

Instructions for use

Title Detection and Blocking of DGA-based Bot Infected Computers by Monitoring NXDOMAIN Responses

Author(s) Iuchi, Yuki; Jin, Yong; Ichise, Hikaru; Iida, Katsuyoshi; Takai, Yoshiaki

Citation
Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and
Scalable Cloud (EdgeCom), 2020 7th IEEE International Conference, 82-87
https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00023

Issue Date 2020-08-19

Doc URL http://hdl.handle.net/2115/87495

Rights
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Type proceedings (author version)

Note 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE
International Conference on Edge Computing and Scalable Cloud (EdgeCom).1-3 Aug. 2020

File Information IEEE_CSCloud_2020_paper_77.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Detection and Blocking of DGA-based Bot Infected
Computers by Monitoring NXDOMAIN Responses

Yuki Iuchi
Graduate School of Information

Science and Technology,
Hokkaido Univ.
Sapporo, Japan

yuki0311@frontier.hokudai.ac.jp

Yong Jin
Global Scientific Information

and Computing Center,
Tokyo Inst. Tech.

Tokyo, Japan
yongj@gsic.titech.ac.jp

Hikaru Ichise
Technical Department,

Tokyo Inst. Tech.
Tokyo, Japan

hichise@nap.gsic.titech.ac.jp

Katsuyoshi Iida
and Yoshiaki Takai

Information Initiative Center,
Hokkaido Univ.
Sapporo, Japan

{iida,takai}@iic.hokudai.ac.jp

Abstract—Cyberattacks by botnets keep on increasing. In
this research, we aim to detect and block Domain Generation
Algorithm (DGA)-based bot-infected computers by focusing on
the characteristics of domain name resolution for searching the
Command & Control (C&C) servers. The attackers register only
few of the DGA-based domain names for the C&C servers
and make the bot-infected computers search them using DNS
domain name resolution for the further instructions. This makes
the DNS domain name resolution in C&C server searching
process inevitably causing NXDOMAIN responses for queries
about nonexistence domain names. In this paper, we designed
and implemented a detection and blocking system against DGA-
based bot-infected computers searching for the C&C servers by
analyzing the DNS traffic resulted with NXDOMAIN responses.
According to the feature evaluation results, we confirmed that
the prototype system was effective for multiple types of DGA-
based bots thus the approach could be applicable to detect and
block the malicious DNS traffic from the bot-infected computers
at the early stage.

Index Terms—Bot, DNS, DGA, NXDOMAIN, and SDN.

I. INTRODUCTION

The number of cyberattacks such as Distributed Denial of
Service (DDoS) attacks and confidential data breaches keep
on increasing nowadays. For example, in 2019, Emotet had
been widely spread and many security organizations such as
JPCERT/CC had issued alerts [1]. Many of these cyberattacks
are considered to be conducted by botnets. When a computer
is infected by a bot program, it first searches for its Command
and Control (C&C) servers for the further instructions. Then
many bot-infected computers form a botnet and carry out
cyberattacks based on the instructions of the C&C servers [2].
Apparently, the detection and blocking of the communication
between the bot-infected computers and the C&C servers at
the early stage of the infection are important to protect it from
the further cyberattacks.

The life cycle of a botnet can be divided into five phases
[3]. In the first two phases, the bot programs invade computers
through various routes and prepare the environment to com-
plete the bot infection. Then the bot-infected computers move
to the third phase, in which, a communication channel with
the C&C servers (a botnet channel) will be established. In
the last two phases, malicious actions will be conducted and
the bot programs will be updated upon receiving instructions

from the C&C servers. So far it has been clarified that Internet
communication protocols like Internet Relay Chat (IRC), Peer-
to-Peer (P2P) and Domain Name System (DNS) for botnet
channels and many researches in the literature and, have been
conducted [4]–[6] for the detection and blocking.

However, the establishment of a botnet channel requires
identifying the C&C servers first. This means that it is possible
to detect and block a bot-infected computer at this phase before
the cyberattacks carried out based on the instructions of the
C&C servers. DNS, a protocol for domain name resolution
such as mapping domain names and IP addresses, has been
generally used for identifying the C&C servers since distin-
guishing malicious DNS traffic from normal one is difficult
and the network administrators cannot simply block all DNS
traffic. So far the blacklist (including domain names and IP
addresses) based approaches have been widely adopted for the
detection and blocking of the communication between a bot-
infected computer and the C&C servers [2]. However, these
approaches have become ineffective since the attackers started
using a technology named Domain Generation Algorithms
(DGA) that generates many random domain names for the
C&C servers. Consequently, only few of the domain names
will be registered in the authoritative DNS servers for the C&C
servers thus, the identification is significantly difficult.

Authoritative
DNS server

DGA-based bot
Infected computer

DGA-based domain name

a.example.com.
~

z.example.com.

DGA-based domain name

f.example.com.
h.example.com.

(1) Attacker: Registers only few DGA-based domain names
(2) DGA-based bot infected computer: Queries DGA-based

domain names one by one

Attacker

(1) (2)飯田書き換え版2

Fig. 1. A mechanism of identifying C&C servers

Figure 1 shows the basic mechanism of a DGA-based
bot-infected computer identifying the C&C servers. First, an
attacker registers only few domain names generated by a
DGA (step (1)) and creates a bot program involving the same
DGA for spreading. When a computer is infected by the bot
program, the computer generates domain names using the
DGA and queries them one by one until it hits active one
registered in the authoritative DNS server (step (2)). Since
different type of bot program uses different type of DGA thus
distinguishing the DNS traffic generated by the bot-infected
computers from the normal DNS traffic is difficult.

Fortunately, the DNS domain name resolution for searching
C&C servers on bot-infected computers has a unique charac-
teristic that the queries cause many NXDOMAIN responses
which means that the queried domain names have not been
registered in the authoritative DNS server. With focusing on
this characteristic, the purpose of this research is to detect
and block the DNS traffic from the DGA-based bot-infected
computers for searching the C&C servers that can effectively
protect it from the cyberattacks by the botnet.

The rest of the paper is organized as follows. Section II
introduces DGA and related work followed by the proposed
system and the prototype implementation in Sect. III. Section
IV describes the evaluations and results followed by the
summary of the paper and some future work in Sect. V.

II. DGA AND RELATED WORK

A. DGA

DGA is an algorithm used for generating many random
domain names automatically. Figure 2 shows the flow chart of
the domain name resolution process of identifying the C&C
servers on a DGA-based bot-infected computer.

fig 2 C&C server search flow
Execute C&C server search flow periodically

DNS
response

DGA

NOERROR NXDOMAIN

Return
IP address of
C&C server

Obtain seeds

Apply generation scheme

Generating DGA-based domain names

Query all
domain names

YES

NO

DNS query

飯田書き換え版

Wait

Fig. 2. The flow of DNS domain name resolution for searching C&C servers

As shown in Fig. 2, a DGA-based bot-infected computer
periodically repeats a certain cycle of DNS domain name
resolution until it obtains the IP addresses of the C&C
servers. This is a cycle to identify the C&C servers by

querying the domain names generated based on the same
DGA as used by the attacker. If the bot-infected computer
succeeds in identifying the C&C servers, which means the
bot-infected computer obtains the IP addresses of the C&C
servers, it breaks out from the domain name resolution cycle
and establishes a botnet channel with the C&C servers for
achieving the further instructions. On the other hand, if the
bot-infected computer fails to obtain the IP addresses of the
C&C servers, which means that the domain name resolution
ends with NXDOMAIN response, it enters a waiting state and
waits for the next cycle to be executed. The waiting period
depends on the type of DGA (in terms of seed changes) and
the number of domain names generated in one cycle, etc. DGA
has been used in many types of botnets and one of the most
famous botnets has been spread in recent years is Mirai [7]
which was first observed in 2016. Mirai has many variants
because its source code is publicly available.

As mentioned above, there are various variants of botnets.
Similarly, DGA also has various ways of generating domain
names, which are classified into two categories based on the
seed source and generation scheme [8]. The seed is what
the DGA uses to generate random domain names while the
seed source is used for determining the seed. We focus on
the time-dependent deterministic (TDD) type DGAs since this
type is the most popular one [2], [8]. A typical example
of the seed used by the TDD type DGAs is the current
time. The current time is time-dependent and of course the
attacker can easily predict it. Another time-dependent type of
DGA, time-dependent non-deterministic (TDN), uses online
information changes dynamically such as stock market charts
and trending keywords on twitter whose future values are hard
to be predicted, to generate domain names. In this paper, we
only focus on the TDD type of DGAs.

B. Related work

Although there have been various researches conducted on
DGA, there are mainly two research areas about its analysis:
domain name centric [9] and the bot behavior centric [10],
[11]. In [9], domain names were analyzed using the Jaccard
index, Edit distance, and Kullback-Leibler divergence. The
results of the statistical analysis are used to discriminate
the communication related to DGA-based domain names. In
[10], the authors clustered similar strings from the queried
domain names that resulted with NXDOMAIN responses in a
designated network and filtered DGA-based domain names in
order to detect bot-infected computers. In [11], the authors also
used linguistic features of the domain names and 27 features of
the DNS protocol to discriminate DGA-based domain names
and conducted machine learning-based bot detections.

However, the above researches require a certain amount of
learning time and training data. As a result, if the behavior of
bots is updated during training phase the detection accuracy
will be reduced thus the system should be trained again with
new data to respond to the latest DGAs. Also, there is no
mention about how to block it after the detection. Therefore,
in this research, we propose and implement a method to detect

and block DGA-based bot-infected computers by focusing on
DNS domain name resolution process that do not require a
pre-learning period or training data.

III. PROPOSED SYSTEM

In this section, we describe the architecture and prototype
implementation of the proposed system that detects and blocks
the DNS domain name resolution from DGA-based bot-
infected computers intends to search for its corresponding
C&C servers in an organization network.

A. Overview

The proposed system is based on the two observations.
(1) NXDOMAIN responses are likely to be returned

when the DGA-based bot-infected computers try
to identify its C&C servers. This is the result of
that attackers register only few DGA-based domain
names for the C&C servers on the authoritative DNS
servers, as described in Fig. 1.

(2) The same domain names will be generated and
queried from multiple bot-infected computers if the
same type of DGA is used in the bot program and the
same seeds are used for the domain name generation.

Based on the above two observations, we consider the target
threat model of this research is that when a computer is
infected by other DGA-based bot-infected computers in the
same network, it faces risk of being infected by the same
bot. In this paper, we use the term “primarily infection”
to refer the first bot infection occurred in a network and
“secondarily infection” to refer the infection caused by the
same bot from the primarily infected computer. Consequently,
multiple computers in the network will query the same “DGA-
based domain names” for identifying the C&C servers with a
high possibility and the queries for those domain names that
have not been registered in the authoritative DNS servers will
result with NXDOMAIN responses. This is because that the
same DGA with the same seeds will generate the same domain
names. We apply this characteristic to the proposed system to
detect and block the DNS domain name resolution from the
DGA-based bot-infected computers.

fig 3 overview of the proposed method

Controller

Client

Database

Switch: Forward all traffic according
to the instructions from Controller

Client: PC used by end users

Switch

Controller: Check DNS packet from
Client with Database queries and
sends further instructions to Switch

Database: Manages domain names
resulted with NXDOMAIN responses

飯田書き換え版

Fig. 3. System model of the proposed system

Figure 3 illustrates the overview of the system model of
the proposed system. The proposed system consists of two

parts, DNS packet switching part and DNS traffic control
part. The switch forwards all traffic from the client based
on the instructions of the controller. The controller mainly
checks the DNS packets by collaboration with the database and
sends instructions to the switch. The database manages domain
names that resulted with NXDOMAIN responses. Considering
the comprehensive control features for network traffic and the
implementation simplicity, we use Software-Defined Network-
ing (SDN) technology to achieve the designed functionalities
of the proposed system.

B. SDN

The proposed system uses SDN to detect and block DNS
traffic sent from DGA-based bot-infected computers. SDN is
a software-based centralized control technology for dynami-
cally controlling network traffic with changing the policies.
OpenFlow protocol is one of the popular SDN implemen-
tations. OpenFlow protocol provides network traffic control
with two functions, data and control planes. Data plane is a
function for switching packets that dynamically updates the
flow table and forwards data based on the instructions of
the controller. On the other hand, control plane is a function
for instructing the data plane, which performs network path
control and calculation for data forwarding. Accordingly, by
using SDN technology, it is expected that the DNS traffic can
be dynamically controlled based on the instructions of the
controller with the domain name information on the database.

C. The procedure of SDN controller

As a prerequisite, all network traffic will be transmitted to
the SDN switch by default. In the proposed system, since
we focus on DNS traffic, all other traffic from an internal
computer will be passed through to the destination on the
SDN switch. If the received packet is a DNS packet, then
the SDN switch forwards it to the controller for the further
instructions called “packet-in” process in SDN. Then the
controller checks the “packet-in” DNS packet in the database
to confirm whether it should be forwarded or dropped. Figure 4
shows the verification process of the controller in detail. When
the controller receives a DNS query through the “packet-in”
process, it performs domain name verification, updates the
blacklist database and gives instructions to the switch. We
assume a case in which multiple computers have been infected
by the same type of DGA-based bot in an organizational
network. In this case, the bot-infected computers will generate
same DGA-based domain names for searching C&C servers.
Therefore, if the DGA-based domain names have not been
registered in the authoritative DNS servers, the queries will
get NXDOMAIN responses and the queried domain names
will be stored in the blacklist database. Consequently, when
the controller checks the queried domain names in the database
the internal computers sent the same DNS queries will be
detected and the further actions will be blocked.

There are two steps in the domain name verification. The
first step is that the controller searches the queried domain
name from the registered records in the blacklist database.

Record in DB

START

Get DNS packet

Query or Response?

FQDN in DB? NXDOMAIN?

Wait a new DNS packet

Packet out
Drop

Record in DB

responsequery

yes yesnono

Number of srclist?

more than 1

1

Fig. 4. Controller’s procedure

If it does not exist, it is returned as a benign packet to the
SDN switch that makes the DNS packet pass through although
the DNS query may be from a primarily infected computer.
However, if a record of the same domain name exists in the
blacklist database, the controller adds the source IP address to
the database and sends a control instruction to the switch to
drop the DNS packets sent from the source IP address. The
second step is that the controller checks the number of source
IP addresses of the corresponding records in the blacklist
database. If the number of the source IP addresses is one,
it identifies that it is a computer configuration error or typing
error and returns it to the switch as a benign packet. On the
other hand, if the number of the source IP addresses is larger
than one, it is unlikely that multiple users make same typos in
a short period and there is a high probability that the bots are
using the same type of DGA for searching the C&C servers.
Therefore, the controller sends instructions to the switch to
drop all packets sent from the source IP address.

The proposed system also includes an operation based on
the received DNS responses in order to update the blacklist
database dynamically. If the controller receives an NXDO-
MAIN response for a DNS query, the corresponding queried
domain name with its relevant information will be added to
the blacklist database. The main fields of the record in the
blacklist database are described in the following. The number
in parentheses indicates the size of the field in Bytes.

Fields achieved from the DNS response:

• r_fqdn bigint(20): the queried domain name
• q_type varchar(1000): the queried record type
• r_time bigint(20): the time when the controller receives

the DNS packet
• r_ns varchar(1000): the zone name of the authoritative

DNS server that authoritative for the queried domain
name

• r_nsttl bigint(20): the negative cache time
• srclist int(11): the source IP addresses of the query

Fields achieved from the DNS query:

• srclist: the source IP addresses of the DNS query
packets to which the r_fqdn and q_type are matched.

D. Implementation

Table I shows the specifications of the machines used for the
prototype implementation. We created five virtual machines
in the same network segment using KVM, a virtualization
module, in one physical machine. Two of them were installed
as a DNS full resolver and an authoritative DNS server,
another two of them as client computers and the last one
of them as an SDN controller and a blacklist database. In
addition, we installed Open vSwitch (OVS) [12] as an SDN
switch on the Host machine. For the controller, we adopted
Ryu [13], which is a framework for developing the API of
the controller part to realize the SDN-based network traffic
control. According to the procedure described in Sect. III-C,
we developed a Python program to analyze the DNS packets
in collaboration with Ryu.

TABLE I
SPECIFICATIONS OF TESTING ENVIRONMENT

Component OS Software CPU RAM

Host machine CentOS Open vSwitch Intel Xeon 16GB7.7.1908 (2.11) E5-1620 v2
Client1 (KVM) 7.6.1810 Original program 1 core 1GB
Client2 (KVM) 7.6.1810 Original program 1 core 1GB
DNS resolver (KVM) 7.6.1810 bind 9.11.4-P2 1 core 1GB
DNS authoritative 7.6.1810 bind 9.11.4-P2 1 core 1GBserver (KVM)

Controller (KVM) 7.6.1810 ryu 4.32 4 cores 2GBMariDB 5.5.6

In addition, in order to evaluate the functionalities of the
proposed system in the experimental network environment, we
also created a bot-like program by Python, i.e., only the DGA
function of a bot as illustrated in (2) of Fig. 1 was implemented
in the program. We implemented a program that generates
DGA-based domain names by using the “date” as a seed and
queries the domain name to the DNS resolver. This program
updates the date seed, generates domain names and queries
the domain name every day for a specified period from the
specified date. In this system, the criteria for bot detection are
deeply related to DGA-based domain name generation and its
query. Therefore, in the evaluations, we can consider that the
behavior of the created bot-like program works as a DGA-
based bot-infected computer as we expected.

IV. EVALUATION AND RESULTS

In this section, we describe the evaluation on the imple-
mented prototype system and the results. First, we measured
the process time of the DNS domain name resolution on the
prototype system. Then we conducted feature evaluation to
verify the functionalities of the proposed system.

A. Process time of the DNS domain name resolution

We measured the process time of the DNS domain name res-
olution in three different systems and the detailed information
is shown in Tab. II. We compared the proposed system, which
is described as “Packet-in with DB” in the table, with two other
systems, Switching only (which do not use SDN controller),

and Packet-in without DB (which is a normal SDN network).
We used dnsperf [14], a tool for measuring DNS server
performance, for the process time measurement. Specifically,
we sent queries from the client to the DNS resolver for two
different domain names which results with NOERROR and
NXDOMAIN responses respectively and measured the process
time on the three systems.

TABLE II
SYSTEMS USED FOR PROCESS TIME MEASUREMENTS

System Switch-controller relationship Extra process
at the controller

Switching only - -
Packet-in w/o DB Forward DNS packets to controller -
Packet-in with DB Forward DNS packets to controller Domain name
(Proposed system) check using DB

The results of the process time measurements are shown in
Tab. III. It should be noted that except the system “Switching
only”, the DNS packets will be sent to the controller every
time the “packet-in” event occurs. As a result, the Queries Per
Second (QPS) of domain name resolution for “domain name
with NOERROR response (NOERROR domain)” dropped
from about 5,000 QPS to about 400 QPS. While when the
proposed system processes an “NXDOMAIN domain”, the
average latency is about 3 seconds due to the time required to
process the domain name verification in the blacklist database.
This is larger than 2 seconds, which is the timeout limit of
the “nslookup” tool used for the name resolution in operating
systems. However, we consider that the performance of the
DNS domain name resolution on the proposed system can be
improved by tuning up the blacklist database operations.

TABLE III
RESULTS OF PROCESS TIME EVALUATION

System Response Run Query per Average Latency
message time [s] seconds latency [ms] stdDev [ms]

Switching only NOERROR 1.523 5,254 18.92 4.310
Packet-in w/o DB NOERROR 19.41 412.2 241.6 9.375
Packet-in with DB NOERROR 21.39 374.1 262.2 15.62
Switching only NXDOMAIN 1.516 5,277 18.81 5.165
Packet-in w/o DB NXDOMAIN 19.04 420.2 237.0 16.21
Packet-in with DB NXDOMAIN 226.0 35.40 2,810 378.7

B. Feature evaluation

1) Overview: In order to reproduce the various situations in
an organizational network, we used several types of DGAs and
scenarios in the experiment. Two scenarios were considered in
the experiment and the outline is shown in Fig. 5.

• Experiment 1: Two bot-infected computers exist already.
• Experiment 2: One computer is infected in the primarily

infection and another one is infected in the secondarily
infection by the same DGA-based bot. This means there
is some interval time exists between the two infections.

The above two scenarios were created with the following
two factors related to the functions of the proposed system.
Since these factors have a significant impact on the detection
thus, we divided the scenarios based on the factors.

(a) whether NXDOMAIN information has been already
registered in the database as prior information.

(b) whether multiple bot-infected computers are active.

Experiment1

Experiment2-1

Experiment2-2

client1

client2

client2

client1

client1

client2

experiment
starts 1 minute 3 minute2 minute

querying state

5 minute

Fig. 5. Illustration of feature evaluation scenarios

In the experiments, one day of the actual time is shortened
to one minute to shorten the evaluation time. Therefore, in
Fig. 5, the number of elapsed minutes after the start of the
experiment corresponds to the number of days elapsed in
the actual time. In other words, the DGA-based bot program
generates domain names from the date seed and queries it
every minute for a specified period. In the Experiment 1, two
bot-infected computers simultaneously generate and query the
domain names of the same date seed for one minute. In the
Experiment 2, the primarily and secondarily bot-infected com-
puters query at different time. The amount of NXDOMAIN
information in the blacklist database of the proposed system
varies with the length of time. Therefore, in the Experiment
2 (2-1 and 2-2), we verified the case where each bot-infected
computer queries for 1 or 2 minutes. We also set one minute
of idling time for the secondarily infected computer. In the
experiment, 23 TDD-type DGAs were used out of publicly
available Python programs [15] introduced to generate similar
DGA-based domain names by reverse-engineering the DGA
part of the existing bot programs. These bot-like programs
have fixed the input seed for day 1 at 2020-01-06 within the
parameters.

2) Results: The number and names of detected DGAs are
shown in Tab. IV. In the Experiment 1, the DNS domain
name resolution from bot-infected computers was detected and
blocked against all types of DGAs. While in the Experiment
2-1 and 2-2, 8 and 11 DGAs were detected and blocked respec-
tively. In the Experiment 1, multiple bot-infected computers
queried the same DGA-based domain names thus the proposed
system was able to detect them in all the prepared DGAs. On
the other hand, in the Experiments 2-1 and 2-2, the proposed
system was able to detect only about half the DGAs prepared.
The DGAs failed to be detected had different date seeds in
the primarily and secondarily infected computers thus, the
generated DGA-based domain names did not overlap. As a
result, the domain name registered in the blacklist database
had only one type of IP address and the queried computer
was not detected as a bot-infected computer.

In addition, we also analyzed the detected DGAs regarding
the domain name generation interval and the detailed results
are shown in Tab. V. The results show that the period of

TABLE IV
RESULTS OF FEATURE EVALUATION

Experiment
of

detected
DGAs

Name of DGA

Experiment 1 23 all

Experiment 2-1 8 Qakbot, Sisron, Mydoom, Symni, Kraken v2,
Tempedreve, Nymaim2, Pykspa improved

Experiment 2-2 11

Bots found in Experiment 2-1 (Qakbot, Sisron,
Mydoom, Symni, Kraken v2, Tempedreve,
Nymaim2, Pykspa improved) and
Pykspa precursor, Murofet v1, Murofet v3

domain name generation was adjusted based on the DGA
types. There are three types of period adjustment: (1) seed
processing, (2) sliding window and (3) accumulation. Table V
shows the period along with the classification for the detected
DGAs (bots) that are considered in the form (1) and (2).

TABLE V
CLASSIFICATION OF SEED TYPES

Name of DGA Type Cycle Name of DGA Type Cycle
[day] [day]

Pykspa improved 1 20 Symni 1 15
Pykspa precursor 1 2 Kraken v2 1 7
Murofet v1 1 7 Nymaim2 2 11
Murofet v3 1 7 Sisron 2 9
Qakbot 1 10
Type: (1: Seed proceeding, 2: Sliding window)

(1) In the seed processing type, the number of generated
DGA-based domain names is constant in a certain
period. This is because the seed is truncated by a
constant, for example in weeks, before it is generated
by the random number generator. Therefore, if UNIX
TIMESTAMP is used for the seed calculation, it is
truncated by the specified number of days∗24∗3600
and is delivered to the random number generator. As
a result, same domain names will be generated for
the specified number of days.

(2) In the sliding window type, multiple seeds are used.
This type of DGA generates N new domain names
with a single seed (date) then queries them within a
certain period (M days before). That means that a
total of N+M∗N queries per day will be performed.
Therefore, there are N domain names in common for
a maximum of M + 1 days.

(3) Unlike (2), there is no limit to a certain number of
M days in the accumulation form. This form queries
all newly generated domain names by the hardcoded
date B, in addition to the N newly generated domain
names on the seed date A. Therefore, compared to
(2), the number of domain names queried is N ∗(A−
B + 1) and it increases every day.

As a result, N new DGA-based domain names are queried
every cycle with TID type and once generated domain names
were not deleted but queried every time the accumulation form
DGA was executed. Based on this analysis and the difference
in the number of detection types in Experiments 2-1 and 2-
2, we can confirm that the proposed system can detect more

diverse DGA-based bot-infected computers by extending the
monitoring period.

V. SUMMARY

In this paper, we proposed a method to detect and block
DNS domain name resolution from DGA-based bot-infected
computers for searching the C&C servers by focusing on
the DNS queries resulting with NXDOMAIN responses. The
queried DGA-based domain names caused NXDOMAIN re-
sponses will be managed in the blacklist database for the
detection and blocking the further actions of DGA-based bot-
infected computers. We implemented a prototype system and
evaluated the features and domain name resolution perfor-
mance in a local SDN experimental network. Based on the
evaluated results, we confirmed that the proposed system was
capable of detecting all DGA-based bots using TDD-type
seeds when multiple computers are primarily infected by same
type of DGA-based bots.

We also found that when the bot infection was slower than
the DGA-based domain name generation cycle the proposed
system could not detect the DNS traffic after the infection.
In order to deal with this case, it is necessary to develop a
detection mechanism that not only depends on the behavior
of multiple computers but also on the behavior of a single
computer, such as the researches in Sect. II-B.

REFERENCES

[1] JPCERT/CC, “Alert regarding Emotet malware infection,” https://www.
jpcert.or.jp/at/2019/at190044.html, Nov. 2019.

[2] A.K. Sood, and S. Zeadally, “A taxonomy of domain-generation al-
gorithms,” IEEE Security & Privacy, vol. 14, no. 4, pp. 46–53, July-
Aug. 2016.

[3] M. Feily, et al., “A survey of botnet and botnet detection,” Proc. IEEE
Int’l Conf. Emerging Security Information, Systems and Technologies,
Athens, Glyfada, June 2009, pp. 268–273.

[4] H. Ichise, Y. Jin, and K. Iida, “Analysis of via-resolver DNS TXT
queries and detection possibility of botnet communications,” Proc. IEEE
Pacific Rim Conf. Communications, Computers and Signal Processing
(PACRIM), Victoria, BC, Aug. 2015, pp. 216–221.

[5] H. Ichise, Y. Jin, and K. Iida, “Analysis of DNS TXT record usage and
consideration of botnet communication detection,” IEICE Trans. Com-
mun., vol. E101-B, no. 1, pp. 70–79, Jan. 2018.

[6] H. Ichise, Y. Jin, K. Iida, and Y. Takai, “NS record history based abnor-
mal DNS traffic detection considering adaptive botnet communication
blocking,” IPSJ J. Information Processing, vol. 28, pp. 112-122, Feb.
2020.

[7] Y. Liu, “Now Mirai has DGA feature built in,” https://blog.netlab.360.
com/new-mirai-variant-with-dga/, Dec. 2016.

[8] D. Plohmann, et al., “A comprehensive measurement study of domain
generating malware,” Proc. USENIX Security Symp., Austin, USA,
Aug. 2016, pp. 263–278.

[9] S. Yadav, et al., “Detecting algorithmically generated malicious domain
names,” Proc. ACM Annual Conf. Internet Measurement (IMC’10),
Melbourne, Australia, Nov. 2010, pp. 48–61.

[10] M. Antonakakis, et al., “From throw-away traffic to bots: Detecting the
rise of DGA-based malware,” Proc. USENIX Security Symp., Bellevue,
USA, Aug. 2012, pp. 491–506.

[11] Y. Li, et al., “A machine learning framework for domain generation
algorithm-based malware detection,” IEEE Access, vol. 7, pp. 32765–
32782, Jan. 2019.

[12] “OpenvSwitch,” https://www.openvswitch.org/, Accessed at Jan. 2020.
[13] “Ryu,” https://github.com/osrg/ryu, Accessed at Jan. 2020.
[14] “DNS Performance Analytics and Comparison,” https://www.dnsperf.

com, Accessed at Jan. 2020.
[15] “Domain generation algorithm,” https://github.com/baderj/domain

generation algorithms, Accessed at Jan. 2020.

