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Abstract—The links in many real networks are evolving
with time. The task of dynamic link prediction is to use past
connection histories to infer links of the network at a future
time. How to effectively learn the temporal and structural
pattern of the network dynamics is the key. In this paper,
we propose a graph representation learning model based on
enhanced structure and temporal information (GRL EnSAT).
For structural information, we exploit a combination of a graph
attention network (GAT) and a self-attention network to capture
structural neighborhood. For temporal dynamics, we use a
masked self-attention network to capture the dynamics in the
link evolution. In this way, GRL EnSAT not only learns low-
dimensional embedding vectors but also preserves the nonlinear
dynamic feature of the evolving network. GRL EnSAT is eval-
uated on four real datasets, in which GRL EnSAT outperforms
most advanced baselines. Benefiting from the dynamic self-
attention mechanism, GRL EnSAT yields better performance
than approaches based on recursive graph evolution modeling.

Index Terms—Link prediction, Dynamic graph, Representa-
tion learning, Self-attention

I. INTRODUCTION

Graphs are ubiquitous data structures that model pairwise
interactions between entities [1]. Various complex systems
can be represented as graphs, such as protein-protein interac-
tion and human social behaviors, etc [2]. Most systems in the
real world evolve over time, in which nodes and connections
may disappear and recover. Such a dynamic system can be
modeled as the dynamic graph [3].

As links of a network represent interactions between dif-
ferent entities, predicting future links is of great importance
in the analysis of dynamic graphs. Dynamic link prediction
has applications in many real-world problems, such as the
discovery of new interactions between proteins [4], the recom-
mender system in social media and online shopping [5], and
more [2]. Following the success of applying neural networks
for link prediction in static graphs [6]–[8], researchers start to
make use of the neural network for dynamic link prediction.
By finding the representation of nodes, the link prediction
problem is converted to the nearest neighbor search problem
in the embedding space [9]. For dynamics graphs, the node
representation relies on not only the structural properties

but also the temporal patterns underlying the evolution of
networks. Therefore, how to effectively extract and learn the
temporal pattern is essential for the accurate prediction of
future links [10].

Traditionally, the learning of temporal patterns follows a
recency assumption: old information is less important than re-
cent information. This is implemented in the learning process
by assigning weights that diminish with increasing duration
[11]. Nevertheless, given a variety of dynamic systems, the
recency assumption may not always hold. For example, when
the network evolves periodically, information with a long
history is more important to infer the temporal pattern. For
this reason, we start to consider adding more flexibility in
weighting historical data. In addition, the learning of struc-
tural features relies on a balance between local and global
structures [12]. This is usually achieved by tuning the hyper-
parameter [13]. But if the model can learn valid local and
global information more intelligently, the performance can be
further improved.

Motivated by these ideas, we explore and propose
a new model GRL EnSAT for dynamic link prediction.
GRL EnSAT utilizes the self-attention mechanism [14] that
provides a flexible way to adjust the significance of historical
and recent temporal information, as well as local and global
structure information. The model can be roughly divided
into structural learning and temporal learning block. In the
structural block, the Graph Attention Network (GAT) [15]
with a multi-head mechanism is used to learn structural
information based on direct neighbors. Then an additional
self-attention operation of distinguishing GAT independent
heads is performed, letting the node obtain information about
structures other than valid local neighbors from the remaining
nodes. The structural representations of network snapshots at
different times are sent to the temporal block, which com-
bines these network snapshots using the mask self-attention
network. GRL EnSAT is evaluated on four real networks,
which demonstrates improved performance and good stability
compared with baselines. We also perform ablation studies
to quantitatively compare the contribution of structural and
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temporal blocks in GRL EnSAT. In general, GRL EnSAT
benefits most from the application of a multi-head mechanism
in temporal pattern learning.

II. RELATED WORK

A. Non-deep-learning based Methods

Matrix factorization is an effective tool for data process-
ing, which includes Eigen decomposition, Singular Value
Decomposition, etc. These techniques are widely applied
in static or dynamic link prediction. Raymond et al. [16]
generalize matrix factorization to the task of dynamic link
prediction. The non-negative matrix decomposition (NMF),
which decomposes the original matrix into two matrices
with no negative elements, is also applied [17]. Ma et al.
[11] propose an effective decomposition strategy for NMF to
minimize the distance between two connected nodes in hidden
space, which yields improved prediction accuracy. However,
matrix factorization only considers structural information.
Other useful features such as node attributes and temporal
dynamics are overlooked. In addition, matrix factorization is
often time-consuming, which limits its application. Therefore,
feature-based models have received attention from scholars.
Ran et al. [18] design a new similarity index by combining
the shortest path characteristics of dynamic networks and the
second-order neighborhood information. Ahmed et al. [19]
introduce a sampling technique for similarity computation.
Wu et al. [20] introduce an aggregation mechanism to orga-
nize the most significant historical neighbors’ information and
adaptively obtain the significance of node pairs.

B. Deep Learning based Methods

Inspired by the successes of deep learning in other fields,
researchers started to apply deep neural networks in link
prediction, with the aim to better combine both temporal and
structural information [21], [22]. Nguyen et al. [23] redesign
the random wandering strategy by adding constraints to the
wandering process, such as considering temporal dependence
and searching the obedient time, to learn more informative
temporal embeddings. Hisano et al. [24] design the loss
function that considers the supervised loss of past dynamics
and the unsupervised loss of the current neighborhood con-
text. Li et al. [25] propose a dynamic network embedding
method based on the autoencoder, which uses historical
information obtained from snapshots of the network with
past timestamps. Similarly, Chen et al. [26] introduce an
autoencoder with a recurrent neural network to dynamic link
prediction. This model suits the networks of different scales
with fine-tuned structures and prevents over-fitting through
a regularization term. Lei et al. [27] leverage the generative
adversarial network to generate the next weighted network
snapshot, which effectively solves the sparsity and the wide-
value-range problem of edge weights in real-life dynamic
networks. Hao et al. [28] consider the network dynamics
from the node vector evolution sequence, which is modeled
by a recurrent neural network. Since hyperbolic space has
the better exponential capacity and hierarchy consciousness

than Euclidean space, Yang et al. [29] map the structural
and temporal information of the network to hyperbolic space
for learning. For heterogeneous information networks, Zhan
et al. [30] propose a balanced random walk strategy, which
redesigns the traditional random walk with a sliding window
into several short walks to avoid self-cycling and unbalanced
node type problems.

III. PRELIMINARY
A. Problem Definition

Definition 1 (Dynamic Networks): Consider a series of
graphs (networks) {G1, . . . , GT }, where Gk = (V, Ek) , k ∈
[1, T ], denotes the kth snapshot of the dynamic network. V
is the set of vertices of increasing number, suppose the total
number of last moments is N and Ek ⊆ V ×V is the set of
links existed within the time window [tk−1, tk]. The adjacency
matrix of the snapshot Gk is denoted by Ak, whose elements
ak;i,j = 1, i, j ∈ [1, N ], if there is a link between vi and vj ,
and otherwise ak;i,j = 0.

Definition 2 (Dynamic Link Prediction): Given the matrix
{A1, A2, . . . , AT } of the past T time snapshots, the goal of
the dynamic link prediction is to predict the topology of the
network at the next moment T + 1. It can be formulated as

ÃT+1 = f (A1, A2, . . . , AT ) , (1)

where f(·) is the dynamic link prediction model, and ÃT+1

represents the predicted outcome.

IV. PROPOSED MODEL
The structure of GRL EnSAT is shown in Fig. 1. The input

of the model is the set of T graph snapshots, and the output
is representation vectors of all nodes at the next time step. In
this section, we explain the modules of the model according
to the order of data processing.

A. GRL EnSAT Architecture

Local structural layer. In this layer, the local structure
information of network nodes is obtained by calculating the
weights of direct neighbors. The operation is

−→
h′
v =σ

(∑
u∈Nv

αvuW
−→
hu

)
, αvu =

exp (evu)∑
k∈Nv

exp (evk)
,

evu =σ
(
Avu · a⊺

[
W ·

−→
hv∥W ·

−→
hu

])
,∀(v, u) ∈ ε.

(2)

In the above calculations, Nv is the set of direct neighbors
of node v in a graph snapshot G, W ∈ RD′×D is a shared
weight transformation applied to each node in the graph,

−→
hv ∈

RD is the initial vector of nodes v, a is a weight vector for
the parameterized attention function, .⊺ denotes the transpose,
|| is the concatenation operation and Avu is the weight of link
(v, u) in the current snapshot G.

For the stability of local structure information, we adopt
the independent multi-head mechanism [15]. Through inde-
pendent multiple operations, we obtain

HLocal(v)=Concat

(−→
h′
v

1

,
−→
h′
v

2

, . . . ,
−→
h′
v

Hs
)
∈RD′

, (3)
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Fig. 1: The overall structure of GRL EnSAT, decoupling dynamic graph information into two independent dimensions of ‘structural
neighborhood’, ‘temporal dynamics’ for learning.

where Hs is the number of attention heads, and
−→
h′
v

k

rep-
resents the representation of node v learned from the kth

independent head, the Concat we choose is the operation of
the connection. After repeating the above operations for all
T graph snapshots, we obtain a set of network representation
matrix

{
H1

Local,H
2
Local, . . . ,H

T
Local

}
,Ht

Local ∈ RN×D′
.

Global structure layer. In this layer, we use a pure self-
attention network with an independent multi-head mechanism
to obtain global structure information beyond the direct neigh-
borhood. To compute the output representation of node v, the
scaled dot product form of attention [14] is used. The function
is defined as

Ht
Glob

hs
= softmax(

Qt
Glob ·K

t
Glob

⊺

√
F ′

) · V t
Glob , (4)

where the query (QGlob), key (KGlob) and value (V Glob) are
the results after transforming the representation of the input
node through the trainable linear projection matrices W ▷

Q ∈
RD′×F ′

, W ▷
K ∈ RD′×F ′

and W ▷
V ∈ RD′×F ′

, respectively.
They are formulated as

Qt
Glob = Ht

Local ·W
▷
q ,

Kt
Glob = Ht

Local ·W
▷
k,

V t
Glob = Ht

Local ·W
▷
v.

(5)

Through independent multiple operations, we obtain

Ht
Glob=Concat

(
Ht

Glob
1
,Ht

Glob
2
, . . . ,Ht

Glob
Hs
)
, (6)

where Ht
Glob

k
is the representation generated by the kth

independent header. After conducting above operations on T
snapshots, we feed Ht

Glob ∈ RN×F ′
into next module to

learn temporal patterns.
Temporal attention layer. Before proceeding to formal

learning, the inputs are first reorganized. The set of vectors
for each node across T time steps is combined into a matrix

Rv ∈ RT×F ′
,∀v ∈ V . Then, we use the self-attention

network modified by Eq. 4, i.e., the masked self-attention
network for learning. The specific calculation process is
simplified as follows,

Zv
hs =softmax

(
RvW

◦
Q ·(RvW

◦
K)

⊺

√
F

+M

)
·RvW

◦
V ,

(7)

where W ◦
Q ∈ RF ′×F , W ◦

K ∈ RF ′×F and W ◦
V ∈ RF ′×F

are all trainable linear projection matrices. M ∈ RT×T is a
masked matrix with each entry Mij = {−∞, 0} to enforce
the autoregressive property. To encode the temporal order, M
is defined as

Mij =

{
0, i ≤ j
−∞, otherwise , (8)

when Mij = −∞, the softmax function makes the attention
weight equal to zero, closing the attention for time steps i to
j. After the independent multi-head operation, we get

Zv = Concat
(
Zv

1,Zv
2, . . . ,Zv

Hs

)
∈ RT×F , (9)

where Zv
k denotes the result of temporal evolutionary infor-

mation learning by the kth independent head on node v. The
results can be reorganized as Zv =

[
z1
v, z

2
v, ..,z

T
v

]⊺
, where

zt
v denotes the representation of node v at time step t. After

all the nodes have gone through the above operations and the
resulting representation Z can be used for prediction tasks
and model parameter tuning.

Prediction layer. We chose a logistic regression model with
the following equation,

y = σ (w⊺x) =
1

1 + e−w⊺x
, (10)

where w denotes the trainable weight, the input x is the
combination of representations between two nodes, i.e., x =



[
zT
v ∥zT

u

]
∈ R2F , v, u ∈ V , and the output y is the probability

of linking the edges of two nodes.

B. Loss Function

A binary cross-entropy loss is used. We use the represen-
tation of node v at time step t (zt

v) to maintain the local
proximity of v around t [31].

L =

T∑
t=1

∑
v∈V

( ∑
u∈N t

walk(v)

− log

(
σ
(
< zt

u, z
t
v >

))

−wn ·
∑

u′∈P t
n(v)

log

(
1− σ(< zt

u′ , zt
v >)

))
,

(11)

where σ is the sigmoid function, < . > denotes the inner
product operation, u ∈ N t

walk(v) is the set of nodes that co-
occur with node v in snapshot t for a fixed length random
walk, p t

n is the negative sampling distribution for snapshot
Gt, and the negative sampling rate wn is an adjustable
hyperparameter.

V. EXPERIMENTS

A. Baselines, Metrics And Datasets

We consider both static and dynamic methods for dynamic
link prediction. The static models are Node2vec [6], Struc2vec
[36] and SDNE [8]. The dynamic models include dyAERNN
[7], E-LSTM-D [26] and DySAT [31]. E-LSTM-D is an
end-to-end link prediction model, which is able to provide
probability values for predicted links. Except for E-LSTM-D,
all other methods are actually network embedding methods.
For these methods, We input the obtained network repre-
sentation to the same logistic regression model to calculate
link probability values. The predicted outcomes by these
models are evaluated and compared using AUC and MAP.
The specific details of the dataset used are summarized in
Table I.

TABLE I: Summary statistics for the four datasets.

Dataset Nodes Links Time steps
Enron [32] 143 22,784 16

Fb-forum [33] 899 33,720 11
Dept [34] 986 332,334 12
UCI [35] 1,809 56,459 13

B. Experimental Setup

The model embedding size d is set to 128, the number
of independent attention heads is set to 8, and all historical
snapshots are used for model learning in our evaluations. We
combine the snapshots into a network and offer access to the
network data by building an aggregation graph up to time
t, where the link weights are proportional to the cumulative
weights at time t for static algorithms that cannot handle
temporal dependencies [23], [25]. For the average of ten
separate runs, the final findings are shown.

C. Results

Overall Evaluation for Link Prediction. Table II presents
the experimental findings, which clearly demonstrate that
GRL EnSAT outperforms other baselines in all networks. The
model improves the AUC by up to nearly 4 percentage points
and the MAP by up to 1.2 percentage points when compared
to the best baseline algorithm.

While it is intuitively expected that the dynamic model
should perform better in dynamic link prediction, the static
model can outperform the dynamic model in some cases. For
instance, Node2vec outperforms almost all dynamic models
in the Dept dataset except for GRL EnSAT. By synchro-
nizing deep search and breadth search to gather enough
neighborhood data, Node2vec achieves exceptionally nice
performance. Compared with Node2vec, GRL EnSAT uti-
lizes more temporal information which consequently helps
it generate a more accurate prediction. For dynamic models
that consider temporal patterns, DyAERNN and E-LSTM-D
still perform less accurately than GRL EnSAT. We suspect
the following factors may play a role. First, DyAERNN uses
numerous layers of recurrent neural networks to capture long-
term dependencies, but this approach may be less capable of
capturing structural information than our model. Second, E-
LSTM-D is an end-to-end supervised learning model that cre-
ates loss functions using an adjacency matrix, but this may be
less effective in sparse networks. Finally, while both DySAT
and our GRL EnSAT employ attention mechanisms to acquire
representations, GRL EnSAT improves over DySAT due to
the utilization of masked self-attention layer that better learns
the temporal pattern.

Snapshot quantity experiment. Because the prediction of
dynamic links is based on past snapshots. We analyze the
AUC and MAP at each time step to examine the impact of
the number of snapshots on the experiment (Fig. 2).

Fig. 2 demonstrates that GRL EnSAT almost outperforms
all baselines under different sizes of historical training
data, confirming the rubustness of the model. The outcome
also suggests that more implicit qualities are captured by
GRL EnSAT. In other words, GRL EnSAT is capable of
capturing the network’s fundamental evolutionary mechanism.
For Enron network (Fig. 2a), Node2vec and DyAERNN
perform well, indicating that the use of single feature, either
the temporal evolution or the structural property, is sufficient
for dynamic link prediction. But GRL EnSAT still performs
better than others by fussing both structural and temporal
information. For UCI network (Fig. 2b), the performance of
the static models is noticeably less effective, which suggests
that a static model cannot be used to analyze a dynamic sce-
nario that is undergoing a long-term change. The performance
of E-LSTM-D becomes worse when more historical data is
used in training, implying its limit in adjusting parameters
for temporal learning. In the contrary, DySAT is more stable.
From the experiments on the two datasets, GRL EnSAT
performs better than DySAT because it improves the learning
of structure and evolution information.



TABLE II: Results of dynamic link prediction experimental task based on four datasets. The best-performing models in each dataset are
highlighted by the bolded operation, while the italic operation indicates the second best.

Performance Enron Fb-forum Dept UCI
AUC MAP AUC MAP AUC MAP AUC MAP

Node2vec 88.50±1.46 61.03±0.67 80.50±2.35 57.39±0.95 89.78±1.10 60.89±0.47 73.15±3.54 54.19±1.28
Struc2vec 68.27±1.22 53.51±0.37 74.43±2.43 55.08±0.88 80.40±1.30 57.49±0.58 74.56±3.00 55.93±1.33

SDNE 63.06±3.60 54.80±0.82 64.47±2.95 57.48±0.59 73.88±2.78 58.75±0.53 67.15±4.08 57.84±0.90
DyAERNN 92.11±0.86 61.95±0.54 74.96±3.33 57.09±0.62 89.35±0.83 62.27±0.28 83.30±3.00 60.47±0.40
E-LSTM-D 89.47±0.92 61.80±0.44 74.63±1.80 55.91±0.49 89.08±0.48 60.62±0.20 63.18±5.23 52.63±1.05

DySAT 89.54±0.85 60.74±0.65 82.77±3.38 57.50±1.26 87.98±0.34 60.48±0.29 90.70±1.04 61.35±0.61
GRL EnSAT 92.44±0.80 62.35±0.29 86.59±0.71 58.68±0.43 90.55±0.40 61.55±0.43 93.31±0.18 62.25±0.16
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Fig. 2: Experimental results on the quantity of snapshots. (a) Enron.
(b) UCI.

D. Analysis

Ablation Analysis. The local structure layer, the global
structure layer, and the temporal layer are the three key
components of our model. The ablation experiment is run on
each part to investigate its contribution to the final outcome.
For the sake of conciseness, the models are represented by the
words ‘No Local’, ‘No Global’, and ‘No Temporal’, whose
performance is presented in Table III. The performance of
‘No Local’ and ‘No Global’ is worse than the original model,
indicating that the two-layer structural self-attention is an
effective operation. Compared with removing the structural
self-attention layer, removing the temporal self-attention layer
has a greater impact on the performance of the model. In
Fb-forum, the model performance decreases by 20 and 3 per-
centage points in AUC and MAP indexes, respectively, which
indicates the necessaries of learning temporal information in
this dynamic network.

Parameter Sensitivity Analysis. Since the model uti-
lizes an independent multi-head mechanism, we conduct an
experimental investigation of the number of multi-heads.
We independently alter the GRL EnSAT’s headcount while

TABLE III: Ablation experiments performed on GRL EnSAT.

Performance Fb-forum Dept
AUC MAP AUC MAP

No Local 85.72±1.69 58.23±1.05 90.04±0.15 61.52±0.10
No Global 85.91±0.70 58.37±0.39 90.38±0.55 61.37±0.60

No Temporal 64.49±0.92 55.81±0.28 87.35±1.45 60.15±0.64
original 86.59±0.71 58.68±0.43 90.55±0.40 61.55±0.43
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Fig. 3: Experiments on the effect of model parameters on MAP and
AUC values. (a) heads. (b) dimension(log2x).

maintaining the other values. The ultimate outcomes are
displayed in Fig. 3a. It is clear that when the number of
multi-heads reaches 8, which appears to be sufficient to record
the evolution of the graph in various possible ways, the
curves perform at their best in terms of both AUC and MAP
measures. This is substantial evidence that the separate multi-
head setting mechanism is advantageous for GRL EnSAT.

We also compare the performance of GRL EnSAT at
different embedding sizes (Fig. 3b). Consistent with our
intuition, better accuracy and precision performance tends to
occur at higher embedding dimensions. This is because low-
dimensional vectors may have more information loss than
higher-dimensional vectors. Our model shows consistently
excellent performance in the embedding dimension of 128



(27). This phenomenon demonstrates that GRL EnSAT has
captured the essential features of the original network, and
thus it can predict the unknown network well in highly
compressed embeddings.

VI. CONCLUSION

We present GRL EnSAT in this research as a way to
capture network evolution and express it in response to
graphs’ dynamic character. GRL EnSAT picks up on the
network’s nonlinear characteristics as well as the temporal
relationship between subsequent snapshots. Techniques for
parameter inheritance are also utilized to keep the embedding
stable and scalable. We do tests on four relevant datasets to
test the model’s validity. The outcomes demonstrate that it
beats other baselines in terms of link prediction accuracy and
precision. Even if the model is successful, additional data
will inevitably be lost since the network is still represented
discretely, with time as the primary deciding factor. Thus,
continuous-time data formats with finer temporal granularity
and less information loss will become more popular in the
future.
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