022, media content will account
for more than 80% of Internet traffic, and popular media
will make up the majority of the media traffic [1]. This
naturally opens the door for caching and storage in the
cloud, as media files are usually large and frequently
accessed. Content Delivery Network (CDN) services fill
this gap by delivering content to users over the Internet.
CDNs cache and deliver the requested content from a
remote server, allowing users to load the content faster.
However, for new emerging applications such as on-site
media production and low latency live streaming, the
cache server should be located even closer to the end-user,
so the need for edge-caching becomes apparent [2]–[4].

We implemented edge-caching concept as virtual cache
servers (VCaches) in the 5G infrastructure. Each Vcache
is a virtual network function (VNF) that can be controlled
by an open source management and orchestration (OSM)
software stack.

The main contributions of this work are as following:
• An RL-based framework is used for edge caching.

We take the number of requests for the cached
content alongside their IDs as the state for the
RL agent. Then, we use state-of-the-art soft actor-
critic networks [5], [6] to obtain an efficient caching
strategy.

• We deploy an end-to-end 5G network with a core
residing in the cloud and the cache server in the edge.

• Our solution is scalable, cloud-native, and can be
automatically deployed on the network edge using
the OSM framework.

In [7] centralized and decentralized caching using deep
deterministic policy gradient is proposed. We adopt a
similar workflow but with two major differences. First,
we use the state-of-the-art soft actor-critic network for
RL-based caching. Second, the state dimension in our
proposed approach is smaller than the one in [7], hence
actor and critic networks are significantly simpler.

In this work, we use a commercial device (a smart-
phone or laptop) as a video playback tool and show the
effectiveness of RL-based edge-caching for reducing delay
and backhaul traffic. The proposed RL-based caching is
a scalable system that outperforms traditional caching
techniques such as least frequency used (LFU), can adapt
to varying content popularity, and is built using fully
open-sourced components. A containerized implementa-
tion of proposed video-on-demand streaming using RL-
based caching is publicly available in [8].

II. SYSTEM ARCHITECTURE

In this demonstration, we show how the RL-based edge-
caching can be deployed, trained, and tested in a 5G
network. Shown in Fig. 1 is a private 5G network along-
side the proposed VoD streaming using RL-based edge
caching. We use Open5GS [9] on the top of a Kubernetes
cluster as core network function; OSM as orchestrator;
Open-Stack-Ansible (OSA) and Linux container (LXC)
as virtual infrastructure manager (VIM); and Amarisoft
[10] as radio access network and simbox for emulating
user equipment.

The edge and remote servers are VNFs and launched
using OSM alongside a network slice (NS). The OSM
deployment is based on VNF and NS descriptors where
the day zero operation for VNFs is conducted using
the cloud.init script, which installs the required soft-
ware, downloads the source code, and finally launches
the remote and edge servers shown in Fig. 1a. In this
implementation, we assumed an edge server located in
the network edge and a remote server in the cloud. Since
we don’t have a dedicated server outside our organization
(where we deployed 5G core), we implement both VNFs
in the same infrastructure and introduce a reasonable
random delay in the link between edge and remote servers.
As a result, the user experiences an extra delay when being
served by the remote server. In Fig. 1b, we show this
concept as the cloud.

ar
X

iv
:2

21
1.

13
96

2v
1

 [
cs

.N
I]

 2
5

N
ov

 2
02

2

2

Edge-server Remote-server

Router
LXC

OSA-infra

NFVO (OSM)

Open5Gs
(k8s)

Metal server

OVS -bridge

Physical switch 5g Amarisoft

Edge-cp Remote-cp

EdgeCache vlan

(a) 5G infrastructure

RL-based algorithm

Edge server

HLS video playback

HLS segments:
video.m3u8
video_00.ts
video_01.ts
video_02.ts
.

FFmpeg

Nginx

Edge storage

Nginx

Remote server

Remote
storage

5G

Cloud

(b) VoD streaming using ML based caching

Fig. 1: Implementation schematic

Illustrated in Fig. 1b is the edge-cache implementation
in the private 5G infrastructure, which consists of the
following parts:

• Edge server: The ML algorithm alongside a Nginx
and edge storage have located in the edge server.
These components are organized using Docker-
compose and co-located in the same machine.

• Remote server: It includes the FFmpeg, remote stor-
age and an Nginx instance. The FFmpeg is controlled
by Nginx and produces the HLS playlist. All the
components again are implemented using Docker-
compose.

The initial training for the ML algorithm is done during
the Day 0 operation, but we can fine-tune or even retrain
the ML algorithm from scratch upon the availability of
the new observations (requests from users).

III. RL-BASED CACHING

Let’s assume we have a total of M contents of which
C contents can be kept in a cache storage. Formulating
the cache server as a RL algorithm, we define the state
and action space of the RL, the logic of the edge caching,
observation, and the reward function as the following.

State:
• Cached content IDs (Ci)
• The Total number of requests Ri for each cached

content in a sliding window of size L

The state S can be formulated as:

S = log [{Ci} , {Ri}] i ∈ {cached contents ID} (1)

Vector S has a dimension of 2C, and the log(.) operator
makes sure that all the elements of the S, independent of
their value, can impact the training of the RL agent.

Action space: The action space A = 0, 1, ..., C has a
dimension of C + 1. The DRL agent can either replace
the selected cached content with the currently requested

content for A = 1, 2, .., C or keep the cached contents the
same for A = 0.

Observation: It is a request for a file index. In this
project, we assume that the observations follow the trun-
cated Zipf distribution. It means that at any given time the
content popularity has a specific structure that is imposed
by Zipf distribution and its parameter. As an example,
for the Zipf parameter of 1.25, a small percentage of
the contents (5%) accounts for the majority of the traffic
(80%). The proposed framework can be extended to real-
world data once it is in the production stage.

Reward: The cache hit probability is defined as

Ph =
Cache hit in the sliding window L

L
(2)

For training the edge caching algorithm, the agent (edge
cache) receives an observation and takes an action in a
way that maximizes its long-term reward, which is the
cache hit ratio.

Implementation: We use soft actor-critic network for
training the RL agent. We build a custom Gym environ-
ment for modeling the RL-based caching agent and train
it using Deep Reinforcement Learning Algorithms with
PyTorch library [11].

Finally, the proposed RL-based caching approach:
• Is flexible and can be applied to other types of

popularity patterns or real-world data traffic.
• Can learn the time-location dependent popularity

pattern.
• Can adapt to a sudden change in the popularity

pattern (for example inside a music concert).

IV. VIDEO-ON-DEMAND SERVICE

Th HLS protocol consists of a playlist and video seg-
ments. The user client asks for video playlist (video.m3u8)
though 5G link. If content is cached (the playlist and video
segments are available in the cache storage), the Nginx in
edge server receives the request and serves the user. In

3

TABLE I: KPIs for different scenarios.

KPIs Storage
(% of total)

Cache hit
ratio

effective
contents

1 10% 0.74 5%
2 20% 0.82 5%
3 20% 0.75 10%
4 30% 0.81 10%

addition, the Nginx mirrors the user request to the ML
algorithm.

If the content is not cached in the edge-server, the
edge server re-routes the user request to the remote server.
Meanwhile, the application server that includes the RL-
based caching algorithm updates the cached content on
the edge-server (download the HLS playlist and video
segments from the remote server)

V. DEMONSTRATION

Let’s assume the introduced 5G network is up and
running. Using OSM, we launch two VNFs for remote
and edge servers and an NS for connecting them. Using
a cloud-init file, OSM instantiates the VoD streaming
service, which includes

• Docker-composed-based application in remote and
edge servers

• Initial training of RL-based caching

Several test videos are included in the edge and remote
servers. To test the RL-based VoD service, we use a
standard video playback client (smartphone or laptop).
The client asks for video content and, based on the cache
status on the edge server, is served by the edge or remote
server.

The private 5G network and VoD streaming service are
deployed in Barcelona (CTTC servers). During the demo,
we can monitor the delay, serving server, video playback
quality, and after several tests, the effectiveness of ML-
based caching in adapting to the new traffic pattern.

Finally, we made a short video clip, which explains
the different parts of the system architecture (Fig. 1),
VoD streaming, and RL-based caching. The video file
also includes a short demo of VoD service with two test
contents and can be found in [12].

VI. KPIS

The relevant KPIs for the edge-cache are cache hit ratio,
storage usage, and effective content (share of contents that
diccount for 80% of traffic). We define 4 scenarios based
on content popularity and storage usage. The KPIs for
each scenario are reported in Table. I. We can see that
cache hit ratio of 0.8 can be achieved in all the scenarios
by adding storage. One can even improve the cache hit
ratio further, but the trade-off between backhaul traffic
cost and storage cost in the edge should be considered.

VII. SUMMARY

We implemented a video-on-demand service using RL-
based cashing for 5G networks. Firstly, the RL-based solu-
tion outperforms the traditional approach like LFU based
caching. Secondly, the HLS-based video-on-demand ser-
vice is implemented and managed by OSM, making it a
good fit for the new design paradigm of the 5G networks.
Finally, the reported KPIs demonstrate satisfactory perfor-
mance cache hit ratio.

ACKNOWLEDGMENT

This work is founded by the H2020 5GSolutions (Grant
Agreement no.856691). Also, discussions with Luca Vet-
tori and Miquel Payaró from Centre Tecnològic Telecomu-
nicacions Catalunya (CTTC), are gratefully acknowledged

REFERENCES

[1] “Vni complete forecast highlights,” www.cisco.com/c/dam/m/en
us/solutions/service-provider/vni-forecast-highlights/pdf/Global
Device Growth Traffic Profiles.pdf, accessed: 2022-06-02.

[2] C. Colman-Meixner, H. Khalili, K. Antoniou, M. S. Siddiqui,
A. Papageorgiou, A. Albanese, P. Cruschelli, G. Carrozzo, L. Vig-
naroli, A. Ulisses, P. Santos, J. Colom, I. Neokosmidis, D. Pujals,
R. Spada, A. Garcia, S. Figerola, R. Nejabati, and D. Simeonidou,
“Deploying a novel 5g-enabled architecture on city infrastructure
for ultra-high definition and immersive media production and
broadcasting,” IEEE Transactions on Broadcasting, vol. 65, no. 2,
pp. 392–403, 2019.

[3] J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi, “Ap-
plying machine learning techniques for caching in edge networks:
A comprehensive survey,” arXiv preprint arXiv:2006.16864, 2020.

[4] X. Li, X. Wang, K. Li, and V. C. M. Leung, “Caas: Caching as
a service for 5g networks,” IEEE Access, vol. 5, pp. 5982–5993,
2017.

[5] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in International conference on machine learning.
PMLR, 2018, pp. 1861–1870.

[6] P. Christodoulou, “Soft actor-critic for discrete action settings,”
arXiv preprint arXiv:1910.07207, 2019.

[7] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep reinforcement
learning-based edge caching in wireless networks,” IEEE Transac-
tions on Cognitive Communications and Networking, vol. 6, no. 1,
pp. 48–61, 2020.

[8] R. Nikbakht, “Docker-based implementation for video on de-
mand streaming using rl-based edge caching,” https://github.com/
RasoulNik/VoD, accessed: 2022-07-27.

[9] “Open5gs,” github.com/open5gs/open5gs, accessed: 2022-06-02.
[10] “Amarisoft,” www.amarisoft.com/, accessed: 2022-06-02.
[11] “Deep reinforcement learning algorithms with pytorch,”

https://github.com/p-christ/Deep-Reinforcement-Learning-
Algorithms-with-PyTorch.

[12] R. Nikbakht, “A demo video for video on demand
streaming using rl-based edge caching,” https:
//cttcbarcelona-my.sharepoint.com/:v:/g/personal/rnikbakht cttc
es/EXHxrfiH5SVGmkTXYJc3uf4BtPlFtW0cacPisoiKAnXB8g?e=
PfnZeb, accessed: 2022-07-27.

www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf
https://github.com/RasoulNik/VoD
https://github.com/RasoulNik/VoD
github.com/open5gs/open5gs
www.amarisoft.com/
https://cttcbarcelona-my.sharepoint.com/:v:/g/personal/rnikbakht_cttc_es/EXHxrfiH5SVGmkTXYJc3uf4BtPlFtW0cacPisoiKAnXB8g?e=PfnZeb
https://cttcbarcelona-my.sharepoint.com/:v:/g/personal/rnikbakht_cttc_es/EXHxrfiH5SVGmkTXYJc3uf4BtPlFtW0cacPisoiKAnXB8g?e=PfnZeb
https://cttcbarcelona-my.sharepoint.com/:v:/g/personal/rnikbakht_cttc_es/EXHxrfiH5SVGmkTXYJc3uf4BtPlFtW0cacPisoiKAnXB8g?e=PfnZeb
https://cttcbarcelona-my.sharepoint.com/:v:/g/personal/rnikbakht_cttc_es/EXHxrfiH5SVGmkTXYJc3uf4BtPlFtW0cacPisoiKAnXB8g?e=PfnZeb

	I Introduction
	II System architecture
	III RL-based caching
	IV Video-on-demand service
	V Demonstration
	VI KPIs
	VII Summary
	References

