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Abstract—Edge computing can improve the scalability and
efficiency of IoT systems by performing some of the analysis
and operations on the nodes or on intermediary edge devices.
This will reduce the energy consumption, data transmission
load and latency by shifting some of the processes to the edge
devices. In this paper, we introduce a pattern extraction method
which uses both the Lagrangian Multiplier and the Principal
Component Analysis (PCA) to create patterns from raw sensory
data. We have evaluated our method by applying a clustering
method on constructed patterns. The results show that by using
our proposed Lagrangian-based pattern extraction method, the
existing clustering algorithms perform more accurately - by
up to 20% higher compared with the state-of-the-art methods,
especially in dealing with dynamic real-world data. We have
conducted our evaluations based on synthetic and real-world data
sets and have compared the results to the existing state-of-the-art
approaches. We also discuss how the proposed methods can be
embedded into the edge computing devices in IoT systems and
applications.

Index Terms—Internet of Things, edge computing, pattern
extraction, Lagrangian Multiplier

I. INTRODUCTION

The rapid advancement of the Internet of Things (IoT) has
resulted in a unique opportunity to collect and communicate
large volumes of real-world observation and measurement
data. IoT has led to the development of smart systems which
can be used to enhance user experience and autonomously
interact with the surrounding environment [1]. The large
volume of data and time consuming computing processes lead
to serious challenges in the development of new applications
in different fields such as smart homes, smart health-care and
smart cities. To tackle this issue, scalable and adaptive methods
to analyse large volume and dynamic data streams are needed.
Furthermore, collected data streams often need to be pre-
processed and filtered for further understanding and obtaining
actionable information.
An IoT system can include the Edge and the Cloud layers; the
Edge layer (i.e. IoT sensors, IoT gateway and access points)
and the Cloud layer (i.e. Internet connection and the Cloud)
[2]. IoT sensors collect huge amount of data and transfer
the data to the Cloud for further analysis (See Figure 1).
However, transferring huge amount of data is a bottleneck
in IoT systems. Edge computing [3] appears as a promising
solution to provide storage and processing services near the
IoT devices (i.e. sensors). In edge computing the aim is to

process data in edge layer rather than the Cloud which helps
to improve the performance of the IoT system.
Pattern extraction and representation methods are some of the
pre-processing steps which help users to explore the data and
understand the underlying structure for extracting meaningful
information and detecting anomalies [4]. In the field of stream
data (i.e. data gathered from sensors), pre-processing methods
aim to overcome challenges in data streams which are volume,
heterogeneity and being multivariate.
There have been some works to address these challenges in
the area of time-series and data streams pre-processing. Some
of these existing researches are Discrete Fourier Transform
(DFT) [5], Discrete Wavelet Transform (DWT) [6], Singu-
lar Value Decomposition (SVD) [7], Piece-wise Aggregate
Approximation (PAA) [8], Adaptive Piece-wise Constant Ap-
proximation (APCA) [9], Symbolic Aggregate approXimation
(SAX) [10], Extended Symbolic Aggregate approXimation
(ESAX) [11], Principal Component Analysis (PCA) [12] and
Blocks of Eigenvalues Algorithm for Time-series Segmenta-
tion (BEATS) [13].
This work introduces a new pre-processing method in the field
of sensor data analysis which can be useful for recognising
the structure of data and detecting patterns. In the proposed
method, we apply Lagrangian Multiplier and Principal Com-
ponent Analysis (PCA) to aggregate data streams and extract
patterns as a representation method to deal with the quantity
and quality of data streams. After that, we use Gaussian
Mixture Models (GMM) for clustering the aggregated data
and evaluate the performance of the proposed technique. In
this paper, the experiments are on recorded real-world sensor
data for validation purposes. We suggest that to integrate the
proposed method into an IoT system based on edge computing
to address the problem of transferring and processing workload
in sensory data analysis.
Our proposed pattern extraction method provides high per-
formance and capability for clustering dynamic data and our
evaluation results show a Silhouette Coefficient of 0.69 which
is around 20% higher compared with other solutions (e.g.
using only PCA as pre-processing method).
The organisation of this paper is as follows. Section 2 includes
the related work. Section 3 describes the proposed method.
Section 4 discusses the results of the experiments on real-
world and synthesised data and Section 5 provides a conclu-
sion.



Fig. 1: An overview of a distributed IoT system

II. RELATED WORK

One of the issues in time-series and IoT data streams analysis
is the volume of data which is large and expensive in storage
and processing time. There have been several suggestions to
tackle the issue. Discrete Fourier Transform (DFT) is one of
the methods which shows time-series in the frequency space
as a finite number of sine or cosine waves that are represented
with Fourier coefficients [8].
A time-series x = [x1, . . . , xn] can be shown as n numbers
of Fourier coefficients x̄f [5]:

x̄f =
1√
n

n−1∑
t=0

xte
−j2πf t

n (1)

where j is
√
−1. Discrete Wavelet Transform (DWT) is

another method which is an inner product of the time-series
with the scaled wavelet ψ(x). In this method, time-series
x = [x1, . . . , xn] can be represented as a series:

x =
∑

< ψ(x), x > ψ(x) (2)

where ψ(x) is the wavelet from the Haar transformation which
is the nth derivative of below function [14]:

θ(x) =

{
1 if 0 6 x < 1

0 otherwise
(3)

ψ(x) =


1 if 0 6 x < 1

2

−1 if 1
2 6 x < 1

0 otherwise
(4)

In other words, the Haar transformation applies averaging and
differentiation operations on a time-series [6]. However, in
transformation based methods for representation, coefficients
are global features and computing most of the geometric
and mathematical features (i.e. local features) is not possible,
although this is important in data analysis methods.
Singular Value Decomposition (SVD) is another method
which is data-driven as rather than using sine and cosine

waves it uses the input data to compute a decomposition as
shown below [7].

Theorem 1: Given an n×m matrix X we can represent it
as:

X = U×Λ×VT (5)

where U is a column-orthonormal n × r matrix, Λ is a
diagonal r× r matrix and V is a column-orthonormal m× r
matrix. Note that the diagonal elements of matrix Λ are the
eigenvalues of X and r is the rank of X [7].

There are other methods besides the transformation based
methods, where we can divide time-series data into equal-sized
segments. One of the methods in this area is Piece-wise Ag-
gregate Approximation (PAA) which represents each segment
with its mean value. Given a time-series like x = [x1, . . . , xn],
PAA will represent it as a vector x̄ = [x̄1, . . . , x̄w] where
w < n [8]:

x̄i =
w

n

n
w i∑

j= n
w (i−1)+1

xj (6)

Adaptive Piece-wise Constant Approximation (APCA) is an-
other method in this field which represents time-series with
mean values of segments with different length which is based
on the activity in the segments (i.e. segments with low
amount of activity have long length) [9]. Given a time-series
x = [x1, . . . , xn], the APCA representation is given as:

X̄ = {(x̄1, xr1), . . . , (x̄w, xrw)} (7)

where x̄i is the mean value of ith segment and xri is the
right end point [9]. However, PAA and APCA cannot preserve
the shape of each segment (i.e. segments with different shape
could have the same mean values).
Another form of representation for time-series data is using
symbolic representations. For instance, Symbolic Aggregate
approXimation (SAX) uses PAA to reduce the length of data
and after that, with the Gaussian distribution assumption, it
represents the PAA vector as a sequence of symbols [10].
SAX divides the area under a Gaussian curve into equiprobable
areas and maps each one to a symbol [10]. These symbols are
used to represent each fragment of the data.
However, as SAX uses PAA to reduce the dimensions, it has
the short-come of information loss. Extended Symbolic Ag-
gregate Approximation (ESAX) tried to overcome the issues
in SAX with adding more information in representing each
segment [11]. In ESAX, each segment besides mean and the
symbolic representation has two more added attributes; the
great value and the minimum value of the segment.
Blocks of Eigenvalues Algorithm for Time-series Segmenta-
tion (BEATS) is another method which divides time-series into
8×8 observations blocks and then transforms each block into
a matrix and after that by applying Discrete Cosine Transform
(DCT) and eigenvalues, it represents the time-series with an
eigenvector of the quantised DCT matrix [13].



Principal Component Analysis (PCA) is a well-known method
for analysing multivariate time-series which represent data in a
lower dimensional space. In practice, PCA performs SVD (i.e.
X = U × Λ × UT ) where matrix U contains the principal
components and matrix Λ contains the corresponding vari-
ances which have been maximised during the PCA procedure
[12]. PCA has been used as a representation method after
segmentation which can help the clustering and analysing of
data as it reduces the dimension and volume of data while
preserving its critical information [15].
In the next section, we describe our algorithm for representing
and pre-processing multivariate time-series data using La-
grangian Multipliers and applying PCA. This creates a flexible
and scalable method which is also suitable for dynamic real-
world data streams.

III. METHODOLOGY

A multivariate time-series can be shown as a matrix N ×
D where N is the number of observations over time and D
is the number of variables (i.e. dimensions). We first apply
the Lagrangian Multiplier to scale each dimension between
(−1,+1). We then apply PCA over blocks of s observations1

to extract the most common pattern. These steps are explained
in the following sections.

A. Aggregating using Lagrangian Multiplier

The Lagrangian Multiplier is a method to maximise or min-
imise a function in relation to equality constraints. In our
proposed method, we use this transformation to scale each
dimension of multivariate time-series into (−1,+1). In other
words, we seek to find a vector for each dimension which
maximises the dot product of the vector and the dimension
subject to the vector being a unity.
For the Lagrangian method, we define a function L(x, λ) =
E(x) − λg(x) where g(x) = 0 is the equality constrain
and E(x) is the function we want to find its extrema (i.e.
maxima or minima) point that satisfies the constraint. As a
result, the extrema has to satisfy the equations dL

dλ = 0 and
dL
dx = 0. We represent the multivariate time-series as a matrix
M = [m1, . . . ,mD] where mi is the ith variable of the time-
series. E(x) is the dot product of mi and the unity vector
~x = [x1, . . . , xN ] which we want to maximise it by finding
the right unity vector. g(x) is the constrain related to the ~x
being unity (i.e. ‖~x‖ = 1) so g(x) =

∑N
j=1 x

2
j − 1 = 0.

The Lagrangian Multiplier function is shown below:

L(x, λ) = ~x ·mi − λg(x)

L(x, λ) =

N∑
j=1

ximj,i − λ(

N∑
j=1

x2j − 1) (8)

where for solving the equation L(x, λ) = 0:

1The parameter s will be selected according to the sampling frequency and
the desired aggregation criteria


∂L
∂xj

= mj,i − λ2xj = 0 for j = 1, . . . , N

∂L
∂λ = −(

∑N
j=1 x

2
j − 1) = 0

(9)

and therefore:

xj =
1

2λ
mj,i for j = 1, . . . , N (10)

which shows that the ~x is having a constant ratio to mi. As
a result:

~x =
mi

‖mi‖
(11)

meaning that for each dimension we have a unit vector.

B. PCA for Length Reduction

We divide the matrix MN×D row-wise with step size s. In
other words, M will be divided into M1, . . . ,Mw where w
is the number of matrices after the dividing procedure (i.e.
w = N

s ). We then perform PCA over each Mi and take the
highest principal component as the representative of Mi. For
PCA, we perform Singular Value Decomposition (SVD) for
each matrix Mi:

Mi
s×D

= U
s×L
× Λ
L×L
× VT

L×D
(12)

where L is the number of largest selected singular values.
To reduce the length, we take the first column of V which
includes the highest principal component as the representation
of Mi and it is corresponding to the highest variance.
The next section of this paper describes the evaluation and
performance of the proposed representation method using a
data analysis technique which is clustering2. Clustering is
one of the solutions to uncover patterns which helps users
to explore the data and understand the underlying structure to
extract meaningful information and detect anomalies [4]. For
clustering, we use the Multivariate Gaussian Mixture Models
(GMM) which is a model-based clustering method and has
been used in existing works [4].

IV. EVALUATION

To evaluate our proposed method, we applied it to two
different data sets: a synthetic data set and a real-world air-
pollution data set. We used Multivariate Gaussian Mixture
Models (GMM) for clustering to capture the capability of our
representation method.

2Clustering is a technique which gathers similar data into one group without
prior knowledge of the groups.



A. GMM for Clustering

Multivariate Gaussian Mixture Models (GMM) will fit K
Multivariate Gaussian Mixture Models to data. The method
has two phases; one is the training phase and the other is the
mapping phase. In the training phase, the model learns the
GMM parameters and in the mapping phase it maps each data
to one of the clusters.
We can define Multivariate GMM as a mixture of K Multi-
variate Gaussian distributions (i.e. it is a weighted average of
K Gaussian distributions):

f(mi|m,K, θ) =

K∑
k=1

pkφ(mi|ak) (13)

where mi is a vector of D dimensions, pk is mixing propor-
tion, φ(mi, ak) is the Gaussian density of mi with parameter
ak = (µk,Σk) where µk is the mean vector of kth mixture
model and Σk is the variance matrix of kth mixture model
and θ = (p1, . . . , pk, a1, . . . , ak) is the set of parameters for
the GMM. At the training phase, an Expectation-Maximisation
(EM) algorithm is used to learn the GMM parameters θ.
In the Expectation-step (E-step), we compute wi,k for each
mi and each mixture model:

wi,k =
pkφ(mi|ak)∑K
j=1 pjφ(mi|aj)

(14)

which is the conditional probability that kth mixture model
contains mi. In the Maximisation-step (M-step), we use wi,k
and the data items to update the GMM parameters.

pnewk =
Nk =

∑N
i=1 wi,k

N

µnewk = (
1

Nk
)

N∑
i=1

wi,k ·mi

Σnew
k = (

1

Nk
)

N∑
i=1

wi,k · (mi − µnewk )(mi − µnewk )t (15)

At the mapping phase, we compute the probability of each
data point being in each cluster (i.e. mixture model) and map
them to the cluster with the maximum probability value.

B. Using Synthetic Data

To generate synthetic data sets, we used a multivariate Gaus-
sian distribution and constructed a time-series with 2400
samples over time and four-dimensions which have three
different Gaussian distributions with equal covariance matrix
and three different mean vectors. Each Gaussian distribution
contains 800 samples. We also added white Gaussian noise
with signal to noise ratio (SNR) of 0.01.
We applied our method to the data with noise with step size (s)
equal to 12 and evaluated the performance via the Silhouette
Coefficient and for the data without noise we did not apply
the PCA step. This decision was based on the fact that the

(a) Notice the different patterns of observation from each cluster

(b) The output of clustering algorithm after applying
Lag and PCA on real-time air pollution data

Fig. 2: The clustering result

TABLE I: Performance of the propose method averaged over
50 sets of synthetic data

Data Silhouette Coefficient
Without Noise 0.87

With Noise 0.47

data was generated with a multivariate Gaussian distribution
and applying PCA would have distorted the GMM results.

The Silhouette Coefficient assesses the similarity measure
of an observation within its own cluster compared to other
clusters. The Silhouette Coefficient ranges between −1 and
+1; the higher the coefficient the better the clustering perfor-
mance. The calculated Silhouette Coefficients for the synthetic
data is presented in Table I. For rigour, we have generated
50 different sets of synthetic data and the final coefficients
were averaged over all the generated data sets. As shown,
the Silhouette Coefficient for the noise-free synthetic data is
significantly higher than the one for noisy data with SNR =
0.01. As expected, higher noise affected the performance of
the proposed method.



TABLE II: Clustering results for real-world Data

Method Silhouette Coefficient Ratio
Lag + PCA + GMM 0.69 4.09

Raw + GMM 0.46 2.25
Lag + GMM 0.457 2.25
PCA + GMM 0.395 2.05

C. Using Real-world Data

To illustrate the performance of our proposed method for
real-world applications, we selected air quality data from the
CityPulse project’s open data set3. We used the air quality
observations data for a period of two months which were
recorded every five minutes (i.e. 12 samples per hour). The
data has two dimensions; Nitrogen-dioxide (NO2) and Partic-
ulate Matter (PM).
We set the step size as 12 (s = 12) which contains observa-
tions for an hour. We cluster the data in three different clusters
based on the air-quality index for air-pollution assessments
(i.e. low risk, medium risk and high risk). See Figure 2 for
the clustering result. To evaluate our proposed method, we
compared it with existing solutions. We applied the GMM
clustering to the raw data, to the data after applying only the
Lagrangian Multiplier and also to the data after applying only
PCA.
To provide numerical assessment, we calculated Silhouette
Coefficient and also the ratio of average distance between
clusters to average distance within clusters4. Note that we
have used the ratio as the Lagrangian transformation scale
the data and this affects the distance measures for different
scenarios. Therefore, to be able to provide a fair and consistent
comparison, we calculate the ratio.
The results are shown in Table II. The Silhouette Coefficient
for our proposed method is 0.69 which shows higher perfor-
mance compared with other methods. The ratio of average
distance between clusters to average distance within clusters
is higher in our proposed method which means the samples
are closer within each cluster and they are well-separated from
other clusters. Figure 3 illustrates how the proposed model
is embedded into an edge computing architecture for an IoT
system.

V. CONCLUSION

We introduced a new method for extracting patterns from
multivariate IoT data streams. The method uses Lagrangian
Multiplier to scale the data and then it uses Principal Com-
ponent Analysis (PCA) to reduce the length of the data (i.e.
extract the most useful features from the data). To evaluate the
performance and efficiency of the method, we use the existing
Multivariate Gaussian Mixture Models (GMM) to cluster the
data sets. The method was assessed using both synthetic and
real-world data sets and has shown that it outperforms the
state-of-the-art methods by up to 20%.

3http://iot.ee.surrey.ac.uk:8080/datasets.html
4The higher the distance between and smaller the distance within clusters

the better the clustering performance, so ratio of a high performance clustering
should be high [16]

Fig. 3: The edge based architecture for the proposed method

The proposed method utilises techniques that can be run and
integrated into an edge computing device. This allows to
perform the pattern extraction in the edge layer of an IoT
system and transfer the reduced sized data and patterns to the
Cloud for further analysis. The outputs of the clustering step
can be used to identify the structure of data, analyse existing
patterns and detect anomalies. In our proposed method, we
have used a fixed number of observations as step size. Our
future work will focus on providing adaptive and dynamic
selection of the step size. We also plan to apply our method
on data sets with higher dimensions.
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