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Abstract — Product recommender systems and customer profiling 

techniques have always been a priority in online retail. Recent 

machine learning research advances and also wide availability of 

massive parallel numerical computing has enabled various 

approaches and directions of recommender systems advancement. 

Worth to mention is the fact that in past years multiple traditional 

“offline” retail business are gearing more and more towards 

employing inferential and even predictive analytics both to stock-

related problems such as predictive replenishment but also to enrich 

customer interaction experience. One of the most important areas of 

recommender systems research and development is that of Deep 

Learning based models which employ representational learning to 

model consumer behavioral patterns. Current state of the art in Deep 

Learning based recommender systems uses multiple approaches 

ranging from already classical methods such as the ones based on 

learning product representation vector, to recurrent analysis of 

customer transactional time-series and up to generative models based 

on adversarial training. Each of these methods has multiple 

advantages and inherent weaknesses such as inability of 

understanding the actual user-journey, ability to propose only single 

product recommendation or top-k product recommendations without 

prediction of actual next-best-offer. In our work we will present a new 

and innovative architectural approach of applying state-of-the-art 

hierarchical multi-module encoder-decoder architecture in order to 

solve several of current state-of-the-art recommender systems issues. 

Our approach will also produce by-products such as product need-

based segmentation and customer behavioral segmentation – all in an 

end-to-end trainable approach. Finally, we will present a couple 

methods that solve known retail & distribution pain-points based on 

the proposed architecture. 

Keywords — recommender systems; sequence-to-sequence, 

hierarchical recurrent encoder-decoder; deep learning; big-data 

I. INTRODUCTION 

According to various published research such as [1] [2] it is 
well known that the online medium has served as a powerful 
driving force for the development of recommender systems 
technologies due to the exponential adoption of online business 
transactions. Market research sources, such as Markets & 
Markets Inc. and Reportsnreports.com, state that 
recommendation engines market including, but not limited to, 
well known methods such as collaborative filtering, content-
based filtering, hybrid recommender systems is forecast to reach 
$4414.8M by 2022 from a $801.1M in 2017 at a CAGR of 
40.7%. It is obvious that this increase is mainly driven by 

increase in focus toward enhancing consumer experience not 
only in online environment but also in traditional offline 
business such as classic retail stores. Beside the market hunger 
for more advanced consumer experience based on behavioral 
analytics another driver is due to the technological 
advancements in machine learning in general and in deep 
learning in particular. 

Our work is targeting the general areas of hybrid 
recommender systems and business predictive behavioral 
analytics. In this paper we will argue that our proposed models 
solve several known issues related to in-session and multi-
session collaborative filtering systems with particular focus of 
capturing the consumer behavior both at session level and 
throughout the whole customer-lifetime.  

Due to the fact that matrix factorization methods or 
word2vec [3] based methods such as [4] fail to capture the 
consumer-journey and are more focused on static user 
behavioral representation, in past years sequence-oriented 
recommender systems based on deep recurrent directed acyclic 
graphs (DAG) has seen increased attention with multiple 
approaches such as [5] [6] [7] [8]. Also, another important 
research area that strongly relates to our work is that of neural 
language models and sequence-to-sequence [9] in particular, as 
it will be shown in the following sections.  

The proposed architecture combines several approaches in 
order to create a model capable to both understanding in-session 
inter-dependencies and also session-to-session context-oriented 
dependencies while modelling two different latent spaces - that 
of products/services and the user base. While some current state-
of-the-art research such as [10] [11] focuses on determining 
efficient hits or single next-hit [12] within the overall 
recommendation basket, our goal is to capture intra-session 
basket patterns as well as user lifetime behavioral patterns and 
seasonal/periodic recurrent ones.  

This overall approach enabled us during our experiments to 
generate multiple reliable results for various tasks such as time-
to-next-event prediction and sequence decoding of the next 
customer session basket content. Nonetheless, more simple 
tasks were experimented, such as understanding products (or 
services) needs-oriented clustering and generate behavioral 
segmentation of customers on top of the learned latent-space 
vector embeddings. Another area of successful experimentation 
area has been that of behavior pattern anomaly detection that 



will be further presented in Section IV.B. All of this has been 
achieved with a single end-to-end trainable hierarchical 
sequence-to-sequence DAG as it will be further presented in the 
Approach section.  

Finally, the proposed architecture manages to extract 
meaningful and interpretable results from a user journey funnel 
transactional data as we will see in the later sections. 

II. RELATED WORK 

As previously mentioned, our work strongly relates to two 
different areas of research and development – that of sequence-
based recommender systems and also to seq2seq [9] neural 
language models with particular focus on hierarchical recurrent 
models [13]. 

Motivated by the fact that traditional approaches such as 
collaborative filtering and matrix factorization methods consider 
the user as a static entity with fixed interests through time, many 
researchers started to frame the recommender systems as 
sequence-based problems. For example, Devooght et al. [8] 
proposed a vanilla many-to-one architecture based on Gated 
Recurrent Units (GRUs) [14] which process each market basket 
as a products timeseries, where each product is encoded as an 
one-hot vector. The output is a dense layer with the number of 
neurons equal to the number of products which computes a 
softmax function. Finally, the most likely k products to be of 
interest to a user are the k items whose neurons are activated the 
most. 

In a similar manner as the one presented above, Hidasi et al. 
[6] used a stacked-GRU network and experimented also using 
one-hot encoded product vectors and random initialized 
trainable embeddings in order to address the sparsity of the 
input. 

Seq2seq gained popularity since 2014, when Sutskever et al. 
[9] proposed an innovative architecture for general sequence 
learning. Their approach managed to resolve a limitation of 
Deep Neural Networks which could only manage problems that 
output a fixed-length vector. However, there were many 
important problems that could be better represented using 
variable-length sequences (NMT, question answering etc.). 
Therefore, they proposed an end-to-end architecture composed 
of an encoder (which encodes the timeseries input into a fixed-
length vector) and a decoder (which maps the encoding to the 
target timeseries). It is known that a DNN that can process 
sequences (Recurrent Neural Networks [15] [16]) can easily 
map sequences to sequences whenever the alignment between 
the inputs and the outputs is known ahead of time. Finally, 
decoupling the architecture into two separate RNNs leads to a 
more general strategy which allows to map input sequences to 
output sequences, independent of their sizes. Based on this 
aspect, in our work we will be able to predict the customer next 
session full content of products/services by understanding 
(encoding) the customer’s lifetime behavior. 

Sordoni et al. [13] proposed a more general encoder 
architecture which is stacked into two parts: 

1. A “child” RNN which discovers the in-session 
inter-dependencies; 

2. A “parent” RNN which processes all the in-
sessions inter-dependencies and maps to a fixed-
length vector the session-to-session context aware 
inter-dependencies. 

III. APPROACH 

This current approach is built starting from our previous 

works [17] [18]. The first one [17] presents an end-to-end 

model that is capable to process sequential events (user-

interactions, transactions etc.) in order to find real-valued 

representations of each product/service and each user, such as 

they lie in latent vector spaces (products and users latent 

spaces). The second one [18] presents two different models 

used for churn prediction, with the second model (time-to-next-

event prediction) being improved in this work (III.B). 

 

SCE – Session Content EncoderSCE – Session Content Encoder

NSD – Next Session Decoder

FBE – Funnel Behavior Encoder
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Figure 1 The user journey funnel Deep Hierarchic Encoder-Decoder 

architecture where each session basket Ti with i:[0..n] has N(i) 

products that are encoded by the SCE RNN and passed together with 

session-level features to the FBE RNN encoder. The final output of 

the encoder is the either decoded by the NSD predictor or passed to 

the time-to-next-event FC regressor 



A. Products and users latent spaces 

Our end-to-end trainable DAG presented in Figure 1, which 

is particularly designed as a recommender system, uses in this 

case as main inputs the multi-session time-series of 

products/services that are bought by a customer. All the discrete 

inputs such as item codes, user ids, dates, are one-hot encoded 

and by the input layers of the DAG. Nevertheless, in order to 

enrich the model capability to understand and discover 

behavioral patterns we need to inject additional information 

about these inputs. As a result, we are using both item-

embeddings as well as user-embeddings. For both item-

embeddings and user-embeddings we are using two different 

scenarios as presented below: 

• “cold-start”: where each latent space item-

embedding is initialized randomly and re-

positioned within the vector spaces just by using 

the task optimization function. For the particular 

case of user encodings, we are using only cold-

started embeddings sampled randomly uniform; 

• “warm-start”: is the second case where each latent 

space vector was previously trained (using the 

DAG presented in our previous work [17]) in order 

to make the item semantic information more 

accessible from the very beginning of the 

optimization process to the end-to-end model. In 

our tests, this setting revealed better results, in 

particular for the product/item embeddings, results 

that will be presented in the next section. This 

“warm-start” scenario has also the option of 

allowing or not the further fine-tuning of the item-

embeddings during the end-to-end model 

optimization process by allowing or blocking the 

gradient propagation within the embeddings 

matrix. 

B. Hierarchical time-to-next-event prediction 

In order to further optimize our previously proposed 
architectures for the DAG used for time-to-next-event prediction 
(as presented in our [18]), we propose a similar approach to that 
of Sordoni et al. [13]. Thereby, in order to capture more 
semantical information about each market basket that is 
processed at each timestep, we dropped the old encoding 
methodology of the products/services (averaging the 
embeddings at each timestep) and replaced it with a Session 
Content Encoder (SCE) model based in our current experiments 
on RNN cells (in particular, LSTM [19]). The SCE module 
processes bidirectionally each market basket by on-hot encoding 
each item and then looking-up its embedding within an item-
embeddings matrix. This provides the Funnel Behavior Encoder 
(FBE) – also based on RNN cells in our experiments - a better 
representation of the products/services than just a simple 
average/sum. Thus, the FBE is able to understand much better 
the inter-session dependency for returning customers and thus 
create an actual representation of the user journey. In turn, the 
FBE module receives additional session-level information such 
as date-related features as well as funnel-level information such 
as user ids. As previously mentioned, in our architecture we use 
latent space embeddings for each user with the specific purpose 

of capturing the user-journey information in each individual 
user-embedding. Each user-embedding is initialized randomly 
uniform and jointly optimized during the training with the rest 
of the DAG weights. As mentioned in previous sub-section, the 
optimization process includes also the item-embeddings in some 
of our scenarios developed in order to determine the pre-trained 
& refined item-embeddings efficiency vs pre-trained only 
embeddings setup. 

Finally, the actual prediction is generated by a small fully 
connected network that has a simple regression unit at the output 
layer which generates the time until next event prediction. This 
allows us to use a simple distance-based loss function such as 
mean squared error or mean absolute error 

C. Hierachical encoder-decoder 

Motivated by the state-of-the-art results obtained by seq2seq 
methods in addressing problems such as NMT or our own neural 
generative language models (chatbots), we propose an 
innovative architecture for recommender systems based on 
hierarchical encoders-decoders. Therefore, using the proposed 
hierarchical modules SCE – FBE presented in III.B, we coupled 
a decoder - Next Session Decoder (NSD) - module that aims to 
predict the next customer session full content, without any 
restrictions of content dimensionality, all this due to its auto-
regressive nature. 

D. Optimization process 

The training process follows the classical approach of 

maximizing the probability, represented by the log-likelihood, 

of decoding the correct session content using teacher-forcing on 

the NSD module and generating continuously incrementing 

hierarchic time-series for each individual user with a minimal 

threshold of transactions per funnel. More precisely we have 

the objective of finding the θ model parameters that satisfy the 

below equation where 𝑌𝑁𝑆𝐷 , 𝑋𝑆𝐶𝐸 , 𝑋𝐹𝐵𝐸  are all time-series 

slices from the training dataset D. Our final result is that of 

jointly optimizing all three proposed neural modules based on 

the hierarchically encoded funnel from first session up to the 

last session and the next session target content that is both fed 

as end-to-end model target as well as NSD input.  

 

argmax
𝜃𝑆𝐶𝐸,𝐹𝐵𝐸,𝑁𝑆𝐷

∑ log 𝑝(𝑌̂𝑁𝑆𝐷|𝑌𝑁𝑆𝐷 , 𝑋𝑆𝐶𝐸 , 𝑋𝐹𝐵𝐸)

(𝑌𝑁𝑆𝐷,𝑋𝑆𝐶𝐸,𝑋𝐹𝐵𝐸)∈𝐷

 

 

 

IV. EXPERIMENTS AND RESULTS 

A. Our experimental approach 

The proposed architectures 
For the current presented experiments we chosen multiple  

different architectures, ranging from the simplest one up to the 
most resource demanding one. In this paper we will analyze the 
results of simplest model (LENS1000) and a more complex one 
(LENS2000). The basic core architecture details can be 
summarized in the below Table 1 

 



Model 
SCE 

layers 

SCE 
cells 
sizes 

FBE 
layers 

FBE 
cells 
sizes 

NSD 
layers 

NSD 
cells 
sizes 

LENS1000 1(b) 64 1(b) 256 1 512 

LENS2000 1(b) 256 2(b) 256 2 
512 

128 

Table 1 - Architecture details for each of the three modules of the 

benchmarked models. Note that bidirectional recurrent layers are 

noted with (b) and the cell size applies to all module layers if 

otherwise noted 

 

The datasets 

In order to train, validate and finally benchmark our models 
we have used the following public available market baskets 
datasets, namely ta-feng and foodmarket, together with real-life 
datasets from our customers. 

Ta-feng dataset contains 817,741 transactions belonging to 
32,266 users which jointly bought 23,812 unique items. On the 
other hand, foodmarket dataset is a sample dataset and it 
contains a limited number of transactions (54,537) belonging to 
8,736 users and just 1,560 unique products. Both datasets have 
the following minimal structure: TRAN_ID, CLIENT_ID, 
PROD_ID, TIMESTAMP, PROD_AMOUNT, PRODT_QTY. 
However, due to the limited amount of funnel information that 
the foodmarket dataset provides we decided against relaying on 
the its resulted performance indicators. As a result, in the current 
paper only results from the ta-feng dataset are available. 

In order to feed our proposed Deep Hierarchic Encoder-
Decoder architecture, we grouped the data in transactions 
timeseries which describe the buying behavior for each 
individual customer (i.e. each timestep i specifies which are the 
products bought by a particular customer in their transaction i, 
as well as other features such as products amounts and 
quantities, time from previous purchase, timestamp encoding). 

 

The training methodology 

To summarize the details of the training methodology we 
have to mention two different aspects: the pre-training approach 
for the SCE input embeddings (which is described in [17]) and 
the training cycles of the end-to-end models. 

The end-to-end models were constructed and trained using 
Tensorflow [20] with GPU capabilities, which allows us to 
deploy the LENS+ backend API (including computational 
graphs) in production-grade systems where it provides day-to-
day predictions and continuous training. The parameters of the 
models were optimized using RMSprop Gradient Optimization 
with a learning step equal to 0.001. In order to use the GPU 
memory and the offload procedure more efficiently the training 
observations were grouped in batches of maximum 128 samples. 

B. Behaviour anomaly detection 

One of the main targets of our experiments has been that of 

generating automated smart-insights based on the direct and 

indirect results of our architecture. The main experiment has 

been that of detecting anomalous signals – such as a customer 

or a meta-customer that has a change in behavior patterns. For 

this purpose, we designed a simple process/algorithm defined 

below 

 

Algorithm 1 AnomalyDetector(M, D, fk, dK, dA, dB, fE) 

  for each funnel Ui (i:[0..N]) time-series in D: 

     predict P(Ui,T+1| Ui,0:T, M)  next element in funnel Ci 

        observe (Ui,T+1)  next element in funnel Ci 

     compute dA(Pi,Ri) = |P(Ui,T+1), R(Ui,T+1)| normed distance 

  end for 

  C  fk(fE(i | M) | D, dK | i:[0..N]) 

  O  {0 for all i:[0..N]} 

  for each cluster Cj with j:[0..K]  

     for each funnel i in all Cj funnels: 

          Oi  dB(dA(Pi,Ri) , dA(Pj,Rj) | j≠i, j:[0..Nj]) 

Return O 

 

Basically, our algorithm uses a full pipeline M that actually 

consists encodes each session with the SCE module, prepares 

the full funnel encoding with the FBE module and finally 

generates the content with the full NSD module or just a 

regression head. Other elements are the D data-series, a 

clustering function fk, three distance functions dK, dA and dB and 

finally a function fE that generates funnel embedding by 

extracting this information from M. The first stage of the 

algorithm consists in determining the distance between 

prediction and actual observed information with a distance 

function dA that also applies a normalization approach to all 

inferred distances. The second stage will employ the clustering 

function fk that uses the embedding extraction function fE in 

order to compute the optimal clustering C with K clusters for 

all N funnels. The third and final stage will compute a pairwise 

distance using the distance-like function dB between all funnel 

distances computed at stage one with the distance function dA. 

This will be executed within each individual cluster in order to 

detect the potential funnels where the variation between the 

predicted step and the real observed step is identified as outlier 

in comparison with the similar behaving funnels within the 

cluster. 

 

C. Out-of-stock (OOS) preventive alerts 

Another practical experiment of our SCE-FBE-NSD-based 

system if that of generating out-of-stock signals. We designed 

an algorithm which is presented below (Algorithm 2) that uses 

both the direct results of our architecture (next basket prediction 

and time-to-next-event prediction for each customer) and the a 

priori known resupply matrix for a certain number of days. The 

actual application is used by retailers, merchandisers and 

distributors who receive from the system out-of-stock alerts 

based on the residual matrix (the difference, for each product 

and each day, between the resupplies and predicted stocks). 



Algorithm 2 OOSAlerts(M, D, resupplies[n_prods][n_days]) 

  pred_stocks  zeros[n_prods][n_days] 

  for each funnel Ui (i:[0..N]) time-series in D: 

     predict P(Ui,T+1| Ui,0:T, M), Q(Ui,T+1| Ui,0:T, M)  next  

                                 basket of Ui  //products and quantities 

        predict T(Ui,T+1)  time-to-next-event for Ui 

     if  T(Ui,T+1) < n_days: 

        for each product, qty pj, qj [j ≥ 0] in P(Ui,T+1), Q(Ui,T+1): 

           pred_stocks[pj][ T(Ui,T+1)]  

                                                   pred_stocks[pj][T(Ui,T+1)] + qj 

        end for 

     end if 

  end for 

  R  resupplies – pred_stocks 

  A  {(i,j) for which R[i][j] < 0} 

Return A 

 

Although our entire presented approach is focused on 

customer-journey behavior analysis, for this particular case of 

out-of-stock prediction we have devised a strategy for the 

customer-agnostic scenarios. The algorithm for the customer-

agnostic scenario is based on partially reframing the problem 

and the particular hierarchical structure of the customer-

oriented data-funnels as location/store transaction funnels. 

 

D. Results 

Finally, the actual results of our experiments can be 
summarized in the benchmarking Table 2. Due to our 
experiment objective of predicting the next basket content we 
employed the Recall, Precision and F1 scores. The Recall score 
basically captures the basket coverage of our predictions, the 
Precision determines the efficiency of our predictions and 
finally the F1 score generates the aggregated score. We opted 
not to use HR@k (Hit@k) as this particular metric assumes a 
series of fixed k items in real series and in the predicted 
sequence, however our model has the purpose to predict the 
variable size basket at each generative auto-regressive step. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑚(𝑝𝑖∈𝑃𝐵

𝑝𝑖 , 𝐵)

|𝐵|
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑚(𝑝𝑖∈𝑃𝐵

𝑝𝑖 , 𝐵)

|𝑃𝐵|
  

 

In the above formulas m is a function that returns 1 if the 

predicted pi product from the full predicted basked PB is found 

in the actual B basket. 

All the results on our models are achieved on a validation 

set representing the last baskets of randomly selected 30% of 

the customers in the original dataset. These baskets were not 

provided to the model during the training process. 

 

 

 

 

Dataset Ta-Feng dataset 

Models Recall Precision F1 

XGBoostClassifier 

baseline 
0.0948 0.2779 0.1414 

ATEM [21] 0.1089 - - 

LSDM [12] - 0.1237 - 

ANAM [22] - - 0.1460 

LENS1000 0.1138 0.3723 0.1743 

LENS2000 0.1255 0.4032 0.1914 

Table 2 Result of our experiments with the two architectures on the 

Ta-Feng dataset.  

For the above comparison results we used scores computed 

on multiple recommendation lists (with maximum size k=10) 

and thus the average scores were taken. 

If precision was not available in the external results, the hit-

ratio (HR@k) was considered instead, as within our 

experiments and for our purpose they actually do represent the 

same metric. 

 

V. CONCLUSIONS AND FURTHER WORK  

A. Conclusions 

Current state-of-the-art architectures used for recommender 

systems leverage the capability of RNNs to model temporal 

dynamic behavior and, therefore, capture the intrinsic 

properties present in customers’ previous purchases and 

interests. However, they lack in generating accurate 

abstractions when the setting implies sequential data whose 

events are comprised of several components (e.g. a basket of 

purchased items). Moreover, the models employed to this 

extent are only capable of producing recommendations of 

single products or top-k most likely products, rather than 

predicting complete future purchases. 

  

We overcome these limitations by proposing a hierarchical 

model in which we “combine” two RNNs - the (parent) RNN 

focusing on the customer’s shopping history and child one 

targeting transactions at the session (basket) level. This 

approach allowed us to obtain from the “child” bidirectional 

RNN an actual embedding representation of each transaction 

content far better from other methods. For this particular 

purpose the classic approach is to combine the basket items by 

averaging basket items embeddings that usually destroys 

important information such as basket size, individual identity 

information for complex baskets and also least important 

information such as basket ordering. 

 

At the same time, taking inspiration from seq2seq models 

we coupled a decoder with the purpose of predicting complete 



future transactions for a customer, without any restrictions of 

content dimensionality. 

 

B. Further ongoing work 

Our current research focus is geared both towards 

improving our results by employing multi-stage training-

retraining of our models, adopting and adapting other 

architectures that have been proven succesfull in NMT as well 

as enabeling our end-to-end model to jointly predict other 

important insights such as the time-to-next-purchase more 

efficiently than our previous work [18].  

Jointly prediction of basket content and time-to-purchase  

  As described in our previous sections our current proposed 
architecture uses a deep hierarchical DAG encoder to generate 
the current state of the user funnel at each individual step of the 
purchasing sessions timeseries. This state is then either 
propagated through a regression FC module for the prediction of 
time-to-next-event or passed to a decoder DAG based on RNN 
cells such as LSTM or GRU in order to apply a simple 
autoregression mechanism for full session basket decoding. Our 
current experimentation at the time of this paper publishing is 
focused on the jointly optimization of both above objectives. 
The target of this further research and experimentation is to 
obtain a model that achieves at least similar results with that of 
twin model approach - where the regression FC module and the 
NSD module (sequence decoder DAG) are optimized separately. 

Reinforcement learning online fine tuning 

The next step in our research and experimentation related to 
this area advanced user journey prediction is to include two-
stage training of the proposed models: the first one being the 
current supervised method and the second one being a fine-
tuning stage using reinforcement learning approach. We have 
reasons to believe that by swapping the normal optimization 
process, after a fixed period of training, with one that involves 
reinforcement learning approaches, we might greatly impact the 
overall results. In this regard, we plan on using policy gradient 
methods and building a reward shaping function that would take 
into consideration the length of the predicted output and the 
number of correctly predicted items in the transaction. 

In terms of general approach, we plan to apply this fine-
tuning step not on the whole SCE-FBE-NSD structure but rather 
isolate the FBE module from the overall architecture and focus 
on re-training in the reinforcement setting only this particular 
module of the overall DAG. As a result, we plan to break-down 
the FBE module within the actual funnel encoder and a policy 
agent that will use the funnel encoding as the state of the 
observed environment. 

Employing Transformer architecture 

Even if the results of the hierarchical encoder-decoder are 
very promising, we believe that an attention mechanism would 
bring improvement in the developed recommender system. 
However, we are going to completely change the current 
architecture, using besides reinforcement learning online fine 
tuning, the Transformer architecture proposed in 2017 by 

Vaswani et al. [23]  which produced state-of-the-art results in 
seq2seq tasks. As a result, we are currently experimenting with 
“transforming” each of the three main modules into their 
Transformer-architecture counterparts and further testing this 
new approach. 
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