
Improving Multilayer-Perceptron(MLP)-based
Network Anomaly Detection with Birch Clustering

on CICIDS-2017 Dataset
Yuhua Yin∗, Julian Jang-Jaccard∗, Fariza Sabrina† and Jin Kwak‡

∗Cybersecurity Lab, Massey University, New Zealand
†School of Engineering and Technology, Central Queensland University, AUSTRALIA

‡Department of Cyber Security, Ajou University, REPUBLIC OF KOREA
yuhua.yin@ieee.org, j.jang-jaccard@massey.ac.nz, f.sabrina@cqu.edu.au, security@ajou.ac.kr

Abstract—The network intrusion threats are increasingly
severe with the application of computer supported coorperative
work. Machine learning algorithms have been widely used in
intrusion detection systems, including Multi-layer Perceptron
(MLP). In this study, we proposed a two-stage model that
combines the Birch clustering algorithm and MLP classifier
to improve the performance of network anomaly multi-
classification. In our proposed method, we first apply Birch
or Kmeans as an unsupervised clustering algorithm to the
CICIDS-2017 dataset to pre-group the data. The generated
pseudo-label is then added as an additional feature to the
training of the MLP-based classifier. The experimental results
show that using Birch and K-Means clustering for data pre-
grouping can improve intrusion detection system performance.
Our method can achieve 99.73% accuracy in multi-classification
using Birch clustering, which is better than similar researches
using a stand-alone MLP model.

Keywords—Intrusion Detection, Anomaly Detection, CICIDS-
2017 dataset, Multilayer Perceptron, Multi-classification, Cluster-
ing Algorithm

I. INTRODUCTION

Organizations and individuals face increasing threats of
cyber-attacks while enjoying the convenience of computer
supported coorperative work. According to a report by Check
Point Research, cyber-attacks in 2021 have increased by 50%,
and each organization would experience approximately 900
attacks per week [1]. In addition, the types of network in-
trusions have become more diverse, and more attacks come
from zero-day attacks [2]. Network intrusion detection systems
are designed to identify network attacks by analyzing normal
and malicious behavior of network traffic [3]. Traditional
signature-based intrusion detection systems have been unable
to deal with complex and diverse modern network attacks, so
increasing research has focused on anomaly detection-based
methods. Machine learning models have been widely used in
anomaly-based intrusion detection systems and have good de-
tection performance [3]. Supervised learning and unsupervised
learning are two common machine learning methodologies.
Models based on supervised learning, such as MLP, decision

tree, random forest, SVM, etc., can learn and classify labeled
data [4]. Models based on unsupervised learning, including
Kmeans, Birch, hidden Markov models, etc., can cluster
similar unlabeled data to find anomalies [5]. Furthermore,
datasets used for intrusion detection are essential and can be
divided into packet-based and flow-based data [6]. The packet-
based dataset mainly collects some meta-information such as
protocol and size in the packet. In contrast, the flow-based
dataset treats the packets that share attributes within a specific
time window as a flow. Many modern intrusion detection
datasets are flow-based, such as CICIDS-2017, CICIDS-2018,
etc. [6]. The timeliness of intrusion detection datasets also
affects their effectiveness. Early datasets such as NSL-KDD
only contain some simple network attack classes [7]. With the
continuous emergence of network attack types and variants,
newer datasets such as CICIDS-2017 can better reflect modern
and complex network anomalies [8].

This paper proposed a network anomaly detection method
that combines both supervised and unsupervised learning mod-
els. In our method, the IDS data is first pre-labelled using the
Birch clustering algorithm, and then the generated pseudo-
label is used as an extra feature in the training of the MLP
classifier. The CICIDS-2017 as a modern IDS dataset was used
to validate our method.

The contributions of our research are as follows:

• We proposed an approach that can improve MLP-based
intrusion detection systems by using an unsupervised
clustering algorithm for pre-labeling, which is believed to
help the classifier distinguish between similar samples.

• During data pre-processing of CICIDS-2017, we removed
duplicate data, regrouped the labels based on recent
research, and resampled benign traffic to make benign
samples and attack samples equal. Also, we applied
information gain as a feature selection method to remove
18 unimportant features.

• Our experimental results demonstrate that our model can
achieve a multi-class accuracy of 99.73%, which is better

ar
X

iv
:2

20
8.

09
71

1v
2

 [
cs

.C
R

]
 3

0
O

ct
 2

02
2

than using MLP only. After comparison, our method
outperformed similar research.

We organized the rest of the paper as follows. In Sec-
tion II, we reviewed related works on machine learning-
based intrusion detection systems. In Section III we described
the background of our proposed method. In Section IV, we
introduced our proposed method. In Section V, we described
our experiment process and demonstrated the results. Finally,
in Section VI, we concluded our work and discussed our future
works.

II. RELATED WORK

There have been many studies using different machine learn-
ing methods and IDS datasets for network anomaly detection.
In this section, we reviewed some related work.

Wen et al. proposed an autoencoder-based network anomaly
detection method in the NSL-KDD dataset [7]. The researchers
used the percentile method to remove outliers before applying
the autoencoder, and then implemented a five-layer autoen-
coder model for classification. The proposed autoencoder
model can achieve a state-of-art accuracy of 90.61% on the
multi-classification task for NSL-KDD.

Kasongo and Sun proposed a feature selection method using
XGBoost as an intrusion detection dataset and applied it to
the UNSW-NB15 dataset [9]. In the experiments, multiple
machine learning methods including SVM, KNN, LR, ANN
and DT are used to verify the performance of the intrusion
detection system. The results show that the feature selection
method of XGBoost enables the decision tree to obtain the
highest binary classification performance up to 90% in UNSW-
NB15.

Jing and Chen proposed a network intrusion detection
method based on SVM [10]. A new data scaling method
based on the log function is used, which is different from the
traditional min-max scaling. Experimental results show that
the proposed method can achieve 85.99% binary classification
accuracy on UNSW-NB15.

Khan et al. proposed a novel two-stage network anomaly
detection method [11]. Their method is divided into two steps,
first using an autoencoder to perform binary classification on
the data and then adding the obtained binary classification
result as an extra feature to the multi-classification in the
second step. The method achieves 99.99% and 89.13% multi-
class accuracy on KDD99 and UNSW-NB15, respectively.

Rosay et al’s study used MLP as a classifier to validate their
intrusion detection method on CICIDS-2017 and CICIDS-
2018 [12]. The proposed MLP model consists of two hidden
layers, each containing 256 neurons. The authors removed
constant-valued features from the datasets. Compared with the
studies that also used MLP as a classifier, the experiments
achieved better multi-classification accuracy of 99.46% and
95.47% on CICIDS-2017 and CICIDS-2018.

Ho et al. explored resampling methods for intrusion de-
tection systems using CICIDS-2017 [13]. Random undersam-

TABLE I
RECORDS OF ORIGINAL CICIDS-2017 DATASET

Label Instances
BENIGN 2273097
DoS Hulk 231073
PortScan 158930
DDoS 128027
DoS GoldenEye 10293
FTP-Patator 7938
SSH-Patator 5897
DoS slowloris 5796
DoS Slowhttptest 5499
Bot 1966
Web Attack - Brute Force 1507
Web Attack - XSS 652
Infiltration 36
Web Attack - Sql Injection 21
Heartbleed 11
Total 2830743

pling, SMOTE, and their combination were used with the C4.5
classifier separately in the experiment. The results show that
the best performance is obtained using random undersampling.

In Ustebay et al.’s study, recursive feature elimination(RFE)
was used as a feature selection method for intrusion detection
[14]. On the CICIDS-2017 dataset, the researchers used RFE
to obtain the ten most important features, which were then
used in the Deep Multilayer Perceptron(DMLP) classifier. The
experiment achieved 91% accuracy.

Kong et al. proposed an intrusion detection system using
a hybrid deep learning approach combining 1D CNN and
LSTM [15]. In the proposed method, 1D CNN is first used
to extract spatial features.Then the connected LSTM can
extract temporal features, so that the model can extract both
temporal and spatial features simultaneously. The results of
the experiments can achieve higher than 97% accuracy on
CICIDS-2017.

III. PRELIMINARIES

A. CICIDS2017 Dataset

CICIDS-2017 is a flow-based intrusion detection dataset
created by the Canadian Institute for Cyber Security (CIC)
to solve the problems of previous datasets [16]. The dataset
recorded network traffic for five days and contained 2,830,743
samples consisting of 15 classes and 78 features. Among 15
classes, there were benign instances and 14 types of attack
instances. The number of each class is shown in Table I. The
78 features are all integer or float numeric features.

B. Birch Clustering Algorithm

Birch (balanced iterative reducing and clustering using
hierarchies) is an efficient unsupervised hierarchical clustering
algorithm proposed by Zhang et al. [17]. Birch is suitable
for large datasets and only needs to read the data once to
cluster the data. Birch constructs a CF tree data structure and
uses the Clustering Feature at each leaf node to represent
a sub-cluster by compressing instances and features. Each

Clustering Feature consists of a vector with three elements, as
shown in equation 1. Birch clustering algorithm usually has
three important parameters: threshold, branching factor,
and n clusters. Threshold determines the radius threshold
of the largest sample in a single leaf node. branching factor
determines the largest number of samples in a node, and
n clusters represents the final number of clusters to decide
the aggregation of nodes.

CF = (N,LS, SS) (1)

where N represents the number of data points, LS represents
the linear sum of N data points, and SS represents the square
sum of N data points.

C. K-Means Clustering Algorithm

K-means is a centroid-based unsupervised clustering algo-
rithm that is efficient and easy to implement. In the K-means
algorithm, k centroids are randomly initialized, and then the
samples are grouped according to the minimum euclidean
distance between the data points and the centroids. After that,
new centroids are calculated based on the mean of the data
points in each cluster. This process runs iteratively until each
cluster is converged and no longer changes.

Algorithm 1: K-means algorithm
Input:
D: data points {d1, d2, . . . , dm}
K: centroids {k1, k2, . . . , kn}
Output:
C: clustering result {c1, c2, . . . , cm}
begin

initialize centroids for {k1, k2, . . . , kn}
repeat

assign clusters for {c1, c2, . . . , cn} by
calculating the minimum euclidean distance
between data points and each centroid.

calculate new centroids by cluster.
until centroids do not change

end

D. Multi-layer Perceptron Classifier

As seen in Figure 1, Multi-layer Perceptron (MLP) is a
feed-forward artificial neural networks composed of multiple
layers with activation functions. An MLP typically consists of
at least three layers including an input layer, a hidden layer,
and an output layer. All layers are fully connected and use a
supervised backpropagation for training. When an MLP is used
for a classification task, it creates the same number of neurons
in the input layer according to the number of features while
the number of neurons in the last output layer is decided by
the number of classes to be classified. The output is calculated

.

. . .

. . .

. . .
Input layer Output layerHidden layers

h1 hn…

Fig. 1. Basic MLP Model

by computing weighted inputs and a bias associated with the
layer (shown in 2).

Z [l] = W [l]A[l−1] + b[l] (2)

where W[l] indicates the weight inputs, b[l] depicts a bias, and
Z[l] is the output.

An activation function is used at each layer to normalize
the output in a certain range (i.e., typically between -1 and 1
and its variations) to improve computation efficiency (shown
in equation 3).

A[l] = g
(
Z [l]
)

(3)

where Z[l] is the output, g represents an activation function,
and A[l] is the activated result.

The error between the value predicted by the model and
the original value is calculated by a loss function as shown in
equation 4. The result of the loss function at each interaction is
used by the supervised backpropagation mechanism to update
the weights associated with each input in the layer and a bias.

L(y, ŷ) =
1

m

m∑
i=1

(yi − ŷi)
2 (4)

where m indicates the total number of input samples,ŷ repre-
sents the predicted value by the model, and y is the original
value.

E. Information Gain

We used Information Gain(IG) as a filter-based feature se-
lection technique to select the most relevant subset of available
features in a dataset to reduce the noise from the data and
improve the classification accuracy.

The underlying IG utilizes information entropy which mea-
sures the disorder of the system. A system with high entropy
is considered unpredictable and more disordered while low

entropy is associated with highly predictable and less dis-
orderly. In machine learning training, information entropy is
used to measure the level of predictability of data distribution.
For example, low entropy means many similar values in data
distribution while high entropy indicates a lot of different
values.

Mathematically, entropy is defined as follows:

H (Y) = −
∑n

i=1
p (yi) log2p (yi) (5)

where, n is the number of classes in the dataset Y and p(yi)
indicates the probability of picking an element yi in each class
of the dataset Y .

The average specific conditional entropy (i.e., another en-
tropy value given that we already know the entropy of X) can
be defined as follows:

H (Y |X) = −
∑m

i=1
p (xi)H (Y |X = xi) (6)

where, m is the number of classes in the dataset X and p(xi)
indcates the probability of picking an element xi in each class
of the dataset X .

In a simple term, IG can be seen as the amount of entropy
removed. Mathematically, this can be defined as follows:

IG (Y,X) = H (Y)−H (Y |X) (7)

In summary, the higher the IG, the more entropy is removed,
and the more information the dataset Y carries about X . After
calculating the IGs for all different features in the input, we
rank them and choose the top n features to feed to the MLP
model.

IV. PROPOSED METHOD

A. Overview

This section described the workflow of our proposed two-
stage intrusion detection method. The CICIDS-2017 dataset
provides 2.8 million instances of data with 78 numerical
features, and they need to be pre-processed at first. In the data
pre-processing step, we performed cleaning, label grouping,
resampling, information gain feature selection, and normaliza-
tion on the data (see Figure 2). We divided the pre-processed
data into a training set, a validation set, and a test set according
to the 80:10:10 proportion, which is unseen to each other.
Our method mainly involved two machine learning modules,
an unsupervised clustering model and an MLP deep learning
classifier. Only training data is used to train the Birch or K-
Means unsupervised clustering algorithm because the training
data is assumed to be known. We used the elbow method when
choosing the cluster number k, which was described in detail in
the following subsection. After obtaining a clustering model,
we generated cluster labels for the training, validation ,and
test set. This pseudo-label is added as an additional feature to
the MLP model along with the original features. Finally, we
will use the test set and the trained MLP model to verify the
effectiveness of our method.

TABLE II
HYPER-PARAMETER SETTING FOR OUR MLP MODEL

Parameter Setting
neurons for hidden layer 1 256
neurons for hidden layer 2 256
output activation softmax
optimizer adam
learning rate 0.0001
batch size 64
epochs 200
early stopping patient 20

B. Elbow Method to Select Cluster Number K

The elbow method is a heuristic cluster number k selection
method applied to unsupervised clustering algorithms with
a cluster number parameter [18]. As the number of clusters
increases, the mutual information within each cluster will be
higher, but too many clusters can cause overfitting problems.
The Elbow method selects the inflection points from the cluster
purity line graph, which can help us choose a potentially
suitable cluster number before overfitting. In our method, we
used information gain to measure the clustering performance
by calculating the entropy between the generated cluster label
and the actual class label of the training set. After plotting the
information gain metric under different cluster numbers, we
can decide potential cluster numbers at the elbow points to
test our model.

C. Specified MLP Classifier

We implemented an MLP model with two hidden layers as
the classifier in our proposed method. As shown in Figure 3,
each hidden layer contains 256 neurons and uses relu acti-
vation. Batch Normalization is added after each hidden layer
for regularization, and it helps the model to avoid overfitting
caused by gradient vanishing and gradient exploding. In the
output layer, softmax activation is used to output a normalized
probability vector for each class. The final classification result
uses the argmax function to obtain the class with the highest
probability. In addition, the Adam optimization algorithm is
used in our MLP model to adjust the learning rate auto-
matically. The early-stopping technique is used to prevent
overfitting. If the validation loss do not continue to decrease in
the specified patient’s epochs, the training can be terminated
early. The relevant hyperparameter settings were listed in Table
II.

V. EXPERIMENTS AND RESULTS

A. Hardware and Environment Setting

Our research was conducted on a desktop computer running
Ubuntu 20.04.4 LTS. The Desktop computer is equipped
with 16GB of RAM, a Ryzen 2700 processor, as well as
an RX580 graphics card. TensorFlow 2.4.1 was utilized to
develop the MLP model in our Python 3.8-based experimental
environment. For our work, Scikit-Learn, Numpy, pandas,

CICIDS-2017

Dataset

Data Preprocessing

Cleaning

Resampling

Normalization

Label Grouping

Clustering Model Training

Training set

Select cluster K number

Birch/K-means clustering

Validation set

Testing set

Trained Clustering Model

Pre-grouping

Pseudo Label Producing

Feature Concatenation

Classifier Training and Validation

Data Preparation

MLP Classifier

Intrusion Detection

Feature Selection

Fig. 2. Our Proposed Method

Input layer

Hidden layer 1

Batch Normalization

Hidden layer 2

Output layer

Batch Normalization

relu activation

relu activation

soft-max activation

Fig. 3. Our Specified MLP Classifier

and matplotlib supplied pre-processing, feature selection, and
visualization functions. Table III details hardware and envi-
ronmental parameters.

B. Data Pre-processing

The procedure and methods we applied for data pre-
processing were described in this subsection.

TABLE III
HARDWARE AND ENVIRONMENT SPECIFICATION

Unit Description
Processor AMD Ryzen 7 2700
RAM 16 GB
GPU AMD RX580
Operating System Ubuntu 20.04.4 LTS

Packages Tensorflow 2.4.1, Sklearn 1.0.2,
Numpy, Pandas and Matplotlib

1) Cleaning: We eliminated 2867 rows with null values
from the CICIDS-2017 dataset, as well as the Label column,
which specified the class type.

2) Label Grouping: There are 15 labels for instances in the
original CICIDS-2017 dataset, some of which can be grouped.
To help reduce the output vector of classification problems,
Panigrahi et al [19] and Kurniabudi et al [20] proposed a
grouping method that can group 15 labels into 7 classes. We
described the labels before and after grouping in Table IV.

3) Resampling: In the original CICIDS-2017 dataset, be-
nign samples account for almost 80% of the total 2.8 million
samples, which is imbalanced. We used the random under-
sampling method which randomly remove majority instances
on benign instances and made the benign and attack samples
equal (See Figure 4).

4) Feature Selection: Figure 5 depicted the ranking results
after we calculated the importance of each feature using
Information Gain. The figure shows that the importance scores

TABLE IV
GROUPING LABELS FOR CICIDS-2017

New Labels Original Labels Number
Benign Bengin 2271320
Bot Bot 1956

Brute Force FTP-Patator,
SSH-Patator 13832

DoS/DDoS
DDoS, DoS, GoldenEye, DoS Hulk,
DoS Slow, httptest, DoS slowloris,
Heartbleed

379748

Infiltration Infiltration 36
PortScan PortScan 158804

Web Attack Web Attack-Brute Force,
Web Attack-Sql Injection, Web Attack-XSS 2180

Total 2827876

Fig. 4. Resampling benign samples in CICIDS-2017

of some features are very low, implying that these features are
either irrelevant or redundant. We removed 18 features with
information gain importance less than 0.1, leaving 60 features
for our model.

5) Normalization: Normalization can unify the value range
of each feature and remove bias produced by disparate value
scales during MLP model training. To transform the range
of feature values between 0 and 1, we utilized MinMax
Normalization [21]. The new value is computed by dividing
the difference between the min and max values by the scale
size, as depicted in equation 8.

Fig. 5. Information Gain Feature Importance Ranking

TABLE V
PREPARED TRAINING, VALIDATION AND TEST DATASET

Label Training set Validation set Test set
Benign 445244 55656 55656
DoS/DDoS 303798 37975 37975
PortScan 127043 15881 15880
Brute Force 303798 1383 1383
Web Attack 1744 218 218
Bot 1565 196 195
Infiltration 29 3 4
Total 890489 111312 111311

Fig. 6. The PCA visualization of training and test set for CICIDS-2017

xi
′ =

xi −min(xi)

max(xi)−min(xi)
(8)

where xi depicts all features, min(xi) is the minimum value
among all the features, and max(xi) is the the maximum value
among all the features.

6) Training, validation and test data preparation: In the
ratio of 80:10:10, we set aside a training set, validation set,
and test set from the resampled dataset for the CICIDS-2017
dataset. The number of occurrences is shown in Table V.
Figure 6 also displays the hold-out training and test set shown
using PCA.

In our experiments, the elbow method was used to select
the cluster number k of the Birch and K-means clustering
algorithm, and information gain was used as the metric of
the cluster purity. A higher information gain metric means a
better cluster purity. Default hyper-parameter Threshold=0.5
and branching factor=50 in sklearn were used for Birch
algorithm. Figure 7 shows the line graph when 2-14 clusters
are selected using the Elbow method, which can help find the
elbow point. In K-means clustering, the potential elbow points
are [3, 4, 6, 8]. In Birch clustering, [3, 9, 12] can be observed
as elbow points. These cluster numbers will be used in our
further experiments.

C. Evaluation Metrics

We employ accuracy, recall (also known as true positive
rate), precision, FPR(also known as false positive rate),
f1 score, and Receiver operating characteristic(ROC) as per-
formance indicators. We use True Positive(TP) to identify
correctly classified positive samples, False Negative(FN) for

TABLE VI
RESULTS OF DIFFERENT CLUSTER NUMBERS UNDER CLUSTERING ALGORITHMS

Method K(Cluster) number Precision(%) Recall(%) F1 score(%) Accuracy(%)
MLP(78 features) - 99.01 99.01 98.94 99.01
MLP(60 features) - 99.45 99.45 99.44 99.45
K-means+MLP 3 99.68 99.69 99.68 99.69
K-means+MLP 4 99.70 99.70 99.69 99.70
K-means+MLP 6 99.41 99.41 99.41 99.41
K-means+MLP 8 99.61 99.60 99.60 99.60
Birch+MLP 3 99.59 99.59 99.57 99.59
Birch+MLP 9 99.69 99.69 99.69 99.69
Birch+MLP 12 99.73 99.73 99.73 99.73

TABLE VII
EVALUATION METRICS OF MULTI-CLASSIFICATION FOR CICIDS-2017

Precision Recall F1 score FPR Accuracy
Benign 0.9985 0.9965 0.9975 0.0015

99.73%

Bot 0.9034 0.6718 0.7706 0.0001
Brute Force 0.9788 1.0000 0.9893 0.0003
DoS/DDoS 0.9962 0.9989 0.9980 0.0020
Infiltration 1.0000 0.7500 0.8571 0.0000
PortScan 0.9986 0.9994 0.9990 0.0002
Web Attack 0.9904 0.9450 0.9671 0.0000
Avg. 0.9973 0.9973 0.9973 0.0015

Fig. 7. The Elbow Method using Birch and K-means

incorrectly classified positive samples, False Positive(FP) for
incorrectly classified negative samples, and True Negative(TN)
for correctly classified negative samples. Other measures using
TP, FN, FP, and TN are as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Recall(TruePositiveRate) =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

FPR(FalsePositiveRate) =
FP

TN + FP
(12)

F1− score = 2×
(
Precision×Recall

Precision+Recall

)
(13)

AUCROC =

∫ 1

0

TP

TP + FN
d

FP

TN + FP
(14)

Fig. 8. Confusion Matrix

D. Results

According to the experimental results in Table VI, both k-
means and Birch can achieve better performance than MLP
alone. When using K-means with MLP, the best cluster number
is 4, and it can get 99.70% accuracy. When using Birch with
MLP, the optimal cluster number is 12, which can achieve
99.73% accuracy and is higher than using k-means.

Figure 8 and figure 9 demonstrated the confusion matrix
and ROC curve obtained by the model. As shown in Figure
8, only a few samples are misclassified. In Figure 9, the ROC
of each class is plotted using the one versus all principle. The
roc area of almost all classes reaches a score over 99%, which
means that the model has good generalization.

Table VII presented the performance of each class using
Birch with a cluster number of 12. Benign, Brute Force,
DoS/DDoS and Web Attack achieved over 95% accuracy. The
performance of Bot and infiltration is slightly lower than other

TABLE VIII
COMPARISON OF SIMILAR WORK

Work Model Precision(%) Recall(%) FPR(%) F1 score(%) Accuracy(%)
Rosay et al. [12] MLP 99.51 99.41 0.49 99.46 99.46
Ustebay et al. [14] DMLP - - - - 91
Jiang et al. [22] MLP 99.87 99.60 - 99.41 99.23
Jabbar and Mohammed [23] MLP - - - - 98.98
Azzaoui et al. [24] DNN 80.33 - 0.07 - 99.43
Alrowaily et al. [25] MLP 95.36 96.25 - 95.57 96.26
Proposed Method Birch+MLP 99.73 99.73 0.15 99.73 99.73

Fig. 9. ROC Curve

classes, which may be caused by their insufficient training
samples. Furthermore, our model achieves a very low FPR of
0.15%.

E. Comparison

In table VIII, we compared the performance of our model
with other studies using MLP as a classifier. It can be found
that our model achieves the best performance in both f1 score
and accuracy. Although the FPR is not the lowest, it is also a
relatively good performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a two-stage intrusion detection
system that combines both an unsupervised clustering algo-
rithm and a supervised machine learning model. In our method,
we first use the Birch or k-means algorithm as an unsupervised
clustering algorithm to group unlabeled data. The pseudo-label
generated by the clustering algorithm is then added as an extra
feature along with other features to our MLP model for multi-
classification of network anomalies. In the experiment, we

used the elbow method and information gain to determine the
potential cluster numbers. The experimental results show that
using Birch and K-Means in our approach can help improve
the multi-classification performance of the MLP classifier. The
best accuracy performance of 99.73% can be obtained when
using Birch with cluster number 12. After comparison, our
model outperformed similar studies.

This paper initially explored the impact of two unsupervised
clustering algorithms on MLP models. There are many variants
of Birch and K-Means unsupervised clustering algorithms that
can cluster unlabeled data more accurately. In the future, we
plan to explore the effects of Birch and K-Means variants
and other hyper-parameters of these algorithms on our hybrid
model.

REFERENCES

[1] “Check Point Research: Cyber Attacks In-
creased 50% Year over Year,” accessed 2022-06-
03. [Online]. Available: https://blog.checkpoint.com/2022/01/10/
check-point-research-cyber-attacks-increased-50-year-over-year/

[2] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[3] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, p. e4150, 2021.

[4] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed,
“A comprehensive review of dimensionality reduction techniques for
feature selection and feature extraction,” Journal of Applied Science and
Technology Trends, vol. 1, no. 2, pp. 56–70, 2020.

[5] M. Dua et al., “Machine learning approach to ids: A comprehensive
review,” in 2019 3rd International conference on Electronics, Commu-
nication and Aerospace Technology (ICECA). IEEE, 2019, pp. 117–121.

[6] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A
survey of network-based intrusion detection data sets,” Computers &
Security, vol. 86, pp. 147–167, 2019.

[7] W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, and F. Sabrina, “Improving
performance of autoencoder-based network anomaly detection on nsl-
kdd dataset,” IEEE Access, vol. 9, pp. 140 136–140 146, 2021.

[8] R. Panigrahi and S. Borah, “A detailed analysis of cicids2017 dataset
for designing intrusion detection systems,” International Journal of
Engineering & Technology, vol. 7, no. 3.24, pp. 479–482, 2018.

[9] S. M. Kasongo and Y. Sun, “Performance analysis of intrusion detection
systems using a feature selection method on the unsw-nb15 dataset,”
Journal of Big Data, vol. 7, no. 1, pp. 1–20, 2020.

[10] D. Jing and H.-B. Chen, “Svm based network intrusion detection for
the unsw-nb15 dataset,” in 2019 IEEE 13th international conference on
ASIC (ASICON). IEEE, 2019, pp. 1–4.

[11] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel two-stage
deep learning model for efficient network intrusion detection,” IEEE
Access, vol. 7, pp. 30 373–30 385, 2019.

https://blog.checkpoint.com/2022/01/10/check-point-research-cyber-attacks-increased-50-year-over-year/
https://blog.checkpoint.com/2022/01/10/check-point-research-cyber-attacks-increased-50-year-over-year/

[12] A. Rosay, K. Riou, F. Carlier, and P. Leroux, “Multi-layer perceptron for
network intrusion detection,” Annals of Telecommunications, pp. 1–24,
2021.

[13] Y.-B. Ho, W.-S. Yap, and K.-C. Khor, “The effect of sampling methods
on the cicids2017 network intrusion data set,” in IT Convergence and
Security. Springer, 2021, pp. 33–41.

[14] S. Ustebay, Z. Turgut, and M. A. Aydin, “Intrusion detection system with
recursive feature elimination by using random forest and deep learning
classifier,” in 2018 international congress on big data, deep learning
and fighting cyber terrorism (IBIGDELFT). IEEE, 2018, pp. 71–76.

[15] X. Kong, C. Wang, Y. Li, J. Hou, T. Jiang, and Z. Liu, “Traffic
classification based on cnn-lstm hybrid network,” in International Forum
on Digital TV and Wireless Multimedia Communications. Springer,
2022, pp. 401–411.

[16] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018.

[17] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” ACM sigmod record, vol. 25,
no. 2, pp. 103–114, 1996.

[18] D. Marutho, S. H. Handaka, E. Wijaya et al., “The determination of
cluster number at k-mean using elbow method and purity evaluation
on headline news,” in 2018 international seminar on application for
technology of information and communication. IEEE, 2018, pp. 533–
538.

[19] R. Panigrahi and S. Borah, “A detailed analysis of cicids2017 dataset
for designing intrusion detection systems,” International Journal of
Engineering & Technology, vol. 7, no. 3.24, pp. 479–482, 2018.

[20] D. Stiawan, M. Y. B. Idris, A. M. Bamhdi, R. Budiarto et al., “Cicids-
2017 dataset feature analysis with information gain for anomaly detec-
tion,” IEEE Access, vol. 8, pp. 132 911–132 921, 2020.

[21] S. Patro and K. K. Sahu, “Normalization: A preprocessing stage,” arXiv
preprint arXiv:1503.06462, 2015.

[22] J. Jiang, Q. Yu, M. Yu, G. Li, J. Chen, K. Liu, C. Liu, and W. Huang,
“Aldd: a hybrid traffic-user behavior detection method for application
layer ddos,” in 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). IEEE, 2018, pp. 1565–1569.

[23] A. F. Jabbar and I. J. Mohammed, “Development of an optimized
botnet detection framework based on filters of features and machine
learning classifiers using cicids2017 dataset,” in IOP Conference Series:
Materials Science and Engineering, vol. 928, no. 3. IOP Publishing,
2020, p. 032027.

[24] H. Azzaoui, A. Z. E. Boukhamla, D. Arroyo, and A. Bensayah,
“Developing new deep-learning model to enhance network intrusion
classification,” Evolving Systems, pp. 1–9, 2021.

[25] M. Alrowaily, F. Alenezi, and Z. Lu, “Effectiveness of machine learning
based intrusion detection systems,” in International Conference on
Security, Privacy and Anonymity in Computation, Communication and
Storage. Springer, 2019, pp. 277–288.

	I Introduction
	II Related Work
	III Preliminaries
	III-A CICIDS2017 Dataset
	III-B Birch Clustering Algorithm
	III-C K-Means Clustering Algorithm
	III-D Multi-layer Perceptron Classifier
	III-E Information Gain

	IV Proposed Method
	IV-A Overview
	IV-B Elbow Method to Select Cluster Number K
	IV-C Specified MLP Classifier

	V Experiments and Results
	V-A Hardware and Environment Setting
	V-B Data Pre-processing
	V-B1 Cleaning
	V-B2 Label Grouping
	V-B3 Resampling
	V-B4 Feature Selection
	V-B5 Normalization
	V-B6 Training, validation and test data preparation

	V-C Evaluation Metrics
	V-D Results
	V-E Comparison

	VI Conclusion and Future Work
	References

