
Advanced Customer Activity Prediction based on

Deep Hierarchic Encoder-Decoders

Andrei Ionut Damian

Lummetry.AI

Bucharest, Romania

andrei@lummetry.ai

Nicolae Tapus

University Politehnica of

Bucharest

Bucharest, Romania

ntapus@cs.pub.ro

Laurentiu Piciu

Lummetry.AI

Bucharest, Romania

laurentiu@lummetry.ai

Sergiu Turlea

Lummetry.AI

Bucharest, Romania

sergiu@lummetry.ai

Abstract — Product recommender systems and customer profiling

techniques have always been a priority in online retail. Recent

machine learning research advances and also wide availability of

massive parallel numerical computing has enabled various

approaches and directions of recommender systems advancement.

Worth to mention is the fact that in past years multiple traditional

“offline” retail business are gearing more and more towards

employing inferential and even predictive analytics both to stock-

related problems such as predictive replenishment but also to enrich

customer interaction experience. One of the most important areas of

recommender systems research and development is that of Deep

Learning based models which employ representational learning to

model consumer behavioral patterns. Current state of the art in Deep

Learning based recommender systems uses multiple approaches

ranging from already classical methods such as the ones based on

learning product representation vector, to recurrent analysis of

customer transactional time-series and up to generative models based

on adversarial training. Each of these methods has multiple

advantages and inherent weaknesses such as inability of

understanding the actual user-journey, ability to propose only single

product recommendation or top-k product recommendations without

prediction of actual next-best-offer. In our work we will present a new

and innovative architectural approach of applying state-of-the-art

hierarchical multi-module encoder-decoder architecture in order to

solve several of current state-of-the-art recommender systems issues.

Our approach will also produce by-products such as product need-

based segmentation and customer behavioral segmentation – all in an

end-to-end trainable approach. Finally, we will present a couple

methods that solve known retail & distribution pain-points based on

the proposed architecture.

Keywords — recommender systems; sequence-to-sequence,

hierarchical recurrent encoder-decoder; deep learning; big-data

I. INTRODUCTION

According to various published research such as [1] [2] it is
well known that the online medium has served as a powerful
driving force for the development of recommender systems
technologies due to the exponential adoption of online business
transactions. Market research sources, such as Markets &
Markets Inc. and Reportsnreports.com, state that
recommendation engines market including, but not limited to,
well known methods such as collaborative filtering, content-
based filtering, hybrid recommender systems is forecast to reach
$4414.8M by 2022 from a $801.1M in 2017 at a CAGR of
40.7%. It is obvious that this increase is mainly driven by

increase in focus toward enhancing consumer experience not
only in online environment but also in traditional offline
business such as classic retail stores. Beside the market hunger
for more advanced consumer experience based on behavioral
analytics another driver is due to the technological
advancements in machine learning in general and in deep
learning in particular.

Our work is targeting the general areas of hybrid
recommender systems and business predictive behavioral
analytics. In this paper we will argue that our proposed models
solve several known issues related to in-session and multi-
session collaborative filtering systems with particular focus of
capturing the consumer behavior both at session level and
throughout the whole customer-lifetime.

Due to the fact that matrix factorization methods or
word2vec [3] based methods such as [4] fail to capture the
consumer-journey and are more focused on static user
behavioral representation, in past years sequence-oriented
recommender systems based on deep recurrent directed acyclic
graphs (DAG) has seen increased attention with multiple
approaches such as [5] [6] [7] [8]. Also, another important
research area that strongly relates to our work is that of neural
language models and sequence-to-sequence [9] in particular, as
it will be shown in the following sections.

The proposed architecture combines several approaches in
order to create a model capable to both understanding in-session
inter-dependencies and also session-to-session context-oriented
dependencies while modelling two different latent spaces - that
of products/services and the user base. While some current state-
of-the-art research such as [10] [11] focuses on determining
efficient hits or single next-hit [12] within the overall
recommendation basket, our goal is to capture intra-session
basket patterns as well as user lifetime behavioral patterns and
seasonal/periodic recurrent ones.

This overall approach enabled us during our experiments to
generate multiple reliable results for various tasks such as time-
to-next-event prediction and sequence decoding of the next
customer session basket content. Nonetheless, more simple
tasks were experimented, such as understanding products (or
services) needs-oriented clustering and generate behavioral
segmentation of customers on top of the learned latent-space
vector embeddings. Another area of successful experimentation
area has been that of behavior pattern anomaly detection that

will be further presented in Section IV.B. All of this has been
achieved with a single end-to-end trainable hierarchical
sequence-to-sequence DAG as it will be further presented in the
Approach section.

Finally, the proposed architecture manages to extract
meaningful and interpretable results from a user journey funnel
transactional data as we will see in the later sections.

II. RELATED WORK

As previously mentioned, our work strongly relates to two
different areas of research and development – that of sequence-
based recommender systems and also to seq2seq [9] neural
language models with particular focus on hierarchical recurrent
models [13].

Motivated by the fact that traditional approaches such as
collaborative filtering and matrix factorization methods consider
the user as a static entity with fixed interests through time, many
researchers started to frame the recommender systems as
sequence-based problems. For example, Devooght et al. [8]
proposed a vanilla many-to-one architecture based on Gated
Recurrent Units (GRUs) [14] which process each market basket
as a products timeseries, where each product is encoded as an
one-hot vector. The output is a dense layer with the number of
neurons equal to the number of products which computes a
softmax function. Finally, the most likely k products to be of
interest to a user are the k items whose neurons are activated the
most.

In a similar manner as the one presented above, Hidasi et al.
[6] used a stacked-GRU network and experimented also using
one-hot encoded product vectors and random initialized
trainable embeddings in order to address the sparsity of the
input.

Seq2seq gained popularity since 2014, when Sutskever et al.
[9] proposed an innovative architecture for general sequence
learning. Their approach managed to resolve a limitation of
Deep Neural Networks which could only manage problems that
output a fixed-length vector. However, there were many
important problems that could be better represented using
variable-length sequences (NMT, question answering etc.).
Therefore, they proposed an end-to-end architecture composed
of an encoder (which encodes the timeseries input into a fixed-
length vector) and a decoder (which maps the encoding to the
target timeseries). It is known that a DNN that can process
sequences (Recurrent Neural Networks [15] [16]) can easily
map sequences to sequences whenever the alignment between
the inputs and the outputs is known ahead of time. Finally,
decoupling the architecture into two separate RNNs leads to a
more general strategy which allows to map input sequences to
output sequences, independent of their sizes. Based on this
aspect, in our work we will be able to predict the customer next
session full content of products/services by understanding
(encoding) the customer’s lifetime behavior.

Sordoni et al. [13] proposed a more general encoder
architecture which is stacked into two parts:

1. A “child” RNN which discovers the in-session
inter-dependencies;

2. A “parent” RNN which processes all the in-
sessions inter-dependencies and maps to a fixed-
length vector the session-to-session context aware
inter-dependencies.

III. APPROACH

This current approach is built starting from our previous

works [17] [18]. The first one [17] presents an end-to-end

model that is capable to process sequential events (user-

interactions, transactions etc.) in order to find real-valued

representations of each product/service and each user, such as

they lie in latent vector spaces (products and users latent

spaces). The second one [18] presents two different models

used for churn prediction, with the second model (time-to-next-

event prediction) being improved in this work (III.B).

SCE – Session Content EncoderSCE – Session Content Encoder

NSD – Next Session Decoder

FBE – Funnel Behavior Encoder

p1,1 p1,2 p1,N(1)

 -

 -

T 1
 e

m
b

e
d

R

LSTM

 -

U
se

r
em

b
e

d

pn,1 pn,2 pn,N(n)

 -

 -

LSTM

T
ra

n
s

fe
a

ts

T n
 e

m
b

e
d

U
se

r
em

b
e

d

T
ra

n
s

fe
a

ts

R R R R R

Journey encoding state

TTNE-DAG

[S
ta

rt
-o

f-
B

as
ke

t]

LSTM

P1

P
1

LSTM

P2

P
B

LSTM

[E
n

d
-o

f-
B

as
ke

t]

T
im

e-
to

-E
ve

n
t

Figure 1 The user journey funnel Deep Hierarchic Encoder-Decoder

architecture where each session basket Ti with i:[0..n] has N(i)

products that are encoded by the SCE RNN and passed together with

session-level features to the FBE RNN encoder. The final output of

the encoder is the either decoded by the NSD predictor or passed to

the time-to-next-event FC regressor

A. Products and users latent spaces

Our end-to-end trainable DAG presented in Figure 1, which

is particularly designed as a recommender system, uses in this

case as main inputs the multi-session time-series of

products/services that are bought by a customer. All the discrete

inputs such as item codes, user ids, dates, are one-hot encoded

and by the input layers of the DAG. Nevertheless, in order to

enrich the model capability to understand and discover

behavioral patterns we need to inject additional information

about these inputs. As a result, we are using both item-

embeddings as well as user-embeddings. For both item-

embeddings and user-embeddings we are using two different

scenarios as presented below:

• “cold-start”: where each latent space item-

embedding is initialized randomly and re-

positioned within the vector spaces just by using

the task optimization function. For the particular

case of user encodings, we are using only cold-

started embeddings sampled randomly uniform;

• “warm-start”: is the second case where each latent

space vector was previously trained (using the

DAG presented in our previous work [17]) in order

to make the item semantic information more

accessible from the very beginning of the

optimization process to the end-to-end model. In

our tests, this setting revealed better results, in

particular for the product/item embeddings, results

that will be presented in the next section. This

“warm-start” scenario has also the option of

allowing or not the further fine-tuning of the item-

embeddings during the end-to-end model

optimization process by allowing or blocking the

gradient propagation within the embeddings

matrix.

B. Hierarchical time-to-next-event prediction

In order to further optimize our previously proposed
architectures for the DAG used for time-to-next-event prediction
(as presented in our [18]), we propose a similar approach to that
of Sordoni et al. [13]. Thereby, in order to capture more
semantical information about each market basket that is
processed at each timestep, we dropped the old encoding
methodology of the products/services (averaging the
embeddings at each timestep) and replaced it with a Session
Content Encoder (SCE) model based in our current experiments
on RNN cells (in particular, LSTM [19]). The SCE module
processes bidirectionally each market basket by on-hot encoding
each item and then looking-up its embedding within an item-
embeddings matrix. This provides the Funnel Behavior Encoder
(FBE) – also based on RNN cells in our experiments - a better
representation of the products/services than just a simple
average/sum. Thus, the FBE is able to understand much better
the inter-session dependency for returning customers and thus
create an actual representation of the user journey. In turn, the
FBE module receives additional session-level information such
as date-related features as well as funnel-level information such
as user ids. As previously mentioned, in our architecture we use
latent space embeddings for each user with the specific purpose

of capturing the user-journey information in each individual
user-embedding. Each user-embedding is initialized randomly
uniform and jointly optimized during the training with the rest
of the DAG weights. As mentioned in previous sub-section, the
optimization process includes also the item-embeddings in some
of our scenarios developed in order to determine the pre-trained
& refined item-embeddings efficiency vs pre-trained only
embeddings setup.

Finally, the actual prediction is generated by a small fully
connected network that has a simple regression unit at the output
layer which generates the time until next event prediction. This
allows us to use a simple distance-based loss function such as
mean squared error or mean absolute error

C. Hierachical encoder-decoder

Motivated by the state-of-the-art results obtained by seq2seq
methods in addressing problems such as NMT or our own neural
generative language models (chatbots), we propose an
innovative architecture for recommender systems based on
hierarchical encoders-decoders. Therefore, using the proposed
hierarchical modules SCE – FBE presented in III.B, we coupled
a decoder - Next Session Decoder (NSD) - module that aims to
predict the next customer session full content, without any
restrictions of content dimensionality, all this due to its auto-
regressive nature.

D. Optimization process

The training process follows the classical approach of

maximizing the probability, represented by the log-likelihood,

of decoding the correct session content using teacher-forcing on

the NSD module and generating continuously incrementing

hierarchic time-series for each individual user with a minimal

threshold of transactions per funnel. More precisely we have

the objective of finding the θ model parameters that satisfy the

below equation where 𝑌𝑁𝑆𝐷 , 𝑋𝑆𝐶𝐸 , 𝑋𝐹𝐵𝐸 are all time-series

slices from the training dataset D. Our final result is that of

jointly optimizing all three proposed neural modules based on

the hierarchically encoded funnel from first session up to the

last session and the next session target content that is both fed

as end-to-end model target as well as NSD input.

argmax
𝜃𝑆𝐶𝐸,𝐹𝐵𝐸,𝑁𝑆𝐷

∑ log 𝑝(𝑌̂𝑁𝑆𝐷|𝑌𝑁𝑆𝐷 , 𝑋𝑆𝐶𝐸 , 𝑋𝐹𝐵𝐸)

(𝑌𝑁𝑆𝐷,𝑋𝑆𝐶𝐸,𝑋𝐹𝐵𝐸)∈𝐷

IV. EXPERIMENTS AND RESULTS

A. Our experimental approach

The proposed architectures
For the current presented experiments we chosen multiple

different architectures, ranging from the simplest one up to the
most resource demanding one. In this paper we will analyze the
results of simplest model (LENS1000) and a more complex one
(LENS2000). The basic core architecture details can be
summarized in the below Table 1

Model
SCE

layers

SCE
cells
sizes

FBE
layers

FBE
cells
sizes

NSD
layers

NSD
cells
sizes

LENS1000 1(b) 64 1(b) 256 1 512

LENS2000 1(b) 256 2(b) 256 2
512

128

Table 1 - Architecture details for each of the three modules of the

benchmarked models. Note that bidirectional recurrent layers are

noted with (b) and the cell size applies to all module layers if

otherwise noted

The datasets

In order to train, validate and finally benchmark our models
we have used the following public available market baskets
datasets, namely ta-feng and foodmarket, together with real-life
datasets from our customers.

Ta-feng dataset contains 817,741 transactions belonging to
32,266 users which jointly bought 23,812 unique items. On the
other hand, foodmarket dataset is a sample dataset and it
contains a limited number of transactions (54,537) belonging to
8,736 users and just 1,560 unique products. Both datasets have
the following minimal structure: TRAN_ID, CLIENT_ID,
PROD_ID, TIMESTAMP, PROD_AMOUNT, PRODT_QTY.
However, due to the limited amount of funnel information that
the foodmarket dataset provides we decided against relaying on
the its resulted performance indicators. As a result, in the current
paper only results from the ta-feng dataset are available.

In order to feed our proposed Deep Hierarchic Encoder-
Decoder architecture, we grouped the data in transactions
timeseries which describe the buying behavior for each
individual customer (i.e. each timestep i specifies which are the
products bought by a particular customer in their transaction i,
as well as other features such as products amounts and
quantities, time from previous purchase, timestamp encoding).

The training methodology

To summarize the details of the training methodology we
have to mention two different aspects: the pre-training approach
for the SCE input embeddings (which is described in [17]) and
the training cycles of the end-to-end models.

The end-to-end models were constructed and trained using
Tensorflow [20] with GPU capabilities, which allows us to
deploy the LENS+ backend API (including computational
graphs) in production-grade systems where it provides day-to-
day predictions and continuous training. The parameters of the
models were optimized using RMSprop Gradient Optimization
with a learning step equal to 0.001. In order to use the GPU
memory and the offload procedure more efficiently the training
observations were grouped in batches of maximum 128 samples.

B. Behaviour anomaly detection

One of the main targets of our experiments has been that of

generating automated smart-insights based on the direct and

indirect results of our architecture. The main experiment has

been that of detecting anomalous signals – such as a customer

or a meta-customer that has a change in behavior patterns. For

this purpose, we designed a simple process/algorithm defined

below

Algorithm 1 AnomalyDetector(M, D, fk, dK, dA, dB, fE)

 for each funnel Ui (i:[0..N]) time-series in D:

 predict P(Ui,T+1| Ui,0:T, M)  next element in funnel Ci

 observe (Ui,T+1)  next element in funnel Ci

 compute dA(Pi,Ri) = |P(Ui,T+1), R(Ui,T+1)| normed distance

 end for

 C  fk(fE(i | M) | D, dK | i:[0..N])

 O  {0 for all i:[0..N]}

 for each cluster Cj with j:[0..K]

 for each funnel i in all Cj funnels:

 Oi  dB(dA(Pi,Ri) , dA(Pj,Rj) | j≠i, j:[0..Nj])

Return O

Basically, our algorithm uses a full pipeline M that actually

consists encodes each session with the SCE module, prepares

the full funnel encoding with the FBE module and finally

generates the content with the full NSD module or just a

regression head. Other elements are the D data-series, a

clustering function fk, three distance functions dK, dA and dB and

finally a function fE that generates funnel embedding by

extracting this information from M. The first stage of the

algorithm consists in determining the distance between

prediction and actual observed information with a distance

function dA that also applies a normalization approach to all

inferred distances. The second stage will employ the clustering

function fk that uses the embedding extraction function fE in

order to compute the optimal clustering C with K clusters for

all N funnels. The third and final stage will compute a pairwise

distance using the distance-like function dB between all funnel

distances computed at stage one with the distance function dA.

This will be executed within each individual cluster in order to

detect the potential funnels where the variation between the

predicted step and the real observed step is identified as outlier

in comparison with the similar behaving funnels within the

cluster.

C. Out-of-stock (OOS) preventive alerts

Another practical experiment of our SCE-FBE-NSD-based

system if that of generating out-of-stock signals. We designed

an algorithm which is presented below (Algorithm 2) that uses

both the direct results of our architecture (next basket prediction

and time-to-next-event prediction for each customer) and the a

priori known resupply matrix for a certain number of days. The

actual application is used by retailers, merchandisers and

distributors who receive from the system out-of-stock alerts

based on the residual matrix (the difference, for each product

and each day, between the resupplies and predicted stocks).

Algorithm 2 OOSAlerts(M, D, resupplies[n_prods][n_days])

 pred_stocks  zeros[n_prods][n_days]

 for each funnel Ui (i:[0..N]) time-series in D:

 predict P(Ui,T+1| Ui,0:T, M), Q(Ui,T+1| Ui,0:T, M)  next

 basket of Ui //products and quantities

 predict T(Ui,T+1)  time-to-next-event for Ui

 if T(Ui,T+1) < n_days:

 for each product, qty pj, qj [j ≥ 0] in P(Ui,T+1), Q(Ui,T+1):

 pred_stocks[pj][T(Ui,T+1)] 

 pred_stocks[pj][T(Ui,T+1)] + qj

 end for

 end if

 end for

 R  resupplies – pred_stocks

 A  {(i,j) for which R[i][j] < 0}

Return A

Although our entire presented approach is focused on

customer-journey behavior analysis, for this particular case of

out-of-stock prediction we have devised a strategy for the

customer-agnostic scenarios. The algorithm for the customer-

agnostic scenario is based on partially reframing the problem

and the particular hierarchical structure of the customer-

oriented data-funnels as location/store transaction funnels.

D. Results

Finally, the actual results of our experiments can be
summarized in the benchmarking Table 2. Due to our
experiment objective of predicting the next basket content we
employed the Recall, Precision and F1 scores. The Recall score
basically captures the basket coverage of our predictions, the
Precision determines the efficiency of our predictions and
finally the F1 score generates the aggregated score. We opted
not to use HR@k (Hit@k) as this particular metric assumes a
series of fixed k items in real series and in the predicted
sequence, however our model has the purpose to predict the
variable size basket at each generative auto-regressive step.

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑚(𝑝𝑖∈𝑃𝐵

𝑝𝑖 , 𝐵)

|𝐵|

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑚(𝑝𝑖∈𝑃𝐵

𝑝𝑖 , 𝐵)

|𝑃𝐵|

In the above formulas m is a function that returns 1 if the

predicted pi product from the full predicted basked PB is found

in the actual B basket.

All the results on our models are achieved on a validation

set representing the last baskets of randomly selected 30% of

the customers in the original dataset. These baskets were not

provided to the model during the training process.

Dataset Ta-Feng dataset

Models Recall Precision F1

XGBoostClassifier

baseline
0.0948 0.2779 0.1414

ATEM [21] 0.1089 - -

LSDM [12] - 0.1237 -

ANAM [22] - - 0.1460

LENS1000 0.1138 0.3723 0.1743

LENS2000 0.1255 0.4032 0.1914

Table 2 Result of our experiments with the two architectures on the

Ta-Feng dataset.

For the above comparison results we used scores computed

on multiple recommendation lists (with maximum size k=10)

and thus the average scores were taken.

If precision was not available in the external results, the hit-

ratio (HR@k) was considered instead, as within our

experiments and for our purpose they actually do represent the

same metric.

V. CONCLUSIONS AND FURTHER WORK

A. Conclusions

Current state-of-the-art architectures used for recommender

systems leverage the capability of RNNs to model temporal

dynamic behavior and, therefore, capture the intrinsic

properties present in customers’ previous purchases and

interests. However, they lack in generating accurate

abstractions when the setting implies sequential data whose

events are comprised of several components (e.g. a basket of

purchased items). Moreover, the models employed to this

extent are only capable of producing recommendations of

single products or top-k most likely products, rather than

predicting complete future purchases.

We overcome these limitations by proposing a hierarchical

model in which we “combine” two RNNs - the (parent) RNN

focusing on the customer’s shopping history and child one

targeting transactions at the session (basket) level. This

approach allowed us to obtain from the “child” bidirectional

RNN an actual embedding representation of each transaction

content far better from other methods. For this particular

purpose the classic approach is to combine the basket items by

averaging basket items embeddings that usually destroys

important information such as basket size, individual identity

information for complex baskets and also least important

information such as basket ordering.

At the same time, taking inspiration from seq2seq models

we coupled a decoder with the purpose of predicting complete

future transactions for a customer, without any restrictions of

content dimensionality.

B. Further ongoing work

Our current research focus is geared both towards

improving our results by employing multi-stage training-

retraining of our models, adopting and adapting other

architectures that have been proven succesfull in NMT as well

as enabeling our end-to-end model to jointly predict other

important insights such as the time-to-next-purchase more

efficiently than our previous work [18].

Jointly prediction of basket content and time-to-purchase

 As described in our previous sections our current proposed
architecture uses a deep hierarchical DAG encoder to generate
the current state of the user funnel at each individual step of the
purchasing sessions timeseries. This state is then either
propagated through a regression FC module for the prediction of
time-to-next-event or passed to a decoder DAG based on RNN
cells such as LSTM or GRU in order to apply a simple
autoregression mechanism for full session basket decoding. Our
current experimentation at the time of this paper publishing is
focused on the jointly optimization of both above objectives.
The target of this further research and experimentation is to
obtain a model that achieves at least similar results with that of
twin model approach - where the regression FC module and the
NSD module (sequence decoder DAG) are optimized separately.

Reinforcement learning online fine tuning

The next step in our research and experimentation related to
this area advanced user journey prediction is to include two-
stage training of the proposed models: the first one being the
current supervised method and the second one being a fine-
tuning stage using reinforcement learning approach. We have
reasons to believe that by swapping the normal optimization
process, after a fixed period of training, with one that involves
reinforcement learning approaches, we might greatly impact the
overall results. In this regard, we plan on using policy gradient
methods and building a reward shaping function that would take
into consideration the length of the predicted output and the
number of correctly predicted items in the transaction.

In terms of general approach, we plan to apply this fine-
tuning step not on the whole SCE-FBE-NSD structure but rather
isolate the FBE module from the overall architecture and focus
on re-training in the reinforcement setting only this particular
module of the overall DAG. As a result, we plan to break-down
the FBE module within the actual funnel encoder and a policy
agent that will use the funnel encoding as the state of the
observed environment.

Employing Transformer architecture

Even if the results of the hierarchical encoder-decoder are
very promising, we believe that an attention mechanism would
bring improvement in the developed recommender system.
However, we are going to completely change the current
architecture, using besides reinforcement learning online fine
tuning, the Transformer architecture proposed in 2017 by

Vaswani et al. [23] which produced state-of-the-art results in
seq2seq tasks. As a result, we are currently experimenting with
“transforming” each of the three main modules into their
Transformer-architecture counterparts and further testing this
new approach.

REFERENCES

[1] C. C. Aggarwal, Recommender systems, Springer

International Publishing., 2016.

[2] N. Polatidis and C. Georgiadis, "Recommender

Systems: The Importance of Personalization in E-

Business Environments," International Journal of E-

Entrepreneurship and Innovation, no.

0.4018/ijeei.2013100103, pp. 32-46, 2013.

[3] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J.

Dean, "Distributed representations of words and phrases

and their compositionality," in proceedings of the 26th

International Conference on Neural Information

Processing Systems - Volume 2 (NIPS'13), C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.

Q. Weinberger (Eds.), Vol. 2. Curran Associates Inc.,

USA, 3111-3119, Lake Tahoe, Nevada, 2013.

[4] M. Grbovic, V. Radosavljevic, N. Djuric, N.

Bhamidipati, J. Savla, V. Bhagwan and D. Sharp, "E-

commerce in Your Inbox: Product Recommendations at

Scale," in proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining (KDD '15). ACM, New York, NY, USA,

1809-1818. DOI:

https://doi.org/10.1145/2783258.2788627 , Sydney,

NSW, Australia, 2015.

[5] R. He and J. McAuley, "Fusing similarity models with

markov chains for sparse sequential recommendation,"

in Proceedings of ICDM’16,, 2016.

[6] B. Hidasi, A. Karatzoglou, L. Baltrunas and D. Tikk,

"Session based recommendations with recurrent neural

networks," in Proceedings of ICLR’16, 2016.

[7] Y. Tan, X. Xu and Y. Liu, "Improved recurrent neural

networks for session-based recommendations," in

Proceedings of the 1st Workshop on Deep Learning for

Recommender Systems, 2016.

[8] R. Devooght and H. Bersini, "Long and short-term

recommendations with recurrent neural networks," in

Proceedings of the 25th Conference on User Modeling,

Adaptation and Personalization, 2017.

[9] I. Sutskever, V. Oriol and V. L. Quoc, "Sequence to

sequence learning with neural networks," Advances in

neural information processing systems, pp. 3104-3112,

2014.

[10] U. TANIELIAN, M. GARTRELL and F. VASILE,

"Adversarial Training of Word2Vec for Basket

Completion," arXiv preprint arXiv:1805.08720, 2018,

2018.

[11] R. DEVOOGHT and H. BERSINI, "Accelerating

model-based collaborative filtering with item

clustering," in 2018 International Joint Conference on

Neural Networks (IJCNN), 2018.

[12] T. Bai, P. Du, W. X. Zhao, J. R. Wen and J. Y. Nie, "A

Long-Short Demands-Aware Model for Next-Item

Recommendation," arXiv preprint arXiv:1903.00066,

Montreal, 2019.

[13] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. Grue

Simonsen and J. Y. Nie, "A Hierarchical Recurrent

Encoder-Decoderfor Generative Context-Aware Query

Suggestion," in Proceedings of the 24th ACM

International on Conference on Information and

Knowledge Management., 2015.

[14] J. Chung, Ç. Gülçehre, K. Cho and Y. Bengio,

"Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling," CoRR, vol.

abs/1412.3555, 2014.

[15] D. Rumelhart, G. E. Hinton and R. J. Williams,

"Learning representations by back-propagating errors,"

Nature, vol. 323, pp. 533-536, 1986.

[16] P. Webros, "Backpropagation through time: what it does

and how todo it," in Proceedings of IEEE, 1990.

[17] L. Piciu, A. Damian, N. Tapus, A. Simion-

Constantinescu and I. B. Dumitrescu, "Deep

recommender engine based on efficient product

embeddings neural pipeline," 2018 17th RoEduNet

Conference: Networking in Education and Research

(RoEduNet), pp. 1-6, 2018.

[18] A. Simion-Constantinescu, I. A. Damian, N. Tapus, L.-

G. Piciu, A. Purdila and B. Dumitrescu, "Deep Neural

Pipeline for Churn Prediction,"

10.1109/ROEDUNET.2018.8514153, pp. 1-7, 2018.

[19] S. Hochreiter and J. Schmidhuber, "Long short-term

memory," Neural Comput. 9, p. 1735–1780, 1997.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S.

Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,

Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg and X.

Zheng, "TensorFlow : Large-Scale Machine Learning

on Heterogeneous Distributed Systems," 2015.

[21] S. Wang, L. Hu, L. Cao, X. Huang, D. Lian and W. Liu,

"Attention-based transactional context embedding for

next-item recommendation," in Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[22] T. Bai, J.-Y. Nie, W. X. Zhao, Y. Zhu, P. Du and J.-R.

Wen, "An attribute-aware neural attentive model for

next basket recommendation," in The 41st International

ACM SIGIR Conference on Research \& Development

in Information Retrieval, ACM, 2018, pp. 1201--1204.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.

Jones, A. N. Gomez, L. Kaiser and I. Polosukhin,

"Attention is All you Need," in Advances in Neural

Information Processing Systems 30, Curran Associates,

Inc., 2017, pp. 5998-6008.

