
Ali Ahmadinia, Ph.D. 08/10/2020
PROJECT COMMITTEE CHAIR SIGNATURE DATE

Xin Ye, Ph.D 08/10/2020
PROJECT COMMITTEE MEJv.lBER SIGNATURE / DATE

PROJECT COMMITTEE MEJv.lBER SIGNATURE DATE

CALIFORNIA STATE UNIVERSITY SAN MARCOS

PROJECT SIGNATURE PAGE

PROJECT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE

:MASTER OF SCIENCE

IN

COMPUTER SCIENCE

PROJECT TITLE: Partially Homomorphic Encryption Scheme for Real-Time Image Stream

AUTHOR: Angel Ivan Vazquez-Salazar

DATE OF SUCCESSFUL DEFENSE. August 10, 2020

THE PROJECT HAS BEEN ACCEPTED BY THE PROJECT COMMITTEE IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF :MASTER OF
SCIENCE IN COJ\APUTER SCIENCE.

Partially Homomorphic Encryption Scheme for Real-Time Image Stream

Angel Vazquez-Salazar

California State University, San Marcos

Computer Science Department - Summer 2020

Academic Advisor: Dr. Ali Ahmadinia

Defense Date: Monday, 10 August 2020

Abstract

With over 20 billion internet of things (IoT) devices connected today, having the possibility to implement

a low-cost security camera is now an option. Camera vendors can provide software to enable remote

viewing anywhere around the world. However, the problem arises in security measure taken. By only

providing encrypted services to authenticate a user by login credentials, there still is a vulnerability in raw

stream. Newer types of intrusions like spoofing, or man in the middle attacks mean that once they have

breached the account, they are able to gain full viewing access of the camera stream. However, by

encrypting the stream of these IoT cameras, we have a chance to truly retain privacy and ownership of our

data.

With IoT devices being limited with on-board memory and CPU speeds, this can be a challenge. To

mitigate and offset any CPU intensive work, we will encrypt the data between our cloudlet device and our

edge device by using a partially homomorphic encryption scheme called ”Elgamal encryption”. This CPU

offloading allows the cloudlet to transmit streams at much higher framerate. The proposed system will

utilize a Raspberry Pi 4, for our cloudlet with our desktop being the edge.

Table of Contents

Abstract ... 2
Introduction ... 4

IoT Overview .. 6
Encryption Overview .. 8
Project Materials ... 11

Related Works ... 13
Implementation ... 14

Elgamal Encryption .. 17
Cloudlet Integration .. 19
TCP Socket Integration ... 21
Decryption... 23

Results ... 25
Future Work .. 29
Conclusion .. 31
Resources .. 32

Introduction

Live streaming has become an integral part in modern day society, whether it be via social media or home

security applications. The availability of higher bandwidth networks offers superior connection speeds,

allowing users to integrate multiple smart camera devices in their home network. As mentioned prior, the

trade off with using smart devices is privacy. By connecting multiple smart devices into your network,

you offer multiple ways that someone may be able to breach your network through a security flaw in the

smart device.

Although there are multiple solutions on the market today to secure your network, there needs to be a way

to properly protect the transfer of data within your security system. The ideal scenario to ensure that

communication between your cloudlet device and edge will be protected from a breach would be a fully

homomorphic encryption.

A fully homomorphic encryption system was first devised in 1978 [1] in order to create a high-level

encryption scheme that supports both addition and multiplication operations on cipher texts for a time-

shared computer service, similar to how enterprise solutions rely heavily on cloud-based computing and

data storage. Sadly, at this time, it was almost impossible to implement being a NP-Hard complexity with

the hardness being based on the ideal lattice.

In 2009, Craig Gentry [2] proposed a fully homomorphic encryption scheme off of lattice-based

cryptography. In doing so, Gentry was able to make the encryption bootstrappable at every level, reducing

the overall noise. In the second and third generation scheme, Gentry and other researchers were able to

optimize this scheme further by reducing the noise while increasing efficiency and security. In the future

generations, Gentry et al., was able to create a more efficient cryptosystem, to where high powered

machines can make these computationally heavy encryption schemes usable.

Although a fully homomorphic encryption (FHE) scheme can be a possible solution for this security

application, it is not feasible under current hardware restrictions. The goal of this project was to find a

way to apply some form of encryption scheme over image streams while applying object detection

algorithms to it. In doing so, we will be able to evaluate the limitations of encryption on a smart device

and figure out how we can optimize our current tools to reach a more secure platform for future devices.

Figure 1: Basic representation of how FHE works

IoT Overview

IoT devices follow a form of IEEE 802.15 network protocol, or Zigbee communication, based off of the

IEEE 802.15.4 network protocol. These network protocols enforce a maximum throughput while utilizing

little to no resources. Everything from a smart watch to a fitness tracker or even smart lights are great

examples of how lightweight these devices are in regard to CPU usage. By the IEEE standardization,

these devices are able to adhere to the strict guidelines in an effort to make all devices as convenient for

the user as possible. For instance, there are motion sensors with battery life extending beyond three or

four years yet are able to be connected 24/7 and accessed remotely at the drop of a hat.

However, as local and regional network bandwidth increases and is able to handle higher traffic

throughput, the usage of remote security devices has come on the rise. Inexpensive cameras such as Wyze

Cam, offer a convenient end-to-end solution for people who desire to monitor their homes or other

property at their leisure. For more tech savvy users, a Raspberry Pi, Asus TinkerBoard, or even an

Arduino have been solid choices in devising a remote viewing scheme to enable users the option to build

out their ideal security system. With predictions showing over 70 billion devices connected by 2025, one

thing is clear, there needs to be security measures taken on any web connected device.

Figure 2: Statista reports that as much as over 70 billion IoT devices will be connected to the world-wide-web by 2025!

Some types of proposed intrusion detection systems (IDS) can be as simple as a relay that notifies a user

when activity has increased, to using internal sensor temperature indicators to verify if the CPU workload

is consistent with the average data usage, to even utilizing hardware sensors that cannot be bypassed via

software! While all of these systems are great to utilize, users require a reliable, consistent, and privacy

protecting measure.

Implementing a form of security system is difficult since IoT devices have only enough on-board storage

space for their internal processes. These security systems are both costly to build and maintain, but also

require an abundance of resources to allow real-time notifications. This, on top of having security

cameras requiring more bandwidth will limit the total amount of network connected devices as well as

reduce the overall upload speed provided by your internet service provider (ISP).

Encryption Overview

The practice of cryptography online has become the standard for privacy protection, although

implementations of cryptography have been used in previous centuries. Arguably, the first widely known

form of encryption was the Caesar cipher.

Figure 3: Notice how the characters shifted by a value of 3?

This style of encryption used a basic key that shifted the positions of characters either up or down the

alphabet. In doing so, a simple text would be rendered useless to the naked eye. However, once the

message is passed to a person with the decryption key, or the shift value in this case, the person would be

able to decipher the text relatively easily to read.

A second option to solve the key issue is by brute force since the message may have been standard text,

allowing the usage of a frequency chart in order to create a platform for decryption.

Figure 4: As you can see, the most prevalent character in the English alphabet is 'e'

However, in modern security practices, an RSA (Rivest–Shamir–Adleman) [9] key is considered industry

standard alongside AES-256 [10]. Although these cryptography schemes are great for security measures

for user accounts, a new issue begins, cloud computing.

With cloud computing, data privacy has become the primary focus of users. With big data and internet

usage of any type, there will always be a copy of what search result was done or what website a user with

IP Address 'X' went on for a designated time frame. This bodes very well for tech giants such as

Alphabet's Google and YouTube, the top two most used search engines today. Artificial Intelligence as

well as Machine Learning mean that tech companies are better able to provide accurate statistics on user

data, or as some would call it "creating a better user experience for all". For others, this is simply a burden

and a violation of rights since they want to protect their privacy in any way possible. As much as big data

aides in the development of better analytics, being spied on should not be a concern. This is why the FHE

model works so well. It allows users to offload data to cloud servers that do all of the heavy analytical

data, without bogging down local servers, yet is able to retain full privacy protection to users involved

with data processing.

Project Materials

For the scope of this project, a few things were considered. First was cost of goods. This was not because

of budgeting requirements more so finding a capable IoT device to serve as a cloudlet that can process

video streams effectively while maintaining a minor overhead for net cost. The second factor in

determining hardware was open source repositories. The Google Coral and hardware accelerator that are

currently sold are on the bleeding edge of computing devices but is nowhere near the user base of

Raspberry Pi [12], Arduino, or Asus TinkerBoard. Another limiting factor is the Google Coral required

you use their pre-determined modeling techniques for analysis and has a limited core group that can

provide support in the case that the device no longer works as needed. For this reason, the Raspberry Pi

8GB was chosen.

Having a light-weight device that offers a 4-core CPU, 8 GB of RAM, gigabit Ethernet port, as well as

USB-C hubs made it the best choice. On top of that, the amount of documentation currently available by

users and manufacturers allow you to be flexible in how you approach certain applications. Finally, the

benefit of using Python 3.x made this a smart choice for programming.

Figure 5: A Raspberry Pi Model 4 with an aluminum metal heatsink to disperse heat and keep the device cool.

This leads to another addition which is the camera for the real-time video stream. Raspberry Pi offers

OEM camera modules, as well as having 3rd party vendors make their own camera modules. In this case,

the picamera V2 [11] was chosen. The reasoning behind this was to be able to use OEM manufacturer

equipment to ensure the best possible outcome, with the least amount of errors. A consideration was made

for the picamera V2 NoIR (no infra-red), as well as the V1.3, although for our experimentation, a camera

with no infrared capabilities was not required, and the V1.3 is not nearly as equipped as the V2. If this

were to be displayed in regions with ultra-low light, NoIR camera modules may provide some

improvement.

Figure 6: A Raspberry Pi PiCamera V2 offers up to 1920x1080p resolution at 30 fps.

Once the hardware requirements were decided, the next portion of the project remained, development. A

wide array of programming languages can be used effectively for this project, but the simplicity and

effectiveness of Python made it the clear choice. Both AI and ML applications are commonplace for

Python, and also being able to hyper-thread and utilize parallelism between multiple cores allow the

processing to be as fast as possible. This, on top of Python being a lightweight object-oriented

programming language that offers great flexibility between the Raspberry Pi and the host device, an iMac

Pro machine.

Related Works

With such a vast field of IoT, there are a few pieces of work that are core to the development of

encryption. However, in the specificity of real-time video stream encryption, there is little to no work that

is published. This, on top of the prospect of using an encryption system based off of a fully homomorphic

encryption scheme with live-streamed video is non-existent.

Most fully homomorphic encryption schemes are based off of the proposed systems written by Craig

Gentry, Ph.D [2]. In his proposal, et al. Gentry utilizes lattice-based cryptography for cipher-text

computation. This, alongside his "bootstrapping" method allowed low noise to increase accuracy. With

that system, they are focused heavily on data analytics via the cloud for highly regulated industries such

as the healthcare industry.

There are similar variants to my proposed work such as "Real-Time Privacy-Preserving Moving Object in

the Cloud" by Kuan-Yu Chu [3]. First, this article uses a wired network camera, commonly used for

CCTV (closed circuit television) relay, then sending the data to the cloud for object detection. Although

this is great, the added difficulty of using a lightweight wireless IoT camera means that there are

enhanced security measures that should be in place since it is easier to breach a wireless device over a

wired device.

Another great research paper pushing forward in the encrypted video stream is "Private Video Streaming

Service Using Leveled Somewhat Homomorphic Encryption" [5]. In this report, they were able to utilize

a leveled homomorphic encryption in order to encrypt a video stream service, leading to similar results if

the decryption process was not computed correctly.

Moving into the video encoding side, Secure Advanced Video Coding Based on Selective Encryption

Algorithms [7] offers the use of a more widely used encoding platform that offers a secure method in

which to transfer videos to the end user. By adding another layer going into the intra-prediction mode can

offer a smear style encryption and a strong compression ratio that makes data transfers easier and quicker.

Dual-Layer Video Encryption using RSA Algorithm [8] is based off of a RSA-themed cryptosystem [9],

following which they encode the encrypted video stream using the audio video interleaved (AVI) codec,

with a possibility to port to a more common MPEG format. Where they benefit the most is the utilization

of dual-layer encryption. In the report, they show that a single layer encryption can mask the frame well,

but when a second layer is applied, the frame resembles a television static image.

Another related piece is the widely used Python package, imagezmq, written by Jeff Bass [13]. The

utilization of Python websocket programming is key in transferring data between the cloudlet, a

Raspberry Pi [12], and the edge device, the desktop workstation. Here, however is where the benefits are

increased. This package offers multiple cloudlets (at this time, 12 have been simultaneously tested) to be

transmitting data to the workstation.

Some works that stand out in the security driven world of IoT devices can be traced to et al. Gentry, Ph.D.

Gentry's [2] dissertation for the first-generation 'Fully Homomorphic Encryption' in 2009 began the

revolution of privacy driven encryption for remote processing and storage, such as cloud devices. These

cloud servers are able to process data while remaining encrypted, although the host machine retains the

key for decryption. As it stands, et al. Gentry [2] has improved ten-fold with his newer third-generation

FHE model (GSW) further, by avoiding the relinearization step, taxing CPU speeds dramatically.

Implementation

The basis of this project was utilization of a homomorphic encryption scheme. RSA encryption [9] is a

great scheme, predominantly used for username/password protection, along with SHA-based encryption

schemes [14]. Elgamal, although, is categorized as a partially homomorphic encryption scheme, utilizing

an asymmetric key encryption algorithm.

Figure 7: Illustration of Trivial Cryptography Scheme

Elgamal encryption is lighter-weight and can be a suited scheme for image encryption. Based off of the

Diffie-Hellman key exchange [16], one of the earliest forms of public key exchanges.

Figure 8: Illustration of the concept behind Diffie–Hellman key exchange

 (𝑔𝑔𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = (𝑔𝑔𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 (1)

This key exchange requires a protocol of multiplicative group of integers over a modulo, p and a primitive

root modulo g.

The preliminary step in creating a proper Elgamal Encryption scheme [15] is to begin with key

generation.

Elgamal Encryption

Key Generation

To start off, we need to create a cyclic group G of order q.

Following this, we then want to choose a number at random, x, inside the set

{0, … , 𝑞𝑞 − 1} (2)

After x is selected, we then calculate h.

ℎ = 𝑔𝑔𝑥𝑥 (3)

Once h is computed, the cloudlet can then publish this new key, h.

Encryption

Once an interaction begins between the cloudlet and the edge, the edge then goes on to follow a similar

route of key generation.

To start off, the cloudlet will have made public the following:

(𝐺𝐺, 𝑞𝑞,𝑔𝑔, ℎ) (4)

where G is the cyclic group, q is the order of G, g is the generator, h being the public key code.

Create a reversible map for message m.

Choose a number at random, y, inside the set:

{0, … , 𝑞𝑞 − 1} (5)

Compute s, referred to as shared secret:

𝑠𝑠 = ℎ𝑦𝑦 (6)

Compute 𝑐𝑐1 or cipher-text 1.

𝑐𝑐1 = 𝑔𝑔𝑦𝑦 (7)

Compute 𝑐𝑐2, or cipher-text 2.

𝑐𝑐2 = 𝑚𝑚 ∗ 𝑠𝑠 (8)

Once 𝑐𝑐1 and 𝑐𝑐2 are calculated, these two are sent to the edge for decryption. Although they pass through

public space, there is no longer a concern for any singular user to retrieve a copy of the message since

they have no access to the secret key, or even a method in which to receive the keys.

Cloudlet Integration

After the Elgamal encryption scheme has been setup, we then move forward to integrate this to our

cloudlet device, a Raspberry Pi 4 [12]. Once the operating system (Raspberry Pi OS) is installed, we then

need to verify the modules used, Python 3.7.3, as well as numpy 1.16.2. From here, we install:

imutils, imutils.video, math, random, picamera, time, and a few miscellaneous packages.

Utilizing Open CV2 allows us a myriad of supported software that is used daily. By use of OpenCV [17]

we can read in singular frames at any given point. Since these all follow the standard numpy.ndarray

formatting, processing any computations after the fact make it simple. In doing so, we are able to directly

multiply the loaded frame shown with 𝑐𝑐2 in formula 8. This direct multiplication will go across every

pixel in the tuple-based frame (our example utilized a 3-tuple image being 640*480*3, being the width,

height, and the amount of channels, BGR).

Figure 9: Frame Printout of image loaded into OpenCV

Once we compute (8), or 𝑐𝑐2, these raw values will then become encrypted.

Figure 10: Frame Printout of encrypted image loaded

At this stage, we then need to consider the streaming service, in our case a TCP socket was chosen. Local

broadcast was no longer considered because the sizing of the encrypted frame shape no longer is a

readable file outside of byte code or data processing.

TCP Socket Integration

For the data stream, once encrypted will leave us with a numpy nd.array format that we can still process

data with, or manipulate in any regard, however, we now need to transfer the encrypted frames

somewhere for analysis. Since we are no longer concerned with transmitting data that is not encrypted, we

utilize a TCP socket in Python for our data transfer.

At the time of this report, there are plentiful ways to integrate a TCP socket for sending frame, as well as

many available packages that specifically transfer a numpy nd.array between devices. We chose to send

the frame via a custom-made socket.

In order to integrate this socket, a few things are considered. First and foremost, the action of sending the

original frame must be possible. Secondly, a TCP socket is required versus a UDP socket. This was

chosen because we needed to consider that in a UDP environment, there is no possible way to verify the

package contents arrived at the location in proper order. By handling this encrypted frame via TCP, we

are ensured always that the frame is being sent exactly as needed.

Going from here, recall that we have to transmit certain keys to the edge for proper decryption. The first

and foremost is the encrypted frame, represented by equation (8). Following this, we also need the first

cipher-text (7), the cyclic group key, q and lastly the edges generated key value g. These four items must

be sent to the edge from the cloudlet in order to compute the decryption properly.

For our project, we decided to implement the encryption key per socket creation over per frame. The

additional processing and calculations proved moderately difficult for the cloudlet to be able to call for a

new private key and public keys. That being said, to facilitate a smooth transfer of data, assuming that

these are public keys and do not need their own encryption, we package them as a tuple.

𝑎𝑎𝑎𝑎𝑎𝑎_𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑐𝑐1,𝑏𝑏𝑏𝑏𝑏𝑏_𝑔𝑔𝑔𝑔𝑔𝑔_𝑔𝑔, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑞𝑞 (9)

Once all_keys has been created, we then begin the data processing in order to transmit the tuple. In order

to efficiently do this, we utilize a Python module, pickle.

By using pickle to prepare the data to send by using pickle.dumps(your_python_object . The benefit of

pickling is to represent the object you choose without having to explicitly write the object, thus requiring

more processing speeds, and straining the cloudlet more. Also, by utilizing pickle, it converts your python

object to a byte-like format, which is exactly what it wanted for the data stream. The next step is to

calculate the length of the now pickled object, in order for the edge device to properly calculate the size of

the buffer needed to capture every frame. This is important because by being one byte too long or too

short will result in a corrupted and encrypted file that will no longer be able to be usable.

This calculated length of the pickled encrypted frame will then be pickled itself, then sent the same way

as the example shown in equation (12). Once the edge receives the size then loads via

pickle.loads(your_pickled_object), you then set this as your buffer size that is looped until the full

encrypted frame is received, then un-pickled.

Decryption

In this phase, we will begin decryption of the frames. By this point, we will have received the set of

public keys and shared keys that will be used to decrypt the file between the cloudlet and edge, the length

(or size) of the encrypted frame, then finally, the encrypted frame itself.

We will now convert the tuple all_keys into three separate variables for ease of use. Following this, use

the encrypted frame size as the buffer in order to properly receive the encrypted frame, since they are sent

in fragments. Lastly, we retrieve the encrypted frame, as mentioned in the section prior.

Now to decrypt the frame, recall during the key generation phase, the cloudlet has x as their private key in

equation (2). Continuing onward, we compute:

𝑠𝑠 = 𝑐𝑐1𝑥𝑥 (10)

Then calculate

𝑠𝑠−1 (11)

Finally computing

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑐𝑐2 ∗ 𝑠𝑠−1 (12)

With m finally decrypted, we reach the penultimate step, and that is a type conversion. At equation (12),

we are left with the decrypted frame, however the data matrix that builds from it is a float-type object. We

can simply type-casting the object as so to revert back to figure 9, a view-able image:

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖𝑔𝑔 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑑𝑑𝑑𝑑𝑑𝑑) (13)

At this step we can finally view the decrypted frame! We simply load the frame_dec_img into the

OpenCV class cv2.imshow('Decrypted Frame', frame_dec_img).

We have successfully been able to use Elgamal Encryption Scheme in order to send the images via TCP

socket from the cloudlet to the edge for further processing.

Results

After all is said and done, there are a few constraints in utilizing this methodology that will enable us to

smoothly encrypt images later on. Before mentioning the key takeaways from this project as there were

many different options as well as criteria that was set in the beginning, we must first show the image

results.

Figure 11: Original (640,480,3) Image Prior To Processing

As you can see, this image is vibrant in color. This allows us to be able to clearly view any differences

between this original image compared to the processed (or decrypted) image.

Figure 12: Decrypted (640,480,3) Image Post-Processing

As you can see, there seems to be no visual or stark difference between the original pre-processed image,

and the post-processed image. This is good news because if we were to further expand on the subject (see

"Future Work"), we can rest assure that the image is kept well enough intact that any processing will not

be rendered useless.

However, we can view the differences between these two images by independently load each frame into

different Python objects and calculate the different by doing the following: frame_diff = frame_orig -

frame_decrypted. The result from this will mean only the change in pixel values will be stored into

frame_diff. From here, we can either save the image locally to the cloudlet, or we can simply view the

image while the program is operational.

Figure 13: Difference Between Original & Encrypted Frame

As you can see, there is some minor distortion happening in the decrypted frame rather than having a pure

black image. As et al. Gentry [2] mentioned, there will be inherent noise to the result due to encryption

and decryption. However, the noise will be marginal at best, therefore leading to a successfully decrypted

image.

That being said, here are the key takeaways mentioned prior:

• For key generation, a maximum value of 1020 can be utilized without severely stressing the

CPU.

• A maximum instance of one encryption key is used per session. This is because generating a key

per message (or frame in this case), subsequently multiplying this large random integer to send

via socket will overload the CPU of the Edge device.

• A maximum image resolution of (640,480, 3) is to be used. This allows a small enough image

that can be encrypted and sent through websocket while still usable for detecting objects (see

"Future Work" for more information)

• There is minor distortion to the decrypted frame. Not significant enough to disrupt any processing

after the fact.

• Recommended frame rate to not exceed 24. Average human vision cannot distinguish much

beyond 24 frames per second, therefore lowering CPU overhead.

Future Work

It is easy to see how much we can build off of this program for future work. As labor intensive as this was

to attempt, there are many more possibilities with this project to continue expanding upon. With each

bump in the road, being data loss from the TCP socket, or by even having to go around the everlasting

problem of the disk space in a Raspberry Pi being hyper limited due to it being a MicroSD card, thus

having reduced read/write capabilities make this all the more challenging and being forced to optimize the

code at hand. A simple string conversion or using object.tobytes could have worked theoretically for the

pre-processing of the keys, implicate casting of a pickled object will lead to longer running times and

ensuring the Raspberry Pi will not fail after continuous usages.

Subject at hand, the same reason is why we created a tuple object for the keys. In testing of the socket, the

edge device runs too fast and will not safely receive the keys if sent separately. This also benefits the

cloudlet on the write requirements, because we can create a new pickled object in-line without forcing

extra writes.

That being said, the following list is what is considered strongly for future work, as it pertains to the

benefit of the overall project.

1. The first improvement that I will work on is the robustness of the web socket. At its current form,

it works well enough for this current version, however being able to call back the devices, and

possibly even send higher resolution image would be useful for any possible transmission errors

that may occur. In the current phase, there are instances which when the encrypted frame is sent,

the resolution makes the decrypted image unusable for any post-processing applications.

2. Our second improvement is to include a database, or registry of users that can be stored and

updated in the cloud. This way, we can keep and update critical items or faces, and be able to

verify that no duplicate images will be taken and used when needed. In doing so, you can keep a

current list of persons to be able to monitor any unwanted activity.

Figure 14: Overview of how the fully homomorphic encryption scheme is able to securely store data

3. A third option, expanding on both the first and second point, is to remove static backgrounds.

With a call to increase accuracy, we should strive for the highest resolution imagery for our

object detection. If the cloudlet devices are fixed and mounted in a static location (never moving

or rotating), then there is a possibility that any additional noise to the background can affect both

the objection algorithms, as well as the web socket data transfer.

4. A fourth option, although counter-intuitive, is to be able to locally broadcast the frames being

encrypted. This step can be crucial into data privacy if the encryption scheme works in a way that

is a safe environment to work with.

5. Lastly, the most important topic for Raspberry Pi's would be to find out and implement a true

FHE encryption stream. By doing this, you will be able to have an unbreakable cipher text that

only the dedicated machine can run with at any given time. Regardless of it being a feasible

encryption scheme for such lightweight devices, if there is any remote possibility in

implementing such a CPU intensive algorithm, then we have succeeded the goal for the future

work.

Conclusion

In conclusion, although a fully homomorphic scheme is not yet obtainable on such a light weight IoT

device, we are able to impose a partially homomorphic encryption scheme to allow private data streams to

be encrypted. Spoofing DHCP networks or creating a man-in-the-middle attack is powerless since it only

means that the hacker receives the encrypted strings, without any option to decrypt it themselves.

Allowing a dedicated Edge device to have the key and be able to decrypt multiple real-time streaming

cloudlets, you can rest assured knowing that your data will be safe and view able on the machines of your

choice.

Resources

1. Ronald L. Rivest, Len Adleman, Michael L. Dertouzos: On Data Banks And Privacy

Homomorphisms

2. Craig Gentry: Fully homomorphic encryption using ideal lattices

3. Real-Time Privacy-Preserving Moving Object Detection in the Cloud

4. Tianhe Gong, Haiping Huang, Pengfei Li, Kai Zhang, Hao Jiang, "A Medical Healthcare System

for Privacy Protection Based on IoT", Parallel Architectures Algorithms and Programming

(PAAP) 2015 Seventh International Symposium on, pp. 217-222, 2015.

5. Private Video Streaming Service Using Leveled Somewhat Homomorphic Encryption

6. A Fully Private Video on-Demand Service

7. Secure Advanced Video Coding Based on Selective Encryption Algorithms

8. Dual-Layer Video Encryption using RSA Algorithm

9. RSA Cryptosystems

10. Advanced Encryption Standard

11. Raspberry PiCamera V2

12. Raspberry Pi Model 4b 8GM RAM

13. Jeff Bass: ImageZMQ

14. SHA-1 Cryptosystem

15. Elgamal Encryption

16. Diffie-Hellman Key Exchange

17. Open-Source Computer Vision (OpenCV)

http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://crypto.stanford.edu/craig/craig-thesis.pdf
https://dl.acm.org/doi/10.1145/2502081.2502157
https://ieeexplore.ieee.org/document/7387328
https://ieeexplore.ieee.org/document/7387328
https://ieeexplore.ieee.org/document/7387328
https://ieeexplore.ieee.org/document/7081549
https://ieeexplore.ieee.org/document/6334991
https://ieeexplore.ieee.org/document/1649688
https://arxiv.org/pdf/1509.04387.pdf
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://github.com/jeffbass/imagezmq
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://opencv.org/

	Project-Signature-Angel-Vazquez.pdf
	TOC.pdf
	Partially Homomorphic Encryption Scheme for Real-Time Image Stream
	Abstract
	Introduction
	IoT Overview
	Encryption Overview
	Project Materials

	Related Works
	Implementation
	Elgamal Encryption
	Encryption

	Cloudlet Integration
	TCP Socket Integration
	Decryption

	Results
	Future Work
	Conclusion
	Resources

