I dentifying State Coding Conflictsin Asynchronous System Specifications Using
Petri Net Unfoldings *

Alex Kondratyev
The University of Aizu, Japan
Michael Kishinevsky
The University of Aizu, Japan

Alexander Taubin
The University of Aizu, Japan

Abstract

Sate coding conflict detection is a fundamental part of
synthesis of asynchronous concurrent systems from their
specifications as Sgnal Transition Graphs (STGs), which
are a special kind of labelled Petri nets. The paper devel-
ops a method for identifying state coding conflictsin STGs
that is intended to work within a new synthesis framework
based on Petri net unfolding. The latter offers potential
advantages due to a partial order representation of highly
concurrent behaviour as opposed to the more traditional
congtruction of a state graph, known to suffer from com-
binatorial explosion. We develop a necessary condition
for coding conflictsto exist, by using an approximate state
covering approach. Being computationally easy, yet con-
servative, such a solution may produce fake conflicts. A
technique for refining the latter, with extra computational
cost, is provided.

1 Introduction

Thereexistsavariety of approachesto synthesisof speed
independent circuitsfrom their formal behavioura specifi-
cations. One of the most popul ar specification languagesis
Signa Transition Graphs (STGs) that are Petri nets (PNs)
whose transitions are |abelled with the names of rising and
faling edges of circuit signals [1, 17]. Circuit synthesis
methods based on STGs can be classified into two major
groups. The first group includes those based on a State
Graph (SG), which is the Reachability Graph (RG) of an
STG (drictly speaking of the PN underlying the STG)
encoded with binary vectors corresponding to the states of
signalsin every reachable marking. This approach is used
in existing software tools for asynchronous circuit synthe-
sis such as SIS [19] and Petrify [2]. The actua process
of circuit implementation involves direct construction of
the full reachable state space, which then provides logic
mi ni mi sation routines with the information about On, Off
and Don't care sets for each non-input signal. An obvious
practica limitation of this approach is a potentia combi-
natoria growth in the number of reachable states. The use
of symbolic techniques, such asBinary Decision Diagrams
(BDDs), sometimes yields a more efficient representation

*This work has been partialy supported by ACiD-WG (ESPRIT
21949), CICYT TIC 95-0419, EPSRC GR/L24038/K70175 (projects
ASTI and HADES)

Jordi Cortadella

Universitat Politecnica de Catalunya, Spain

Luciano Lavagno
Politecnico di Torino, Italy
Cadence Berkeley Labs, USA
Alex Yakovlev

University of Newcastle upon Tyne, UK

of the binary encoded states [2] but does not remove the
root of the complexity issue.

The second approach avoids construction of the full
reachable state space; it includes techniques either based
on structural analysis of STGs [15] or use of PN unfold-
ings[10, 18]. The structural method of [15] has given rise
totheideaof an approximation-based synthesisof thelogic
implementation of an STG. Albeit efficient in many practi-
cal cases, itisrestricted to only handling asub-class of PNs
— free-choice nets [3]. The attempt to generalise it within
theframework of unfolding presented in [18] has proved to
be quite promising in dealing with large STG models.

In particular, unfoldings exploit the nature of practica
asynchronous specifications, that suffer much more from
state explosion due to concurrency than due to conflict.
STGsgenerdly alsoexhibit a“regular” interaction between
the two, thus avoiding the pathological cases in which the
unfolding performs as poorly as traditiona state explo-
ration (or even worse that state exploration, due to the
larger constant factorsin the complexity of the algorithmic
implementations).

The main shortcoming of the method of [18], however,
was that its approximation and refinement strategy was
fairly straightforward and could not work well with the
Don't care state sets, i.e. sets of states which would have
been unreachable if the exact reachability analysis was ap-
plied. In particular, if two approximation cubes were inter-
secting on the unreachabl e states, the only way to confront
this problem was to construct the corresponding states to
see whether this intersection was dangerous or not. The
construction (or refinement) procedure suggested in [18]
was inefficient and caused an explosion in the number of
cubes obtained during the refinement.

With the increasing popularity of STGs and associated
synthesis toals, there is a clear need for further develop-
ment of the partial order approach to asynchronous circuit
synthesis. We do not attempt to tackle at once all theissues
involved, since this subject requires developing a consid-
erable amount of new theory. This paper therefore aims
at improving the synthesis method based on unfoldingsin
its particularly critical part: to find a more accurate way
of determining actual coding conflictsin the STG unfold-
ing. A state coding conflict occurs when a pair of different

states in a specification has the same binary encoding (this
is called Complete State Coding (CSC) conflict [1]). Such
conflicts are tentatively identified by means of a conserva-
tive estimation of the state space, via place cover cubes.
Some of these conflicts may not be actua CSC conflicts,
thus leading to the two main contributions of the paper:

1. Conditionsto determinewhether aparticular state cod-
ing conflict is fake (Section 3). From the compu-
tational point of view, these conditions are relatively
easy to check, but they are necessary and not sufficient,
which may require further refinement if the designer
is prepared to use a more complex procedure.

2. An agorithmic method for the partial construction of
the state space when the “fast” techniques from Sec-
tion3fail (Section4). Thismethodishbased on solving
the problem of calculating the part of the STG un-
folding whose states (unfolding cuts) evaluate agiven
boolean cover cubeto true. This problem has its own
specific valueinthelist of issues that need to be tack-
led for amorethorough understanding of the*“boolean
properties’ of partial order behavioural specifications.

The position of this paper amongst asynchronous design
techniquesisillustrated by the*roadmaps’ shownin Figure
1

2 Background

This section introduces the basic concepts required for
describing the new method. These include: (i) models,
such as Signa Transition Graph, State Graph, Unfolding;
(i) target properties, such as Complete State Coding, CSC
conflicts; (iii) important notions supporting the method,
such as unfolding cuts, slices, marked regions, approxima-
tion cubes.

2.1 Signal Transition Graph and State Coding
Problems

A Petri net (PN) isaquadruple PN = (P, T, F, m,),
with setsof places P, transitionsT', flow relation F and ini-
tial markingm,,. A marking m isrepresented withanumber
of tokens m(p) in each placep € P. A Sgnal Transition
Graph (STG) [17, 1] isatriple N = (PN, A, A), where
PN isaPN, A =T UO isaset of signaspartitionedinto
input and output signals, and A : T — A x {+,—}isa
labelling function that assigns a signa edge name to each
transitionin 7. An STG isthusalabelled PN, specialised
to describing the behaviour of asynchronouscircuits at the
logiclevel. Theset of transitionsrepresents signal changes,
i.e. their rising (a;+) andfalling (a; —) edges. Notationa;*
isusedtoindicateasignal transition regardless of thedirec-
tion of the change. Given a Petri net elementz € T U P,
its predecessors and successors sets are denoted ez and
ze respectively. We further assume that for any transition
tcT:et# Dandte # 0. A PNinwhichevery transition
has a most one predecessor and one successor is called a
Sate Machine.

An STG is caled k-bounded iff the number of tokens
inany place p € P a any reachable marking does not
exceed k. Boundedness guarantees that an STG can be
implemented using a finite number of memory dements.
An STG iscalled output signal persistent [8] iff no output
signal transition a;* excited at any reachable marking can

bedisabled by transition of another signal a;*. Ifan STG s
output signal persistent, thenit can beimplemented without
producing unspecified changes of the output signals; that
is, without introducing hazards [7].
Toobtainanimplementationfor an STG, most of theex-
isting synthesis techniques require building a Sate Graph
(SG). The SG is derived from the graph of reachable
markings (RG), constructed for the STG using either ex-
plicit [16] or symbolic traversal [14] methods, and then as-
signingabinary code v € {0, 1}", n = | 4|, to each reach-
ablemarkingm 1. Thusan SG isatriple SG = (S, E, v),
where S isaset of binary encoded states s = (m, v), E isa
set of arcsbetween thestates, andy : B — Ax {+,—}isa
functionthat |abelsthearcswith signal transitions. Inorder
toalow ameaningful interpretation of the SG model asthe
behaviour of an asynchronous circuit, the binary codes v
must be assigned to their markings m consistently, i.e.

e every arc between two states s; = (mq, v1) and sp =
(my, v,) islabelled with exactly one signal transition
0’7:*1

o if thearc (sy, s) is labelled a;+ (a;—) then vy[i] =
0(1) and v2[4] = 1(0).

AnSTG iscaled consistent if its SG has a consistent state
assignment.

Whilst at the STG level the states are pairs, consisting
of amarking and a state code, at thecircuit level, only their
binary codes will be represented. Thus it may be possi-
blethat two states of an STG that have different markings
and are semantically different (they generate different be-
haviour in terms of firing transition sequences) but having
equa binary codes will be indistinguishable at the circuit
level. Thissituationwill becalled acoding or CSC conflict.
The Compl ete State Coding (CSC) conditionintroducedin
[1] requires any two states with equal binary codes to have
the same set of excited output signals. If for some signa
a; thisrequirement is not satisfied, then it isimpossibleto
extract the boolean function for itsimplementation.

An STG that is bounded, consistent, output signal per-
sistent, and producing a SG with CSC is known to be
implementable [8] as a speed-independent logic circuit 2.
An implementable STG gives rise to truth tables, which
can bederived fromthe SG state codesfor each output sig-
nal. The implementation is obtained from the truth tables
by building cover functions, which are then directly associ-
ated withthecircuit elements. Thisistheso-called complex
gate implementation. In this paper we assume such an im-
plementation to bethetarget of synthesis, and thusconsider
only coding conflictsrelated to this basic form.

A boolean function covers a state s = (m,v) if the
function evaluates to true when the variables have their
values equd to thesignalsat the binary code v. A function

1In general one marking of an STG can correspond to a few binary
codes. It can happen for example if two-phase signal transitions are
alowed or dueto afew different initial paths leading to same place of an
STG. However, any STG can be converted to an equivalent STG with
single binary codefor each marking. Therefore, in this paper we consider
only such STGs.

2Circuits whose behaviour is independent of the delaysin logic gates;
such circuits are known to be free from hazards under the unbounded
delay model.

> | Graph
Verification land .

7 STG
/ implementabilit

i

I

| [Event-base State-base
properties properties

Boundedness

fake conflicts

\
BRI \\
a+ BT
A
\L State coding RO Q- Z‘ia;,’gen'au; . “‘ SPE‘EdL:WgIEI?e”de"T
conflicts : ! b+ rég P

. STG
Genera ’“ap VA

State

K STG \“5 We are

1 unfolding here .. .

|

\ e STG

| o unfolding

: b

\ N Marked regions Set of markings '
(R for places MR(p) !

Synthesis land

| Approximatio Cubes C(p) |
_ : 5 Y \ ! of MRs !
Consistency Marked regions. FURT TR / ! '
for places Ty N ! ! |
Approximation -+ . I ON- and OFF-setsg C(p1)+C(p2)... \
by cubes nCabeforp CEILT Local maps: ! !
Check conflicts... .- s ' ! ON and OFF \
. Clp1) & C(p2) =2 I ! \
by cubes . (’,J .)‘m,(‘p‘ ‘)‘. . , intersects \
% Detection of [K ‘\'
|

Refinement of
approximations

i Detection of i
! fake conflicts .
! /s Weare !
) here

Refinement of ’

approximations

Figure 1: Where are we?

covering aset of statesiscalled a cover function (or smply
cover). Each product term of the cover isassociated with a
cube which may cover several states (commonly associated
with min-terms) in the state space. In the sequel we will
use U (union) and N (intersection) for covers (or cubes),
assuming these set-theoreti c operationsto be applied to the
sets of states covered by these covers (cubes).

Example2.1 (The “xyz’ example) Consider the STG
and its SG shown in Figure 2,a,b. This STG is bounded,
consistent and output-persistent (assuming that all sig-
nals z,y and z are outputs); it satisfies the CSC prop-
erty since each reachable state has a unique state en-
coding (shown next to the marking). An example of a
cover function is: (z + z)y (we will often use an al-
ternative Boolean vector notation 10 — U — 01, assum-
ing signal ordering zyz), which covers the set of states:
{(p2p3; 100), (p4p3, 101), (p6p3;001)}. Note that 10—
and —01 are the cubes associated with products terms zgy
and yz, respectively.

2.2 STG unfoldingsand their rolein synthesis

Checking whether a particular STG is implementable
in complex gatesisacrucial step in speed-independent cir-
cuit synthesis. To be able to synthesise circuits from large
STGs we would like to avoid using explicit state enumer-
ation techniques. A compact representation of STG state
space is provided by Petri net unfolding [12]. It isknown
that its finite fragment, a truncated unfolding [12], com-
pletely represents the entire reachability graph of the PN.
Techniques for analysis of boundedness, consistency and
output-persistency of STGs using unfoldings have been
developed elsewhere, eg. [10]. Those conditions could
be easily interpreted in terms of ordering relations (con-
currency, conflict and precedence) between the unfolding
elements. The situation with the CSC condition, which

is related to the problem of binary state encoding, is dif-
ferent. To be able to check this condition, one needs a
way to capture state encoding information from the STG
unfolding.

One such possible way was suggested in [18], within
a genera framework for synthesis of speed-independent
circuitsfromunfoldings. It wasbased ontheideaof finding
approximated boolean covers for instances of places and
transitions[15].

An exact cover for a given set of states S’ can be ob-
tained directly from the set of binary codes S’, but it will
requirean explicit enumeration of all the states. Generating
exact covers is very costly due to the exponentia number
of statesthat may be contained in highly concurrent STGs
— thisis known as the state explosion problem. To over-
come this, approximated covers can be generated using
some structura information from the STG, and therefore
avoiding the state generation [15, 18]. However, imple-
mentations created by using approximated covers require
additiona checking for their correctness. One such condi-
tion for complex gate implementation is that the cover for
the part of the state space where thefunctionis on (ON-set
cover) must not intersect with the cover wherethe function
is off (OFF-set cover). If such intersection is non-empty,
the synthesis process must refine the covers, until they be-
come exact in the worst case. As a matter of fact, it was
pointed out in [18] that the situation when the exact cov-
ers for ON-set and OFF-set have a nonempty intersection
precisely correspondsto the case of aCSC problem.

Thetechniquefor generating and refining approximated
covers proposed in [18] was quite straightforward. It did
not take into account that the intersection of the ON-set
and OFF-set covers for a signal could be on the set of
unreachabl e states, corresponding to the DC(Don't Care)-
set. Therefore, the fact that the ON-set and OFF-set covers
have nonempty intersection cannot say precisely whether

the STG has a CSC conflict or not. In the latter case we
shall say that the CSC conflict isfake.

In order to tackle the problem of checking the CSC
condition in the STG unfolding, we apply some of the
concepts used in the unfolding theory. First, the concept
of an STG-unfolding is outlined. Then, we introduce the
notions of cuts [4] and dlices [18], which dlow us to
capture the corresponding notionsin the SG, namely states
and connected subsets (regions) of states. Cuts and slices
will thus provide us with an important link with the state
coding information. The latter isrepresented intheform of
gloolean cubes (and covers) associated with the unfolding

ements.

221 STGunfolding

An STG unfolding?® built for an STG N, is an occurrence
net N' = (P', T, F', \) where P/, T" and F’ are sets of
places, transitions and the flow relation, respectively; and
A is alabélling function which labels each element of N’
as an instance of dements of N. N’ is a partial order
obtained from an STG N by the process of its unfolding
[12, 5, 10]. We tacitly assume that unfolding N’/ inherits
thesignal transitionlabelling (function A) of itsSTG origin
N

Note. To distinguish the elements of the PN (or STG)
unfolding from those of the origina PN (STG) we will
always refer to the former by adding one or several primes
(', t",...) whilethe objects of thelatter are denoted simply
by p, t, etc.

In the STG unfolding the relations of conflict, concur-
rency and precedence are used to decidewhereto instantiate
the next element. These relations are constructed during
the unfolding process from the basic flow relation F”, built
from theflow relation F' of theorigina STG. For any pair
of instances =1, 5, € P’ U T’ thefollowing threerelations
are defined:

¢ Precedence, denoted asz} = =, iff (21, z5) belongs
to the reflexive transitive closure of F/, i.e, thereisa
path in the graph of an unfolding between x} and z5.

¢ Conflict, denoted as = #x5, iff there exist two distinct
transitions ¢7 and ¢, such that et} N et, # 0, and
1, = 2}, and t), =).

¢ Concurrency, denoted as z||z5, iff] and =4, are nei-
ther in precedence, nor in conflict.

In contrast to PN unfolding [12, 5], the STG unfolding
preserves the signa interpretation of the PN transitions
and keeps track of the binary codes reached by transition
firing. However, it explicitly represents only a subset of
all reachable states of N (caled basic states in [11]) and
thus is typically more compact than the SG. The set of
predecessor transitionsof ¢’ of the STG unfoldingiscalled
thelocal configuration of ¢’ and isdenoted as = ¢'.

Theset of placeinstancesreached by firing all transitions
in = t' is caled the postset of = ¢’ and is denoted by

3We apply term unfolding to the notion of the “truncated unfolding”
for simplicity, under the assumption that the STG is bounded and such a
truncation is possible [12].

(= t')e. Mapping a postset onto places of the origina
STG produces a marking of the original STG, called a
basic marking (unlikethe reachability graph, the unfolding
represents only basic markings) and denoted as m(= t’)
. Any non-conflicting and transitively closed (w.r.t. the
precedencere ation) subset of transitions7T'1’ C 7" iscalled
a configuration. It is clear that a configuration is a union
of local configurations of the transitions that are maximal
(w.r.t. the precedence relation) in the configuration.

Eachinstancet’ of the STG unfoldinghas abinary code
v(= t') whichisreached by firing transitionsin=- ¢'. The
postset (= T'1')e and binary code v(= T'1') correspond-
ing to aconfiguration 71’ are caculated from (= ¢')e and
v(= ¢') of the max-transitionst’ of thisconfiguration. The
pair (m(= t'),v(= t')) is caled the final state of the lo-
ca configuration = ¢'. Similarly, we can denote the final
state of a configuration (m(= T1'), v(= T1')), which
always corresponds to one of the reachable markings. It
has been known that al reachable markings of an STG are
represented inthe STG unfolding as post-sets of some con-
figuration [12], and thisis easily generdized for al states
of the SG [10].

The process of constructing the STG unfolding (which
is a finite object for a bounded PN) is terminated at the
transition instances called cut-off points, whose final state
isequal tothefina state of some other instance already put
into the unfolding. There exist severa definitions of the
cut-off condition [12, 5, 10], different in their attempts to
minimizethe size of the truncated PN (or STG) unfolding
necessary to fully represent the SG.

Theinitia state of the STG isassociated with an imagi-
nary initial transitionin the unfol ding, whose postset isthe
set of place instances of the places involved in the initia
marking.

2.2.2 Cutsand dlices of STG unfolding

To represent a state of the SG we define a cut in the un-
folding [4].

Definition 2.1 A cut of an STG unfoldingisa maximal set
of mutually concurrent placesp’ € P'.

Each cut m’ C P’ thus represents a reachable marking
m = A(m') of theorigina STG. Dueto the acyclic nature
of the PN unfolding (recal that we are talking about the
fragment of theunfolding truncated at its cutoff transitions)
it may cover some markings more than once, i.e., severa
cuts may map to the same marking. Due to the main
property of the STG unfolding to be representative of al
reachabl e states, for every reachable state inan STG there
isacutin the STG unfolding. Thus, similar to markings,
each cut m’ C P’ is aso associated with a binary code
v(m') of themarking m = A(m/).

The order relations can be defined between cuts in the
following way:

e Precedence, m1l' = m2 iff Vpl! € ml' Ap2 ¢
m2', pl' = p2'. Note that relation = for cuts is
reflexive due to reflexivity of = for places of an un-
folding.

e Conflict, m1'#m?2’ iff Ipl’,p2', p1’ € ml/, p2' ¢
m2' and pl'#p2'.

e Coexistence, m1'||m2 iff neither ml = m2' nor
m1'#m?2'

Since a cut m' represents a reachable state s =
(A(m)), v(m)), there exists a configuration 71’ such that
s = (m(= T1),»(= T1)). We shdl cal such T'1
the configuration of cut ', and denote it by = m'. In
particular, the empty configuration corresponds to the ini-
tia cut of the unfolding. Conversely, for configuration
T1 = (= m') the cut m’ will be caled the final cut of
configuration T'1’. The precedence and coexistence re-
lations involve cuts whose configurations do not contain
conflict transitions. The conflict relation is between cuts
whose configurationsinclude at least a pair of transitions,
one from each configuration, which are in conflict.

We need a so to rephrase the notion of CSC interms of
cuts.

Definition 2.2 Two cuts m1’ and m2' are said to be in
CSC conflict iff v(m1’') = v(m2') and they enable transi-
tionslabeled with different output signals.

To represent amutually connected set of states we use the
notion of adlice.

Definition 2.3 Adlice S = (oS8, {Se}) isa set of unfold-
ing cuts defined by a cut, ¢S, called min-cut and a set
of cuts {Se} called max-cuts, which satisfy the following
conditions:

e (1) Min-max correspondence. For any max-cut Se ;
oS = Se (the min-cut is backward reachable from
any max-cut).

e (2) Conflict of max-cuts. All max-cutsin {Se} are
in conflict.

e (3) Containment. If cut m’ € S, then thereisa max-
cut Se such that:
oS = m' = Se (any cut of a diceis squeezed be-
tween a min-cut and some max-cuts).

e (4)Closure. If cut m' issuchthat ¢S = m/ = Se ¢
{Se},thenm/ € S (thereareno ‘gaps inadice).

Conditions 1 and 2 guarantee well-formedness of the
dice borders; conditions 3 and 4 guarantee containment
and contiguity of aslice. Note that due to the reflexivity
of the = relation on cuts, conditions(4) and (1) imply that
the min and the max cuts are part of adice.

Itiseasy to seethat theentire (truncated) STG unfolding
isaspecia case of adice. Other specia kindsof slices can
be defined in the STG unfolding as follows.

The marked region for a place instance ¢’ € P’ isthe
set of cuts to which p’ belongs. It is easy to see that a
marked region for afinite unfolding isa dice. Therefore,
for the place p’ we denoteit as S(p') (an aternative name
isaplacedlice). Thisdefinition can be extended to a set of
mutually concurrent place instances P1' C m/, where m/
is acut; the marked region of P1' isaso adice, denoted
by S(PY).

4A more general definition of aslice, requiring max-cuts not to bein
precedence, has been used in [18].

Since every cut in an STG unfolding has a binary en-
coding, each slice can be assigned abool ean cover obtai ned
as the sum of minterms corresponding to the cuts contai ned
inthedice. Further in Section 4 we shall define the notion
of a cube dice, a dice which can be obtained for a given
cubein such away that the cube evaluatestotruein al cuts
of that diceand infalsein all cuts outsidethe dlice.

Our discussion of coding conflictsin an STG unfolding
will require the concept of a boolean cover approximation
for individual places.

Consider an arbitrary place instancep’ € P’. Lett' =
op/, i.e lett’' be the unique (due to the non-reconvergent
nature of unfoldings with respect to places) predecessor
transition, and let v(= t’') denote the binary code of the
final state of the loca configuration of ¢'.

Definition 2.4 The cover approximation of place p’ isthe
cube C(p') = c[1]c[2] . ..c[n], where n = | A] isthe num+
ber ofsgnalsmtheSTG and Vi : c[i] € {0, 1, -}, com-
puted as follows:

—""if Ja;* such that a; * ||p/, and

“

e cli] =
e c[i] = v(= t')[4], otherwise

The approximate cover is a cube derived only from the
loca configurations of the unfolding transitions and the
concurrency relation between placesand transitions; all this
information that can be obtained in polynomial time from
theunfolding. On the other hand, the exact cover of aplace
p’ istheboolean cover of theset of cutsin placedlice S(p').
It should be obvious that the exact cover is a subset of the
approximate cover, since the approximate cover assumes
that transitions concurrent to p’ are al mutually concur-
rent, and hence that al their immediate predecessor and
successor place instances can be marked in any combina
tion. The containment isstrict, except for the case wherein
no pair of transitions concurrent to a place is ordered or in
conflict®.

We are now ready to consider the problem of detect-
ing CSC conflicts using information available from an
STG unfolding. The key point to avoid the compl ete state
traversal isthat theinformation about the state codesin the
unfolding will be obtained only from place cube approxi-
mations. The next section devel ops a necessary condition
for CSC by using this compact representation.

Example2.2 (The“ xyz' example.) Consider the STG and
itsunfolding showninFigures2,aand c, respectively. Tran-
sition y—' is the only cut-off transition. An example of a
local configuration, for z—' is the set {z+', z+', z—'},
whose final cut is p6'p3’. while an example of a non-
local configurationisthe set {z+', 2+', y+'} Itsfinal cut
ispd'pS’. An example of a dlice is defined by the min-cut
p2'p3’ and a max-cut set consisting of cut p6'p5’. This
dicehastheexact cover: 1 — —U0— 1 (againwithsignal
order zyz). The approximate place covers are shown in
the unfolding next to their place instances. Place p3' is
concurrent to transitions z’+ and #'— and is ordered with
thetransitions of y, hence the cover approxi mation for this
placeis —0—. The exact cover of the place slice S(p3) is
{10—, —01}.

5This case is relatively rare in practice, except in the special case of
so-called burst-mode specifications [13].

3 Detection of CSC conflicts by unfolding
A conservative check for CSC conflicts can be done
using place cover approximations.

Definition 3.1 Places p1’ and p2' are said to be in col-
lision in an STG unfolding if their cover approxi mations
intersect, i.e C(pl') N C(p2) # 0.

There are three sources of collisions between places p1’
and p2’ in an unfolding:

Case 1. The marked regions of places pl’ and p2' con-
tain only cuts that map to the same marking of the origina
STG (i.e, thereisno CSC conflict).

Case2. Inthemarked regionsof placespl’ and p2’ there
are two cuts that albeit mapped to two different markings
have the same binary encoding. This may or may not be a
CSC conflict, depending on whether these markings enable
different or identical sets of output signals.

Case 3. The exact boolean covers of the marked regions
of p1’ and p2' do not contain the same binary codes but the
place cover approximations C(pl’) and C(pz’? intersect
dueto an overestimation. Thisiscalled afake collisionand
does not correspond to a CSC conflict.

The idea of approximate techniques in detecting CSC
conflicts isto consider collisions (which can be easily an-
alyzed) instead of actua CSC conflicts. However such a
consideration can be overly conservative because actually
we are interested only in collisionsfor Case 2 above, while
Cases 1 and 3 must be excluded.

Definition 3.2 A collision between places pl’ and p2’ is
called fakeif no cut in the marked region of pl’ isin CSC
conflict with cuts from the marked region of p2’.

To make analysis of coding conflicts by collisions be-
tween places | ess conservative, we need to identify as many
fake conflicts as possible.

pl

e X+ p1000<——
PN |
z+ y+ p2p3 100
RN
p4 p5 p4p3 101 p2p5 110
x- TNt e
ﬁ p6p3 001 pdp5 111
s NIt xe
p6p5 011
7
z- y-
y-

p7 01—

a b)

Figure 2: Approximation technique for xyz example

Example3.1 (The “xyZ’ example) Consider again the
STG and its unfolding shown in Figure 2,a,c. The cover
approximation for place p3' is —0— (signal order iszyz).
This cube intersects the corresponding cubes for places
pl, p2, p4, p6 and thus has collisions with pl, p2, p4, p6.
The SG for the zyz example is known to be free of CSC
conflicts, therefore all these collisions are fake.

Definition 3.3 A directed path ef, . .., e}, over unfolding
nodes (places or transitions) is called maximal if there
is no node e’ in the unfolding such that either ¢’ F'e} or
e F'e.

Informally a maxima path is a path that cannot be ex-
tended in the unfolding, it starts at one of itsinitial places
and ends either at a cutoff transition or at a place without
output arcs.

Definition 3.4 A directed treel’ = {ef, ..
folding nodesis called maximal iff:

., e} over un-

1. every e belongsto a maximal path formed by some of
the tree nodes,

2. for anyplacep’ € L' everyt’ € pe’ belongsto L/,

3. for any transition ¢’ € L’ only one place p’ € te’
belongsto L.

Informally, maximal trees play the same rolein unfold-
ings as State Machine components do in Free-Choice PNs
[6, 3]. Specificaly, they identify sets of place instances
that can never be marked together (because they are or-
dered or in conflict), and whose marked regions contain all
reachable cuts of an unfolding.

Proposition 3.1 [9] A maximal tree contains no concur-
rent places.

A maximal tree represents a maxima fragment of an
unfoldingwithout concurrency. Figure 3,c showsan exam-
ple of amaximal tree in the STG unfolding of Figure 3,b.
Thereis one more maximal treein this unfolding given by

the set of nodes: {p0, p8', p7'} ©.

Proposition 3.2 [9] Let P’ bethe set of places of a max-
imal tree in an unfolding N’ and let M’ be the union of
all cutsin the marked regions of placesfrom P’. Then M’
containsall reachable cuts of unfolding N”’.

Corollary 3.1 [9] Letan SG G correspondtoan STG N
with an unfolding N’. The set of cover approximations for
places of a maximal treein N’ covers all states of G.

Definition 3.5 Aplacep’ of anunfolding N’ iscalled colli-
sion stableif every maxi mal treepassing through p’ contains
another place p1’ whichisin collisionwith p’.

Proposition 3.3 [9] If an original STG N hasa CSC
conflict then itsunfolding N’ containsa pair (pl’, p2') of
collision stable places.

Proposition 3.3 states that if an STG does not satisfy
CSC, then there are places (at least two) in the STG un-
folding that are in collision with other placesin every max-
imal tree. Thisfact will be used asacharacteristic property
of an CSC conflict interms of cover approximations. Note
that thisproperty is necessary but not sufficient: the unfold-
ing of an STG satisfying CSC may have stable collision

6When no ambiguity arises we will refer to maximal trees by their
place nodes only.

abed
0*0*01* =
——— <// \ at
P —'0%0*00 100*1* 0101* p2
. cl
, 100*0 010*0 1011* 0111*
B P 2
\
' 1*010 01*10 0011* a
J
S. o 001*0
csC Tt~ o. o
conflict T T =1 0000%
a) d+

pe’
001-
c- £

b)

0

©)

Figure 3: SG with CSC conflict a) its STG b) and unfolding c)

places. This can happen due to an overestimation of place
approximation cubes and refl ects the conservative nature of
our approach.

Checking whether the above-mentioned situation takes
place, i.e. checkingforafakecollision, requiresrefiningthe
collision relation between places. In Definition 3.1 thisre-
lation isdefined on pairs of places (p1’, p2') independently
from the rest of the unfolding. However, by considering
the structure of collisions between pl’ and other placesin
an unfolding it is sometimes possible to conclude that the
collision between p1’ and p2’ isfake.

Example 3.2 The SG in Figure 3,a showsa CSC conflict
between the pair of states 0* 0* 00 and 0000* (signals en-
abled in the state are denoted by stars, output signal d is
not enabled in the first state but is enabled in the second).
Let usfind collision stable placesin the unfolding shownin
Figure 3,c (cf. Proposition 3.3).

Inthemaximal tree L1’ (dashedline) in Figure3,cplaces
pl’ and p7' are in collision. The only maximal tree that
passesthrough pl’ is L1’ and hencepl’ isa stablecollision
place. Place p7’ belongs to two maximal trees: L1’ and
L2 = {p0,p8,p7'}. Intree L2, p7' isin collison with
p8'. Hence p7’ is a stable collision place aswell. The fact
that the STG of Figure 3,b does not have CSC isconfirmed
by collision stableplacesinthe unfolding, which illustrates
Proposition 3.3.

3.1 Refinement of collision relation between
places

This subsection shows a partial (computationally easy)
way to refine collisions for a given unfolding place p’. It
further exploitsinformation about maximal treesinvolving
p’. For aparticular place p’ of an unfolding we can have
the following cases of collisions:

(1) ¢’ iscollisonfreein every maximal tree;

(2) There exists a maximal tree in which p’ iscollision
free;

(3) In any maxima tree p’ has a collision, i.e. p’ is
collision stable.

While case (1) excludes any possibility to have CSC
conflictsinvolving p’, and case (3) is conservatively taken

as apotentia indication of aCSC conflict, case (2) dways
excludes any possibility to have CSC conflicts related to
the binary states in the marking region of p’.

Proposition 3.4 [9] If there isa maximal tree L’ passing
throughplacep’ inwhichp’ isfree fromcollisions, then for
any other maximal tree L1’ passingthroughp’ any collision
between p’ and pl’ € L1’ isfake.

Note that Proposition 3.4 does not imply that any colli-
sion between p’ and other placesinan unfoldingarefake. It
refines only the collisionrel ations between p’ and any place
that can bein the same maximal treeasp’. The refinement,
however, does not concern places that are concurrent with
p’, because these places never occur together with p’ in a
maximal tree. An example of such a non-fake collision
between concurrent places is shown in Figure 4. In the
unfolding of Figure 4,c place p2' belongs to the maximal
tree {p2', p5'} and isfree from collisionsin thistree. The
marked region of p2’' includes cuts m1’ and m2' corre-
sponding to states 0«0x and 00« that are in CSC conflict.
Thereforeacollision between p2’ and p4’ (p4’ isconcurrent
with) is not fake.

ab a+ b+ ot
00 L o
PN pé p5

1*0* 0*1 a .
4 2 P
OO{ \1*1/ p1 {\ s 1-

N b-
p4

b)

01*

a) 0o 0

Figure 4: Non-fake collision between concurrent places

We can ignore collisions between concurrent places in
an unfolding because:

1. Any CSC conflict always leads to collisions between
non-concurrent places (see Proposition 3.3).

2. Insertion of new signas to distinguish CSC conflicts
will be done between non-concurrent places, if we

I nput :
unfol ding N' = (P, T', F', A},
set Cwubes = P' x A of approximtion covers
for places (A -signals of STQ
and matrix Order = (P'NT')x (P'nT') of
ordering relations between nodes of N’
Qut put :
matrix Coll = P' x P' of collision
rel ati ons between places of N’

1: foreach place p' € P' do
construct the collision relations
of p’ with all pl' € P';
store collision relations in a matrix Coll
endfor
2:do until a fixed-point in Coll is reached
foreach place p’' € P' do
if p’ is not a collision stable place
then renmove from Coll collisions
between p' and any pl’,pl’ [fp’
endfor
enddo

Figure 5: Algorithm for the refinement of collision rela
tions.

extend any of the known CSC resolution methods for
STGsto work on unfoldings.

Thus we arrive at the procedure to refine a collision
relation shown in Figure5.

Theonly non-trivia stepin Figure5isthecheck whether
aplace p’ is collision stable or not. The direct analysis of
this by checking the collisions with p’ in every maximal
tree is computationally inefficient because the number of
maximal trees containing p’ can be exponential. Instead
we use the converse approach, and the check essentialy
reduces to the construction of a maximal tree in which p’
is collision free. If such a tree exists, p’ is clearly not
collision stable (see Proposition 3.4). The procedure that
finds a maximal tree (if it exists) in which p’ is collision
freeisshownin Figure®6.

Step 1 in Figure 6 removes from theunfolding al places
that are concurrent with p’ (they will never occur in the
same maximal tree as p’) and all places with which p’ is
in collision (if amaximal treein which p’ iscollision free
exists these places cannot belong to it).

Step 2 removes from the unfolding other places and
transitions that cannot be included in any maximal tree,
because of the removal of places on Step 1. Indeed if all
input places of some transitiont’ are removed, then no path
fromtheinitial places can lead to thistransition. Hence no
maximal tree in which p’ is collision free can contain ¢/,
and ¢ must be removed from the unfolding together with
its output places.

In turn, if all output places of some transition ¢’ are
removed, then no path from this transition can lead to the
end nodes of theunfolding (cutoffsor placeswithout output
arcs). Hence no maximal tree in which p’ iscollision free
can containt’, and ¢’ must be removed from the unfolding
together with itsinput places.

When in Step 2 a fixed-point in deleting the unfolding
nodes is reached the rest of N’ (if non-empty) contains a

I nput :
unfolding N' = (P, T',F', A}, matrix Order,
matrix Coll, place p' € P’
Qut put :
true if p’ is collision stable,
false ot herw se

[N

- foreach pl ace pl' € P',pl' # 9’ do
if p1' || ' then renove pl’ from P’;
if p1' is in collision with p’
then renmove pl’ from P’;
endfor
2:do until p' is removed or a fixed-point
in modifying N' is reached
/* forward traversal of N' */
if for ' €T' all places ot' are renoved
then renmove t' from T’
if ' is renoved then renove all pl' € t'e
/* backward traversal of N’ */
if for ' €T' all places t'e are renoved
then renove t' from T’
if ' is renoved then renove all pl' € ot’
enddo
3:if p’' € P' then false else true

Figure 6: Algorithm for checking collision stable places.

maximal tree with places that are not in collision with p’.
If p’ has not been deleted, then it is not a collision stable
place. Thischeck isdoneon Step 3.

Let us evaluate the complexity of the algorithm for col-
lision relation refinement.

The congtruction of the collision relations (Step 1 in
Figure5) isreduced totheanaysisof pairwiseintersections
between approximation covers for places. Thisanalysisis
performed O(K?) times, where K isthe number of places
in the unfolding. The cost of each check is O(n), where
n isthe number of STG signals. Hence the complexity of
Step 1isO(K? * n).

The compl exity of the refinement of matrix Coll (Step 2
in Figure 5) is determined by checking, for each place
p', whether it is collision stable or not. This check is
performed by the algorithmin Figure 6, whose complexity
isdetermined by its Step 2.

On each iteration of Step 2, at least one node of the
unfolding must be removed (otherwise the fixed-point is
reached). The analysis of the possibility to remove a node
from an unfoldingtakes O(d), whered isthe maximum in-
and out-degree of unfolding nodes. Hence the complexity
of Step 2inFigure5isO((K + L) *d), where L isthenum-
ber of transitionsin the unfolding. Refinement is done for
each place, and thereforeit requires O((K + L) * d * K)
operations. Assumingthatd <« K+ L, n €« K + L
we conclude that the overall complexity of collision rela
tionsrefinement isO((K + L)?), whichis quadraticin the
size of the unfolding. Thisillustratesthe efficiency of the
suggested method.

Example 3.3 Examplexyz continued. The application of
the above algorithms to refine collision rations is illus-
trated by using the zyz example.

Inmaximal tree L1’ = {p1’, p3', p5', p7'} placep3’ isin
collisonwithpl’. L1’ istheonly maximal treethat contains

p3’ and hence p3’ iscollision stable. To check whether p1’
isalso collision stable | et us apply the Procedure from Fig-
ure 6. At first the Procedure removes fromthe unfoldingall
places that are concurrent with p1’ (none in this example)
and arein collisonwith pl’ (place p3’). By traversing the
unfolding forward from the removed place p3', transition
y'+ and place p5’ are also removed. After this, we reach
the fixed-point. The remaining part of the unfolding con-
tainspl’ and hence p1’ cannot be collision stable (indeed,
itiscollisonfreeintree L2 = {p1,p2,p4,p6,p7'}).
Hence, Proposition 3.4 implies that the collision between
pl’ and p3' isfake. From similar considerations, the col-
lision between p5' and p7’ is also detected as fake. After
thisrefinement, all placesin theunfoldingare collisionfree
and we can concludethat thezyz exampl e satisfiesthe CSC
requirement.

4 Avoidingfakecollisons

Section 3.1 provided away to detect fake collisions by
refining collisionreationsusing additional information ex-
tracted from all possible maximal trees (however, without
enumerating al of them). Thealgorithmshownin Figure 6
actually looks for one maxima tree where a place is free
from collisions. This method is more general than [15],
where such a refinement was performed only by state ma-
chinesthat bel ong to the so-called State M achine-cover set,
because an SM-cover set contains usualy only afew SMs
in comparison to thetotal number of SMsinwhichan STG
can be decomposed ([6]).

However, even when refining collisionrelations by using
all maximal trees, it is not dways possible to avoid fake
collisions. The case where the method from Section 3.1
failscan beillustrated by a modification of thexyz example.

Example4.1 (The zyz example modified.) Let us change
theinitial marking of xyz frompl to p5p6 (see Figure 7,a).

PL e pe’ ()

}2/ \pa 011

2

p2

L p7 1.0

y

p4 O

a) 1-1
b) p6n .

01

Figure 7. Unfolding of xyz STG with different initial mark-
ing

Theunfoldingfor thisinitial marking isshown in Figure
7,b. There are four maximal trees in the unfolding: two
starting from place p6' (L1 = {p€,p7,pl,p3,p5"}

and L2 = {p6,p7,pl,p2, p4,p6"'}) and two start-
ing from place p5 (L3 = {p%,p7,p1,p3,p5'} and
L4 = {p5,p7,p1,p2, p4,p6"}). In any of the trees
there are placesin collision: p6' iseither in collisionwith
p6' or with p5”, whilep5' iseither in collisionwith p6” or
with p5”. Hence no refinement of the collision relation can
detect them as fake ones, and it is impossible to conclude
about the absence of CSC conflictsin the xyz example by
the unfoldingin Figure 7,b.

The failure to detect fake conflicts in the modified xyz
example by using the unfolding shown in Figure 7,b is
natural. Indeed, eg., two collision pairs for place p6’ are:
{p6’,p6"} and {p6’,p5"}. The marked regions for p6'
and p6” should intersect in their cover because they are
instances of the same place p6 of the origina STG, while
the marked regions for p6’ and p5” will intersect because
these are instances of concurrent places p6 and p5 in the
STG. Notethat two instances of the same place of an STG
can in genera (but not in this example) be involved in a
true STG conflict, if they correspond to the intersection of
two reachable markings that are in CSC conflict.

There are two ways to overcome the above difficulty:

e To construct asmaller unfolding, by changing theini-
tial marking. Thismethod isconsidered el sawhere[9].

e To explore the set of states corresponding to a colli-
sion and check CSC by using this set explicitly. This
method is considered bel ow.

4.1 Checking CSC conflicts by partial construc-
tion of binary states

If the approximation cubes C'(p1’) and C(p2') of places
pl’ and p2' are intersecting (c12 = C(pl') N C(p2') £ 0),
a straightforward way to check whether this intersection
impliesareal CSC conflict would beto construct all states
corresponding to ¢y, in the marking regions of p1’ and p2’
and to compare the transitions enabled in these states. We
will denote this process by theterm “state restoration”.

The advantage of this method is that it gives the exact
information on CSC conflicts, whileits difficulty isin the
high cost (exponential in general) of the state construction.
However, in practice, the marking region of a place often
contains much less states than the entire unfol ding; further-
more, only part of these states belong to the intersection of
cubes.

To construct the states corresponding to some cube ¢ we
first need to identify in an unfolding al the regions (called
on-regions) where cube ¢ evaluates to 1. Similar to the
marked regions of places, these on-regions are defined by
sets of cuts (dices, as shown below) (6%, ©'¢), where 4.
is the “first” cut, in which cube ¢ evaluates to 1 and ©'¢
contains all the “last” cutsinwhich ¢ gtill evaluatesto 1.

Definition 4.1 Acut &, iscalled aminimal cut, or min-cut,
for cubec ifin @), cubec evaluatesto 1 and

e dther 6/ istheinitial cut,
e Or in any cut 81’ immediately preceding 6., (i.e
3,01 L 6’ cube c evaluates to 0.

Definition 4.2 A cut §’¢ is called a maximal cut, or max-
cut, for cube c if in 8¢ cube ¢ evaluatesto 1 and

e either 6/¢ isafinal cut of the unfolding,

e or in any cut 61’ immediately succeeding 8¢ (i.e
3, e L 61') cube c evaluatesto 0.

A min-cut 6, pointsto the cut in which cube ¢ isturned
on for the“first” time after being set off. *

Beﬁ Pition 4.3 A max-cut §'* of cube c matchesa min-cut
ci I

1.6, = o<

2. for any other min-cut ¢’ of ¢, if 8, = 6 then
6., # 6. and

3. for any other max-cut §’¢ of ¢, if 8., = 6'° then
g'c 7£> glci'

Definition 4.3 associates any min-cut 6, with the max-
cuts “adjacent” to it. Adjacency is seen here in terms of
partial order =- on a set of cuts: by Condition 2 if a max-
cut 8'°* matches the min-cut 87, then no other minimal or
maximal cuts can occur in between 6.; and 8’ (otherwise
6’ and 6’¢* cannot be considered as adjacent ones).

After reaching 6’ cube c remains “On” until one of the
max-cuts #’* isreached. Beyond 6'¢* ¢ immediately turns
off. Hence a part of the unfolding between a min-cut 6/,
and a max-cut 6’ corresponds to a part of the ON-set of
cube c. Since there exist in general (due to conflicts, as
shown bel ow) several max-cuts matching the same min-cut

' ., we will denote this matching set of max-cuts as @'
(elcz — {glcz})'

The following property indicates that only conflict cuts
can beincluded into a matching set of maximal cuts. This
shows that the derivation of the ON-set of cube ¢ does not
depend on the degree of concurrency, and hence that highly
concurrent STGs can be easily handled.

Property 4.1 [9] Any two max-cuts for cube c 61’ and
62'* from the same matching set ©@'<* are in conflict.

The following property shows that the min-cut ¢, and
theset of max-cuts @' defineaslice of theunfolding. It can
be easily proved by applying Propery 4.1 and examining
all the conditionsof Definition 2.3.

Property 4.2 The set of cuts {m’} such that Vm/: 6. =
m' = 6'° for somed’® € ©¢isadiceS. = (6,,0'%).

Definition 4.4 A dice S, = (f..,©'¢) isan ON-slice of a
cubecifVm' € S.: 6, = m' = 6'° for somed'® € O°.

Thefollowing property guaranteesmonotonicity,i.e. the
absence of “value gaps’, in an ON-dlice.

Property 4.3 [9] Inany cut m’ € S, cube c evaluates to
1

Input: unfolding N' = (P, T',F', N\
Qutput: set of On-set slices ON of ¢

nai n
ON =290
Find_-ON-set (N, QN

Find_.ON-set (N, QN
Min =10
Fi nd_m n-cuts(N , M n)
/* Finds all mniml cuts of ¢ ‘‘first’’
reachable fromthe initial marking */
[*(i.e. 61. € Min = 862, = 61,) */
foreach minimal cut 8., € Min do
Fi nd_mat ch-cut s(8,;, ©'°)
N = O\U(Q'Ci,@"”))
Cal culate next cuts for slice {6,;,0')
/* Cuts next to some cuts in {8.;,0'°),
in which c evaluates to 0
foreach next cut m' do
Mdi fy(N, m)
/* Renoves from N' nodes that are
in = or #wth places of m' */
Find_-ON-set (N, QN
endfor
endfor

Figure8: Algorithm for the calculation of ON-set for cube
C.

The procedure for calculating the dices corresponding
to the ON-set of cube ¢ is shown in Figure 8. This ago-
rithmfirst findsall the min-cuts of cube ¢ (set Min) that are
reachable from theinitial marking without passing through
another min-cut (procedure Find_min-cuts). For al these
cutsit constructsthe corresponding ON-dlices by cal cul at-
ing the matching sets of max-cuts (procedure Find_match-
cuts). However the unfolding may have other minimal cuts
of ¢ that succeed cuts from Min (cube ¢ can be set and
reset severa times). To find them we iterate the procedure
starting from cuts m' that immediately succeed (“next cut
m'") some ON-dlice. The iteration means that we transfer
theinitial marking of theunfoldingto ' (i.e. remove from
the unfolding everything that precedes or in conflict with
m') and proceed with the derivation of the ON-set from
the modified unfolding. Eventually, thefull ON-set will be
constructed.

Procedures Find_min-cuts and Find_match-cuts are pre-
sented in detail in[9].

After the ON-set of cube ¢ is found we can return to
the original task of detecting CSC conflicts. This task,
for a pair of collision places pl’ and p2/, consists of the
following steps:

1. Let C(pl) and C(p2') be the cubes approximating
pl and p2’ and ¢ = C(p1') N C(p2') # 0.

2. Find the intersection of the ON-set of ¢ with the
marked regions of p1’ and p2’ (denoted by ON (p1’)
and ON (p2')).

7Cubec can be set and reset many times. To be more precise min-cuts
must be enumerated and referred to by 6/, for the i-th setting of cubec.
When no ambiguity arises we will omit thisindex.

3. Construct thebinary statesof ON (p1') and ON (p2).

4. Check for CSC conflicts explicitly, using the binary
states of ON (pl’) and ON (p2').

All the steps of this procedure are trivia to implement,
with the exception of Step 2, which was discussed above.
Let us consider apply the suggested method to the STG
and its unfolding shown in Figure 9,a,b.

Figure 9: Derivation of On-set for a cube

Example4.2 Let us choose a maximal tree L =
{p1,p2,p12, p14'} intheunfolding of Figure 9,b. Places
pl’ and p14’ inthistree are in collision. The intersection
of their approxi mation cubes gives cubec =- - -0- N 11-0-
= 11-0-.

The marked region of pl’ starts from initial marking
pl’p3’ and ends in marking pl'p9'pl0’. Thisis the first
unfolding segment in which the ON-set of cube ¢ is con-
structed. In the initial marking of this segment cube ¢
evaluates to 0. Event o'+ differentiates the binary state
of mg from cube c¢. Hence we transfer the initial marking
of the segment immediately after the firing of a’+: this
will be the basic marking of a’+, with binary state 11000.
In this binary state cube ¢ evaluates to 1 and hence this
is the min-cut 6.,. To find the matching set of max-cuts
for @, let us determine the set of transitions that force
c to reset. They are a—,b—,d+. Only d+ and b—
have instances in the considered unfolding segment. We
should remove from the segment all instances of d+ and
b— together with their successors. The remaining part
has two maximal configurations: one corresponding to cut
p1'p5'pl0 and another to cut p1’'p7’. These cuts forms
the matching set of 67, and the construction the an ON-
slice of ¢ within the marking region of p1’ is completed:
ON(pl) = {pl'p4, {pl'p5'pl0, pl'p7'}}. The set
of binary states corresponding to ON (p1’) is:{110* 0* 0*,
11*10*0, 11*0*0*1, 11*10* 1}.

In the marked region of p14’ cubec evaluatesto 1inits
initial marking p11'p14’, hence this marking is a min-cut
for c. The marked region of p14’ does not contain any
transition that resets ¢, thus the single max-cut of ¢ corre-
sponds to the single maximal configuration of the marked
region, p15'pl4’. Theset of binary states corresponding to
ON (p14') is{111*01, 11001*, 1* 1000}.

By checking the binary states correspondingto ON (p1’)
and ON (p14') (eg., pair of states 110* 0* 0* and 1* 1000)
it is easy to conclude that the collision between pl’ and
pl4’ indeed corresponds to a CSC conflict.

5 Conclusions

We have presented a method of checking Signal Tran-
sition Graphs for state coding conflicts, in particular iden-
tifying whether an STG satisfies Complete State Coding.
The latter is a key condition for an STG specification to
beimplementableinlogic. Theoveral framework isbased
on the STG unfolding, whose potentia advantage over the
more traditional state graph approach isin the partia order
representation of concurrent behaviour. Whilst the STG
unfoldingisknown to help avoid the exploration of the full
state space when solving some verification problems such
as boundedness and consistency checksin STGs, there has
been very littleresearch in using unfoldingsfor circuit syn-
thesis. In particular, the previously known method [18] for
deriving logic from STG unfolding offered an important
conceptua approach based on approximated boolean cov-
ers of the unfolding lements. It was however inefficient
because it could not di stingui shbetween trueand fake CSC
conflicts among the intersections of approximate ON and
OFF covers of synthesized signals.

This paper provides an in-depth study of the coding
conflict phenomenon by using the approximation-based
approach. A necessary condition for CSC conflicts to
exist exploits“partia” coding information (about place in-
stances) which is made available from the computation of
amaxima tree in the unfolding. Whilst this conditionin
many practical cases coincides with rea conflicts, and is
computationaly efficient, it may hide the so called “fake”
conflicts. Thispaper presentsarefinement techniqueaimed
at resolving such situations, at the expense of extracompu-
tational costs. Thistechnique limitsthe search to the parts
of theunfoldingthat may potentially exhibit afake conflict.
Those parts need explicit state traversing, which may be
exponentialy hard.

The overal efficiency of the method in practice can
only be established after extensive experimentswith bench-
marks. Itwill requiredevelopinganovel set of STG bench-
marks, because the existing ones (used e.g. in [8, 2]) are
known to illustrate the power of state graph based tech-
niques, rather than that of STG unfoldings, in synthesis
tasks. This task, aong with the software implementation
of the proposed algorithms, will be addressed in the near
future.

References
[1] T.-A. Chu. Synthesis of Self-timed VLS Circuits from
Graph-theoretic Specifications. PhD thesis, MIT, June 1987.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: atool for manipulating concurrent

(3]
(4]

(5]

(6]

(8]

(9

[10]

[11]

[12]

[13]

[14]

[19]

specificationsand synthesisof asynchronouscontrollers. | E-
ICE Trans. Inf. and Syst., E80-D(3):315-325, March 1997.
J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge
University Press, 1995.

J. Esparza. Model checking using net unfoldings. In M.-C.
Gaudel and J.-P. Jouannaud, editors, TAPSOFT'93: The-
ory and Practice of Software Development. 4th Int. Joint
Conference CAAP/FASE, volume 668 of Lecture Notes in
Computer Science, pages 613-628. Springer-Verlag, 1993.

J. Esparza, S. Romer, and W. Vogler. An improvement of
McMillan's unfolding algorithm. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 1055
of Lecture Notes in Computer Science, pages 87-106, Pas-
sau, Germany, March 1996. Springer-Verlag.

M. Hack. Analysis of production schemata by Petri Nets.
Technical Report TR 94, Project MAC, MIT, 1972.

M. A. Kishinevsky, A. Y. Kondratyev, A. R. Taubin, and
V. |. Varshavsky. Concurrent Hardware. The Theory and
Practice of Self-Timed Design. John Wiley and Sons Ltd.,
1993.

A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor,
O. Roig, and A. Yakovlev. Checking signal transition graph
implementability by symbolic bdd traversal. In Proc. of
European Design and Test Conference, pages 325 — 332,
Paris(France), March 1995.

A. Kondratyev, J. Cortadella, M.Kishinevsky, L. Lavagno,
A. Taubin, and A. Yakovlev. Identifying state coding con-
flicts in asynchronous circuit specifications using petri net
unfoldings. Technical Report TR No. 614, Computing Sci-
ence, University of Newcastle upon Tyne, October 1997.

A Kondratyev, Kishinevsky M., Taubin A, and Ten S. A
Structural Approach for the Analysis of Petri Nets by Re-
duced Unfoldings. In Applicationsand Theory of Petri Nets
1996. 17th International Conference. Proceedings, volume
1091 of LectureNotesin Computer Science, pages 346—365,
1996. Osaka, Japan, June.

A. Kondratyev and A. Taubin. On verification of the speed-
independent circuits by STG unfoldings. In International
Symposiumon Advanced Resear chin AsynchronousCircuits
and Systems, Salt Lake City, Utah, USA, November 1994.

K.L.McMillan. A technique of state space search based on
unfolding. Formal Methods in System Design, 6(1):45-65,
1995.

S. M. NowickandD. L. Dill. Automatic synthesisof locally-
clocked asynchronous state machines. In Proceedings of
the International Conference on Computer-Aided Design,
November 1991.

E. Pastor, O. Roig, J. Cortadella, and R. Badia. Petri net anal-
ysisusing boolean manipulation. In 15th International Con-
ference on Application and Theory of Petri Nets, Zaragoza,
Spain, June 1994.

Enric Pastor, Jordi Cortadella, Alex Kondratyev, and Oriol
Roig. Structural methods for the synthesis of speed-
independent circuits. In Proc. of European Design and Test
Conference, pages 340 — 347, Paris(France), March 1996.

[16]

[17]

[18]

[19]

J. L. Peterson. Petri Nets, volume 9. ACM Computing
Surveys, No. 3, September 1977.

L. Y. Rosenblumand A. V. Yakovlev. Signal graphs: from
self-timed to timed ones. In International Workshop on
Timed Petri Nets, Torino, Italy, 1985.

A. Semenov, A. Yakovlev, E. Pastor, M. Pena, J. Cortadella,
and L. Lavagno. Partial order approach to synthesisof speed-
independent circuits. In Third International Symposium on
Advanced Research in Asynchronous Circuits and Systems,
Eindhoven, April 1997.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton,
and A. Sangiovanni-Vincentelli. SIS: A system for sequen-
tial circuit synthesis. Technical Report UCB/ERL M92/41,
U.C. Berkeley, May 1992.

