
Identifying State Coding Conflicts in Asynchronous System Specifications Using
Petri Net Unfoldings �

Alex Kondratyev Jordi Cortadella
The University of Aizu, Japan Universitat Politècnica de Catalunya, Spain

Michael Kishinevsky Luciano Lavagno
The University of Aizu, Japan Politecnico di Torino, Italy

Cadence Berkeley Labs, USA
Alexander Taubin Alex Yakovlev

The University of Aizu, Japan University of Newcastle upon Tyne, UK

Abstract
State coding conflict detection is a fundamental part of

synthesis of asynchronous concurrent systems from their
specifications as Signal Transition Graphs (STGs), which
are a special kind of labelled Petri nets. The paper devel-
ops a method for identifying state coding conflicts in STGs
that is intended to work within a new synthesis framework
based on Petri net unfolding. The latter offers potential
advantages due to a partial order representation of highly
concurrent behaviour as opposed to the more traditional
construction of a state graph, known to suffer from com-
binatorial explosion. We develop a necessary condition
for coding conflicts to exist, by using an approximate state
covering approach. Being computationally easy, yet con-
servative, such a solution may produce fake conflicts. A
technique for refining the latter, with extra computational
cost, is provided.

1 Introduction
There exists a variety of approaches to synthesis of speed

independent circuits from their formal behavioural specifi-
cations. One of the most popular specification languages is
Signal Transition Graphs (STGs) that are Petri nets (PNs)
whose transitions are labelled with the names of rising and
falling edges of circuit signals [1, 17]. Circuit synthesis
methods based on STGs can be classified into two major
groups. The first group includes those based on a State
Graph (SG), which is the Reachability Graph (RG) of an
STG (strictly speaking of the PN underlying the STG)
encoded with binary vectors corresponding to the states of
signals in every reachable marking. This approach is used
in existing software tools for asynchronous circuit synthe-
sis such as SIS [19] and Petrify [2]. The actual process
of circuit implementation involves direct construction of
the full reachable state space, which then provides logic
minimisation routines with the information about On, Off
and Don’t care sets for each non-input signal. An obvious
practical limitation of this approach is a potential combi-
natorial growth in the number of reachable states. The use
of symbolic techniques, such as Binary Decision Diagrams
(BDDs), sometimes yields a more efficient representation

�This work has been partially supported by ACiD-WG (ESPRIT
21949), CICYT TIC 95-0419, EPSRC GR/L24038/K70175 (projects
ASTI and HADES)

of the binary encoded states [2] but does not remove the
root of the complexity issue.

The second approach avoids construction of the full
reachable state space; it includes techniques either based
on structural analysis of STGs [15] or use of PN unfold-
ings [10, 18]. The structural method of [15] has given rise
to the idea of an approximation-based synthesis of the logic
implementation of an STG. Albeit efficient in many practi-
cal cases, it is restricted to only handling a sub-class of PNs
– free-choice nets [3]. The attempt to generalise it within
the framework of unfolding presented in [18] has proved to
be quite promising in dealing with large STG models.

In particular, unfoldings exploit the nature of practical
asynchronous specifications, that suffer much more from
state explosion due to concurrency than due to conflict.
STGs generally also exhibit a “regular” interaction between
the two, thus avoiding the pathological cases in which the
unfolding performs as poorly as traditional state explo-
ration (or even worse that state exploration, due to the
larger constant factors in the complexity of the algorithmic
implementations).

The main shortcoming of the method of [18], however,
was that its approximation and refinement strategy was
fairly straightforward and could not work well with the
Don’t care state sets, i.e. sets of states which would have
been unreachable if the exact reachability analysis was ap-
plied. In particular, if two approximation cubes were inter-
secting on the unreachable states, the only way to confront
this problem was to construct the corresponding states to
see whether this intersection was dangerous or not. The
construction (or refinement) procedure suggested in [18]
was inefficient and caused an explosion in the number of
cubes obtained during the refinement.

With the increasing popularity of STGs and associated
synthesis tools, there is a clear need for further develop-
ment of the partial order approach to asynchronous circuit
synthesis. We do not attempt to tackle at once all the issues
involved, since this subject requires developing a consid-
erable amount of new theory. This paper therefore aims
at improving the synthesis method based on unfoldings in
its particularly critical part: to find a more accurate way
of determining actual coding conflicts in the STG unfold-
ing. A state coding conflict occurs when a pair of different

states in a specification has the same binary encoding (this
is called Complete State Coding (CSC) conflict [1]). Such
conflicts are tentatively identified by means of a conserva-
tive estimation of the state space, via place cover cubes.
Some of these conflicts may not be actual CSC conflicts,
thus leading to the two main contributions of the paper:

1. Conditions to determine whether a particular state cod-
ing conflict is fake (Section 3). From the compu-
tational point of view, these conditions are relatively
easy to check, but they are necessary and not sufficient,
which may require further refinement if the designer
is prepared to use a more complex procedure.

2. An algorithmic method for the partial construction of
the state space when the “fast” techniques from Sec-
tion 3 fail (Section 4). This method is based on solving
the problem of calculating the part of the STG un-
folding whose states (unfolding cuts) evaluate a given
boolean cover cube to true. This problem has its own
specific value in the list of issues that need to be tack-
led for a more thorough understanding of the “boolean
properties” of partial order behavioural specifications.

The position of this paper amongst asynchronous design
techniques is illustrated by the “roadmaps” shown in Figure
1.

2 Background
This section introduces the basic concepts required for

describing the new method. These include: (i) models,
such as Signal Transition Graph, State Graph, Unfolding;
(ii) target properties, such as Complete State Coding, CSC
conflicts; (iii) important notions supporting the method,
such as unfolding cuts, slices, marked regions, approxima-
tion cubes.
2.1 Signal Transition Graph and State Coding

Problems
A Petri net (PN) is a quadruple PN = hP; T; F;moi,

with sets of places P , transitionsT , flow relationF and ini-
tial markingmo. A markingm is represented with a number
of tokens m(p) in each place p 2 P . A Signal Transition
Graph (STG) [17, 1] is a triple N = hPN;A; �i, where
PN is a PN, A = I [O is a set of signals partitioned into
input and output signals, and � : T ! A � f+;�g is a
labelling function that assigns a signal edge name to each
transition in T . An STG is thus a labelled PN, specialised
to describing the behaviour of asynchronous circuits at the
logic level. The set of transitions represents signal changes,
i.e. their rising (ai+) and falling (ai�) edges. Notationai�
is used to indicate a signal transition regardless of the direc-
tion of the change. Given a Petri net element x 2 T [P ,
its predecessors and successors sets are denoted �x and
x� respectively. We further assume that for any transition
t 2 T : �t 6= ; and t� 6= ;. A PN in which every transition
has at most one predecessor and one successor is called a
State Machine.

An STG is called k-bounded iff the number of tokens
in any place p 2 P at any reachable marking does not
exceed k. Boundedness guarantees that an STG can be
implemented using a finite number of memory elements.
An STG is called output signal persistent [8] iff no output
signal transition ai� excited at any reachable marking can

be disabled by transitionof another signalaj�. If an STG is
output signal persistent, then it can be implemented without
producing unspecified changes of the output signals; that
is, without introducing hazards [7].

To obtain an implementation for an STG, most of the ex-
isting synthesis techniques require building a State Graph
(SG). The SG is derived from the graph of reachable
markings (RG), constructed for the STG using either ex-
plicit [16] or symbolic traversal [14] methods, and then as-
signing a binary code v 2 f0; 1gn; n = jAj, to each reach-
able marking m 1. Thus an SG is a triple SG = hS;E;
i,
where S is a set of binary encoded states s = (m; v), E is a
set of arcs between the states, and
 : E ! A�f+;�g is a
function that labels the arcs with signal transitions. In order
to allow a meaningful interpretation of the SG model as the
behaviour of an asynchronous circuit, the binary codes v
must be assigned to their markings m consistently, i.e.

� every arc between two states s1 = (m1; v1) and s2 =
(m2; v2) is labelled with exactly one signal transition
ai�,

� if the arc (s1; s2) is labelled ai+ (ai�) then v1[i] =
0(1) and v2[i] = 1(0).

An STG is called consistent if its SG has a consistent state
assignment.

Whilst at the STG level the states are pairs, consisting
of a marking and a state code, at the circuit level, only their
binary codes will be represented. Thus it may be possi-
ble that two states of an STG that have different markings
and are semantically different (they generate different be-
haviour in terms of firing transition sequences) but having
equal binary codes will be indistinguishable at the circuit
level. This situation will be called a coding or CSC conflict.
The Complete State Coding (CSC) condition introduced in
[1] requires any two states with equal binary codes to have
the same set of excited output signals. If for some signal
ai this requirement is not satisfied, then it is impossible to
extract the boolean function for its implementation.

An STG that is bounded, consistent, output signal per-
sistent, and producing a SG with CSC is known to be
implementable [8] as a speed-independent logic circuit 2.
An implementable STG gives rise to truth tables, which
can be derived from the SG state codes for each output sig-
nal. The implementation is obtained from the truth tables
by building cover functions, which are then directly associ-
ated with the circuit elements. This is the so-called complex
gate implementation. In this paper we assume such an im-
plementation to be the target of synthesis, and thus consider
only coding conflicts related to this basic form.

A boolean function covers a state s = (m; v) if the
function evaluates to true when the variables have their
values equal to the signals at the binary code v. A function

1In general one marking of an STG can correspond to a few binary
codes. It can happen for example if two-phase signal transitions are
allowed or due to a few different initial paths leading to same place of an
STG. However, any STG can be converted to an equivalent STG with
single binary code for each marking. Therefore, in this paper we consider
only such STGs.

2Circuits whose behaviour is independent of the delays in logic gates;
such circuits are known to be free from hazards under the unbounded
delay model.

p
b+

a-

region of p

Cube for p: C(p)= 1-

a+

Marked

Detection of
fake conflicts

Refinement of
approximations

C(p1) & C(p2) = ?

Event-based
properties

State-based

STG
implementability

properties

Persistency

Boundedness

Consistency

State coding
conflicts

Marked regions
for places

Approximation
by cubes

Check conflicts
by cubes

We are
here

Verification land

STG
unfolding

Verification

Synthesis

Graph
State

circuit
Speed-independent

We are
here

STG
unfolding

Marked regions
for places

Approximation
of MRs

Set of markings
MR(p)

Conflict exists?

Approximation of
ON- and OFF-sets

Cubes C(p)

Set of cubes
C(p1)+C(p2)...

ON and OFF
intersects

Logic
equations

Minimization

Detection of
fake conflicts

Refinement of
approximations

no yes

We are
here

Synthesis land

Local maps:

specification
STGGeneral map:

Figure 1: Where are we?

covering a set of states is called a cover function (or simply
cover). Each product term of the cover is associated with a
cube which may cover several states (commonly associated
with min-terms) in the state space. In the sequel we will
use [(union) and \ (intersection) for covers (or cubes),
assuming these set-theoretic operations to be applied to the
sets of states covered by these covers (cubes).

Example 2.1 (The “xyz” example.) Consider the STG
and its SG shown in Figure 2,a,b. This STG is bounded,
consistent and output-persistent (assuming that all sig-
nals x; y and z are outputs); it satisfies the CSC prop-
erty since each reachable state has a unique state en-
coding (shown next to the marking). An example of a
cover function is: (x + z)y (we will often use an al-
ternative Boolean vector notation 10 � [� 01, assum-
ing signal ordering xyz), which covers the set of states:
f(p2p3; 100); (p4p3;101); (p6p3; 001)g. Note that 10�
and �01 are the cubes associated with products terms xy
and yz, respectively.

2.2 STG unfoldings and their role in synthesis
Checking whether a particular STG is implementable

in complex gates is a crucial step in speed-independent cir-
cuit synthesis. To be able to synthesise circuits from large
STGs we would like to avoid using explicit state enumer-
ation techniques. A compact representation of STG state
space is provided by Petri net unfolding [12]. It is known
that its finite fragment, a truncated unfolding [12], com-
pletely represents the entire reachability graph of the PN.
Techniques for analysis of boundedness, consistency and
output-persistency of STGs using unfoldings have been
developed elsewhere, e.g. [10]. Those conditions could
be easily interpreted in terms of ordering relations (con-
currency, conflict and precedence) between the unfolding
elements. The situation with the CSC condition, which

is related to the problem of binary state encoding, is dif-
ferent. To be able to check this condition, one needs a
way to capture state encoding information from the STG
unfolding.

One such possible way was suggested in [18], within
a general framework for synthesis of speed-independent
circuits from unfoldings. It was based on the idea of finding
approximated boolean covers for instances of places and
transitions [15].

An exact cover for a given set of states S0 can be ob-
tained directly from the set of binary codes S0, but it will
require an explicit enumeration of all the states. Generating
exact covers is very costly due to the exponential number
of states that may be contained in highly concurrent STGs
— this is known as the state explosion problem. To over-
come this, approximated covers can be generated using
some structural information from the STG, and therefore
avoiding the state generation [15, 18]. However, imple-
mentations created by using approximated covers require
additional checking for their correctness. One such condi-
tion for complex gate implementation is that the cover for
the part of the state space where the function is on (ON-set
cover) must not intersect with the cover where the function
is off (OFF-set cover). If such intersection is non-empty,
the synthesis process must refine the covers, until they be-
come exact in the worst case. As a matter of fact, it was
pointed out in [18] that the situation when the exact cov-
ers for ON-set and OFF-set have a nonempty intersection
precisely corresponds to the case of a CSC problem.

The technique for generating and refining approximated
covers proposed in [18] was quite straightforward. It did
not take into account that the intersection of the ON-set
and OFF-set covers for a signal could be on the set of
unreachable states, corresponding to the DC(Don’t Care)-
set. Therefore, the fact that the ON-set and OFF-set covers
have nonempty intersection cannot say precisely whether

the STG has a CSC conflict or not. In the latter case we
shall say that the CSC conflict is fake.

In order to tackle the problem of checking the CSC
condition in the STG unfolding, we apply some of the
concepts used in the unfolding theory. First, the concept
of an STG-unfolding is outlined. Then, we introduce the
notions of cuts [4] and slices [18], which allow us to
capture the corresponding notions in the SG, namely states
and connected subsets (regions) of states. Cuts and slices
will thus provide us with an important link with the state
coding information. The latter is represented in the form of
boolean cubes (and covers) associated with the unfolding
elements.

2.2.1 STG unfolding

An STG unfolding3 built for an STG N , is an occurrence
net N 0 = hP 0; T 0; F 0;Λi where P 0, T 0 and F 0 are sets of
places, transitions and the flow relation, respectively; and
Λ is a labelling function which labels each element of N 0

as an instance of elements of N . N 0 is a partial order
obtained from an STG N by the process of its unfolding
[12, 5, 10]. We tacitly assume that unfolding N 0 inherits
the signal transition labelling (function�) of its STG origin
N .

Note. To distinguish the elements of the PN (or STG)
unfolding from those of the original PN (STG) we will
always refer to the former by adding one or several primes
(p0, t00,...) while the objects of the latter are denoted simply
by p, t, etc.

In the STG unfolding the relations of conflict, concur-
rency and precedence are used to decide where to instantiate
the next element. These relations are constructed during
the unfolding process from the basic flow relation F 0, built
from the flow relation F of the original STG. For any pair
of instances x01; x

0
2 2 P 0 [T 0 the following three relations

are defined:

� Precedence , denoted as x01) x02, iff (x01; x
0
2) belongs

to the reflexive transitive closure of F 0, i.e., there is a
path in the graph of an unfolding between x01 and x02.

� Conflict, denoted as x01#x02, iff there exist two distinct
transitions t01 and t02 such that �t01 \ �t02 6= ;, and
t01) x01, and t02) x02.

� Concurrency, denoted as x01kx
0
2, iff x01 and x02 are nei-

ther in precedence, nor in conflict.

In contrast to PN unfolding [12, 5], the STG unfolding
preserves the signal interpretation of the PN transitions
and keeps track of the binary codes reached by transition
firing. However, it explicitly represents only a subset of
all reachable states of N (called basic states in [11]) and
thus is typically more compact than the SG. The set of
predecessor transitions of t0 of the STG unfolding is called
the local configuration of t0 and is denoted as) t0.

The set of place instances reached by firing all transitions
in) t0 is called the postset of) t0 and is denoted by

3We apply term unfolding to the notion of the “truncated unfolding”
for simplicity, under the assumption that the STG is bounded and such a
truncation is possible [12].

() t0)�. Mapping a postset onto places of the original
STG produces a marking of the original STG, called a
basic marking (unlike the reachability graph, the unfolding
represents only basic markings) and denoted as m() t0)
. Any non-conflicting and transitively closed (w.r.t. the
precedence relation) subset of transitionsT10 � T 0 is called
a configuration. It is clear that a configuration is a union
of local configurations of the transitions that are maximal
(w.r.t. the precedence relation) in the configuration.

Each instance t0 of the STG unfoldinghas a binary code
v() t0) which is reached by firing transitions in) t0. The
postset () T10)� and binary code v() T10) correspond-
ing to a configuration T10 are calculated from () t0)� and
v() t0) of the max-transitions t0 of this configuration. The
pair (m() t0); v() t0)) is called the final state of the lo-
cal configuration) t0. Similarly, we can denote the final
state of a configuration (m() T10); v() T10)), which
always corresponds to one of the reachable markings. It
has been known that all reachable markings of an STG are
represented in the STG unfolding as post-sets of some con-
figuration [12], and this is easily generalized for all states
of the SG [10].

The process of constructing the STG unfolding (which
is a finite object for a bounded PN) is terminated at the
transition instances called cut-off points, whose final state
is equal to the final state of some other instance already put
into the unfolding. There exist several definitions of the
cut-off condition [12, 5, 10], different in their attempts to
minimize the size of the truncated PN (or STG) unfolding
necessary to fully represent the SG.

The initial state of the STG is associated with an imagi-
nary initial transition in the unfolding, whose postset is the
set of place instances of the places involved in the initial
marking.

2.2.2 Cuts and slices of STG unfolding

To represent a state of the SG we define a cut in the un-
folding [4].

Definition 2.1 A cut of an STG unfolding is a maximal set
of mutually concurrent places p0 2 P 0.

Each cut m0 � P 0 thus represents a reachable marking
m = Λ(m0) of the original STG. Due to the acyclic nature
of the PN unfolding (recall that we are talking about the
fragment of the unfolding truncated at its cutoff transitions)
it may cover some markings more than once, i.e., several
cuts may map to the same marking. Due to the main
property of the STG unfolding to be representative of all
reachable states, for every reachable state in an STG there
is a cut in the STG unfolding. Thus, similar to markings,
each cut m0 � P 0 is also associated with a binary code
v(m0) of the marking m = Λ(m0).

The order relations can be defined between cuts in the
following way:

� Precedence, m10) m20 iff 8p10 2 m10 9p20 2
m20; p10) p20. Note that relation) for cuts is
reflexive due to reflexivity of) for places of an un-
folding.

� Conflict, m10#m20 iff 9p10; p20; p10 2 m10; p20 2
m20 and p10#p20.

� Coexistence, m10km20 iff neither m10) m20 nor
m10#m20

Since a cut m0 represents a reachable state s =
(Λ(m0); v(m0)), there exists a configuration T10 such that
s = (m() T10); v() T10)). We shall call such T10

the configuration of cut m0, and denote it by) m0. In
particular, the empty configuration corresponds to the ini-
tial cut of the unfolding. Conversely, for configuration
T10 = () m0) the cut m0 will be called the final cut of
configuration T10. The precedence and coexistence re-
lations involve cuts whose configurations do not contain
conflict transitions. The conflict relation is between cuts
whose configurations include at least a pair of transitions,
one from each configuration, which are in conflict.

We need also to rephrase the notion of CSC in terms of
cuts.

Definition 2.2 Two cuts m10 and m20 are said to be in
CSC conflict iff v(m10) = v(m20) and they enable transi-
tions labeled with different output signals.

To represent a mutually connected set of states we use the
notion of a slice.

Definition 2.3 A slice S = h�S; fS�gi is a set of unfold-
ing cuts defined by a cut, �S, called min-cut and a set
of cuts fS�g called max-cuts, which satisfy the following
conditions:

� (1) Min-max correspondence. For any max-cut S� :
�S) S� (the min-cut is backward reachable from
any max-cut).

� (2) Conflict of max-cuts. All max-cuts in fS�g are
in conflict4.

� (3) Containment. If cut m0 2 S, then there is a max-
cut S� such that:
�S) m0) S� (any cut of a slice is squeezed be-
tween a min-cut and some max-cuts).

� (4) Closure. If cut m0 is such that �S) m0) S� 2
fS�g, then m0 2 S (there are no ‘gaps’ in a slice).

Conditions 1 and 2 guarantee well-formedness of the
slice borders; conditions 3 and 4 guarantee containment
and contiguity of a slice. Note that due to the reflexivity
of the) relation on cuts, conditions (4) and (1) imply that
the min and the max cuts are part of a slice.

It is easy to see that the entire (truncated) STG unfolding
is a special case of a slice. Other special kinds of slices can
be defined in the STG unfolding as follows.

The marked region for a place instance p0 2 P 0 is the
set of cuts to which p0 belongs. It is easy to see that a
marked region for a finite unfolding is a slice. Therefore,
for the place p0 we denote it as S(p0) (an alternative name
is a place slice). This definition can be extended to a set of
mutually concurrent place instances P10 � m0, where m0

is a cut; the marked region of P10 is also a slice, denoted
by S(P10).

4A more general definition of a slice, requiring max-cuts not to be in
precedence, has been used in [18].

Since every cut in an STG unfolding has a binary en-
coding, each slice can be assigned a boolean cover obtained
as the sum of minterms corresponding to the cuts contained
in the slice. Further in Section 4 we shall define the notion
of a cube slice, a slice which can be obtained for a given
cube in such a way that the cube evaluates to true in all cuts
of that slice and in false in all cuts outside the slice.

Our discussion of coding conflicts in an STG unfolding
will require the concept of a boolean cover approximation
for individual places.

Consider an arbitrary place instance p0 2 P 0. Let t0 =
�p0, i.e. let t0 be the unique (due to the non-reconvergent
nature of unfoldings with respect to places) predecessor
transition, and let v() t0) denote the binary code of the
final state of the local configuration of t0.

Definition 2.4 The cover approximation of place p0 is the
cube C(p0) = c[1]c[2] : : :c[n], where n = jAj is the num-
ber of signals in the STG, and 8i : c[i] 2 f0; 1;�g, com-
puted as follows:

� c[i] = “�00 if 9ai� such that ai � kp0, and

� c[i] = v() t0)[i], otherwise.

The approximate cover is a cube derived only from the
local configurations of the unfolding transitions and the
concurrency relation between places and transitions; all this
information that can be obtained in polynomial time from
the unfolding. On the other hand, the exact cover of a place
p0 is the boolean cover of the set of cuts in place slice S(p0).
It should be obvious that the exact cover is a subset of the
approximate cover, since the approximate cover assumes
that transitions concurrent to p0 are all mutually concur-
rent, and hence that all their immediate predecessor and
successor place instances can be marked in any combina-
tion. The containment is strict, except for the case wherein
no pair of transitions concurrent to a place is ordered or in
conflict5.

We are now ready to consider the problem of detect-
ing CSC conflicts using information available from an
STG unfolding. The key point to avoid the complete state
traversal is that the information about the state codes in the
unfolding will be obtained only from place cube approxi-
mations. The next section develops a necessary condition
for CSC by using this compact representation.

Example 2.2 (The “xyz” example.) Consider the STG and
its unfolding shown in Figures 2,a and c,respectively. Tran-
sition y�0 is the only cut-off transition. An example of a
local configuration, for x�0 is the set fx+0; z+0; x�0g,
whose final cut is p60p30. while an example of a non-
local configuration is the set fx+0; z+0; y+0g Its final cut
is p40p50. An example of a slice is defined by the min-cut
p20p30 and a max-cut set consisting of cut p60p50. This
slice has the exact cover: 1��[0� 1 (again with signal
order xyz). The approximate place covers are shown in
the unfolding next to their place instances. Place p30 is
concurrent to transitions z0+ and x0� and is ordered with
the transitions of y, hence the cover approximation for this
place is �0�. The exact cover of the place slice S(p30) is
f10�;�01g.

5This case is relatively rare in practice, except in the special case of
so-called burst-mode specifications [13].

3 Detection of CSC conflicts by unfolding
A conservative check for CSC conflicts can be done

using place cover approximations.

Definition 3.1 Places p10 and p20 are said to be in col-
lision in an STG unfolding if their cover approximations
intersect, i.e. C(p10) \C(p20) 6= ;.

There are three sources of collisions between places p10
and p20 in an unfolding:

Case 1. The marked regions of places p10 and p20 con-
tain only cuts that map to the same marking of the original
STG (i.e., there is no CSC conflict).

Case 2. In the marked regions of places p10 and p20 there
are two cuts that albeit mapped to two different markings
have the same binary encoding. This may or may not be a
CSC conflict, depending on whether these markings enable
different or identical sets of output signals.

Case 3. The exact boolean covers of the marked regions
of p10 and p20 do not contain the same binary codes but the
place cover approximations C(p10) and C(p20) intersect
due to an overestimation. This is called a fake collision and
does not correspond to a CSC conflict.

The idea of approximate techniques in detecting CSC
conflicts is to consider collisions (which can be easily an-
alyzed) instead of actual CSC conflicts. However such a
consideration can be overly conservative because actually
we are interested only in collisions for Case 2 above, while
Cases 1 and 3 must be excluded.

Definition 3.2 A collision between places p10 and p20 is
called fake if no cut in the marked region of p10 is in CSC
conflict with cuts from the marked region of p20.

To make analysis of coding conflicts by collisions be-
tween places less conservative, we need to identify as many
fake conflicts as possible.

b)

p2p3 100

111

x+

p4p5

101p4p3 p2p5 110

z+ y+

001p6p3

x- z+y+

p6p5 011
x-y+

z-

p7 010

p1 000

y-

x+

z+

x-

z-

y-

y+

p1

p2 p3

p4
p5

p6

p7

a)

p2’

p4’

p6’

p3’

p5’

x+’

z-’

y-’

z+’

x-’

y+’

1-1

0-1

p1’
000

-0-

-1-

p7’
010

1-0

(c)

Figure 2: Approximation technique for xyz example

Example 3.1 (The “xyz” example.) Consider again the
STG and its unfolding shown in Figure 2,a,c. The cover
approximation for place p30 is �0� (signal order is xyz).
This cube intersects the corresponding cubes for places
p1; p2; p4; p6 and thus has collisions with p1; p2; p4; p6.
The SG for the xyz example is known to be free of CSC
conflicts, therefore all these collisions are fake.

Definition 3.3 A directed path e01; : : : ; e
0
n

over unfolding
nodes (places or transitions) is called maximal if there
is no node e0 in the unfolding such that either e0F 0e01 or
e0
n
F 0e0.

Informally a maximal path is a path that cannot be ex-
tended in the unfolding, it starts at one of its initial places
and ends either at a cutoff transition or at a place without
output arcs.

Definition 3.4 A directed treeL0 = fe01; : : : ; e
0
n
g over un-

folding nodes is called maximal iff:

1. every e0
i

belongs to a maximal path formed by some of
the tree nodes,

2. for any place p0 2 L0 every t0 2 p�0 belongs to L0,

3. for any transition t0 2 L0 only one place p0 2 t�0

belongs to L0.

Informally, maximal trees play the same role in unfold-
ings as State Machine components do in Free-Choice PNs
[6, 3]. Specifically, they identify sets of place instances
that can never be marked together (because they are or-
dered or in conflict), and whose marked regions contain all
reachable cuts of an unfolding.

Proposition 3.1 [9] A maximal tree contains no concur-
rent places.

A maximal tree represents a maximal fragment of an
unfolding without concurrency. Figure 3,c shows an exam-
ple of a maximal tree in the STG unfolding of Figure 3,b.
There is one more maximal tree in this unfolding given by
the set of nodes: fp00; p80; p70g 6.

Proposition 3.2 [9] Let P 0 be the set of places of a max-
imal tree in an unfolding N 0 and let M 0 be the union of
all cuts in the marked regions of places from P 0. Then M 0

contains all reachable cuts of unfoldingN 0.

Corollary 3.1 [9] Let an SGG correspond to an STGN
with an unfoldingN 0. The set of cover approximations for
places of a maximal tree in N 0 covers all states of G.

Definition 3.5 A place p0 of an unfoldingN 0 is called colli-
sion stable if every maximal tree passing throughp0 contains
another place p10 which is in collision with p0.

Proposition 3.3 [9] If an original STG N has a CSC
conflict then its unfolding N 0 contains a pair (p10; p20) of
collision stable places.

Proposition 3.3 states that if an STG does not satisfy
CSC, then there are places (at least two) in the STG un-
folding that are in collision with other places in every max-
imal tree. This fact will be used as a characteristic property
of an CSC conflict in terms of cover approximations. Note
that this property is necessary but not sufficient: the unfold-
ing of an STG satisfying CSC may have stable collision

6When no ambiguity arises we will refer to maximal trees by their
place nodes only.

0*0*00

100*0 010*0

1*010 01*10

0*0*01*

100*1* 0101*

1011* 0111*

0011*

001*0

0000*

abcd

d’-

c)

p8’p3’

a’-

c’-

p7’

d’+

b’+

p4’’

c2’+

p5’’

b’-

p1’
(000-)

c1’+

a’+

p2’
100-

101-

p6’
001-

0000

p0’
---1

CSC
conflict

a)

p1

c1+

p2

a+

a-

p6

c-

p3

p8

b+

p4

c2+

p5

b-

d-

p0

p7

d+

b)

Maximal
tree

Figure 3: SG with CSC conflict a) its STG b) and unfolding c)

places. This can happen due to an overestimation of place
approximation cubes and reflects the conservative nature of
our approach.

Checking whether the above-mentioned situation takes
place, i.e. checking for a fake collision, requires refining the
collision relation between places. In Definition 3.1 this re-
lation is defined on pairs of places (p10; p20) independently
from the rest of the unfolding. However, by considering
the structure of collisions between p10 and other places in
an unfolding it is sometimes possible to conclude that the
collision between p10 and p20 is fake.

Example 3.2 The SG in Figure 3,a shows a CSC conflict
between the pair of states 0*0*00 and 0000* (signals en-
abled in the state are denoted by stars, output signal d is
not enabled in the first state but is enabled in the second).
Let us find collision stable places in the unfolding shown in
Figure 3,c (cf. Proposition 3.3).

In the maximal treeL10 (dashed line) in Figure 3,c places
p10 and p70 are in collision. The only maximal tree that
passes through p10 isL10 and hence p10 is a stable collision
place. Place p70 belongs to two maximal trees: L10 and
L20 = fp00; p80; p70g. In tree L20, p70 is in collision with
p80. Hence p70 is a stable collision place as well. The fact
that the STG of Figure 3,b does not have CSC is confirmed
by collision stable places in the unfolding, which illustrates
Proposition 3.3.

3.1 Refinement of collision relation between
places

This subsection shows a partial (computationally easy)
way to refine collisions for a given unfolding place p0. It
further exploits information about maximal trees involving
p0. For a particular place p0 of an unfolding we can have
the following cases of collisions:

(1) p0 is collision free in every maximal tree;
(2) There exists a maximal tree in which p0 is collision

free;
(3) In any maximal tree p0 has a collision, i.e. p0 is

collision stable.
While case (1) excludes any possibility to have CSC

conflicts involving p0, and case (3) is conservatively taken

as a potential indication of a CSC conflict, case (2) always
excludes any possibility to have CSC conflicts related to
the binary states in the marking region of p0.

Proposition 3.4 [9] If there is a maximal tree L0 passing
through place p0 in which p0 is free from collisions, then for
any other maximal treeL10 passing throughp0 any collision
between p0 and p10 2 L10 is fake.

Note that Proposition 3.4 does not imply that any colli-
sion between p0 and other places in an unfoldingare fake. It
refines only the collision relations between p0 and any place
that can be in the same maximal tree as p0. The refinement,
however, does not concern places that are concurrent with
p0, because these places never occur together with p0 in a
maximal tree. An example of such a non-fake collision
between concurrent places is shown in Figure 4. In the
unfolding of Figure 4,c place p20 belongs to the maximal
tree fp20; p50g and is free from collisions in this tree. The
marked region of p20 includes cuts m10 and m20 corre-
sponding to states 0�0� and 00� that are in CSC conflict.
Therefore a collision between p20 and p40 (p40 is concurrent
with) is not fake.

ab
0*0*

1*0* 0*1

1*100*

01*

a)

a+

a-

b-

b+

p3
p5

p4

b)

p1 p2

p1’

p3’

p4’

p2’

p5’

b-’

a+’

a-’

b+’

1-

0-

-0

-1

0-

c)

Figure 4: Non-fake collision between concurrent places

We can ignore collisions between concurrent places in
an unfolding because:

1. Any CSC conflict always leads to collisions between
non-concurrent places (see Proposition 3.3).

2. Insertion of new signals to distinguish CSC conflicts
will be done between non-concurrent places, if we

Input:
unfolding N

0
= hP

0
; T

0
; F

0
;Λi,

set Cubes = P
0
� A of approximation covers

for places (A -signals of STG)
and matrix Order = (P

0 \ T
0
) � (P

0 \ T
0
) of

ordering relations between nodes of N
0

Output:
matrix Coll = P

0 � P
0 of collision

relations between places of N
0

1:foreach place p
0
2 P

0 do
construct the collision relations
of p

0 with all p10
2 P

0;
store collision relations in a matrix Coll

endfor
2:do until a fixed-point in Coll is reached

foreach place p
0
2 P

0 do
if p

0 is not a collision stable place
then remove from Coll collisions
between p

0 and any p10
; p10

6k p
0

endfor
enddo

Figure 5: Algorithm for the refinement of collision rela-
tions.

extend any of the known CSC resolution methods for
STGs to work on unfoldings.

Thus we arrive at the procedure to refine a collision
relation shown in Figure 5.

The only non-trivial step in Figure 5 is the check whether
a place p0 is collision stable or not. The direct analysis of
this by checking the collisions with p0 in every maximal
tree is computationally inefficient because the number of
maximal trees containing p0 can be exponential. Instead
we use the converse approach, and the check essentially
reduces to the construction of a maximal tree in which p0

is collision free. If such a tree exists, p0 is clearly not
collision stable (see Proposition 3.4). The procedure that
finds a maximal tree (if it exists) in which p0 is collision
free is shown in Figure 6.

Step 1 in Figure 6 removes from the unfolding all places
that are concurrent with p0 (they will never occur in the
same maximal tree as p0) and all places with which p0 is
in collision (if a maximal tree in which p0 is collision free
exists these places cannot belong to it).

Step 2 removes from the unfolding other places and
transitions that cannot be included in any maximal tree,
because of the removal of places on Step 1. Indeed if all
input places of some transition t0 are removed, then no path
from the initial places can lead to this transition. Hence no
maximal tree in which p0 is collision free can contain t0,
and t0 must be removed from the unfolding together with
its output places.

In turn, if all output places of some transition t0 are
removed, then no path from this transition can lead to the
end nodes of the unfolding (cutoffs or places without output
arcs). Hence no maximal tree in which p0 is collision free
can contain t0, and t0 must be removed from the unfolding
together with its input places.

When in Step 2 a fixed-point in deleting the unfolding
nodes is reached the rest of N 0 (if non-empty) contains a

Input:
unfolding N

0
= hP

0
; T

0
; F

0
;Λi, matrix Order,

matrix Coll, place p
0
2 P

0

Output:
true if p

0 is collision stable,
false otherwise

1:foreach place p10
2 P

0
; p10

6= p
0 do

if p10
k p

0 then remove p10 from P
0;

if p10 is in collision with p
0

then remove p10 from P
0;

endfor
2:do until p

0 is removed or a fixed-point
in modifying N

0 is reached
/* forward traversal of N

0 */
if for t

0 2 T
0 all places �t0 are removed

then remove t
0 from T

0

if t
0 is removed then remove all p10 2 t

0�

/* backward traversal of N
0 */

if for t
0 2 T

0 all places t
0� are removed

then remove t
0 from T

0

if t
0 is removed then remove all p10 2 �t0

enddo
3:if p

0 2 P
0 then false else true

Figure 6: Algorithm for checking collision stable places.

maximal tree with places that are not in collision with p0.
If p0 has not been deleted, then it is not a collision stable
place. This check is done on Step 3.

Let us evaluate the complexity of the algorithm for col-
lision relation refinement.

The construction of the collision relations (Step 1 in
Figure 5) is reduced to the analysis of pairwise intersections
between approximation covers for places. This analysis is
performed O(K2) times, where K is the number of places
in the unfolding. The cost of each check is O(n), where
n is the number of STG signals. Hence the complexity of
Step 1 is O(K2 � n).

The complexity of the refinement of matrixColl (Step 2
in Figure 5) is determined by checking, for each place
p0, whether it is collision stable or not. This check is
performed by the algorithm in Figure 6, whose complexity
is determined by its Step 2.

On each iteration of Step 2, at least one node of the
unfolding must be removed (otherwise the fixed-point is
reached). The analysis of the possibility to remove a node
from an unfolding takes O(d), where d is the maximum in-
and out-degree of unfolding nodes. Hence the complexity
of Step 2 in Figure 5 isO((K+L)�d), whereL is the num-
ber of transitions in the unfolding. Refinement is done for
each place, and therefore it requires O((K + L) � d �K)
operations. Assuming that d � K + L; n � K + L
we conclude that the overall complexity of collision rela-
tions refinement is O((K + L)2), which is quadratic in the
size of the unfolding. This illustrates the efficiency of the
suggested method.

Example 3.3 Example xyz continued. The application of
the above algorithms to refine collision relations is illus-
trated by using the xyz example.

In maximal treeL10 = fp10; p30; p50; p70g place p30 is in
collision withp10. L10 is the only maximal tree that contains

p30 and hence p30 is collision stable. To check whether p10
is also collision stable let us apply the Procedure from Fig-
ure 6. At first the Procedure removes from the unfolding all
places that are concurrent with p10 (none in this example)
and are in collision with p10 (place p30). By traversing the
unfolding forward from the removed place p30, transition
y0+ and place p50 are also removed. After this, we reach
the fixed-point. The remaining part of the unfolding con-
tains p10 and hence p10 cannot be collision stable (indeed,
it is collision free in tree L20 = fp10; p20; p40; p60; p70g).
Hence, Proposition 3.4 implies that the collision between
p10 and p30 is fake. From similar considerations, the col-
lision between p50 and p70 is also detected as fake. After
this refinement, all places in the unfoldingare collision free
and we can conclude that thexyz example satisfies the CSC
requirement.

4 Avoiding fake collisions
Section 3.1 provided a way to detect fake collisions by

refining collision relations using additional information ex-
tracted from all possible maximal trees (however, without
enumerating all of them). The algorithm shown in Figure 6
actually looks for one maximal tree where a place is free
from collisions. This method is more general than [15],
where such a refinement was performed only by state ma-
chines that belong to the so-called State Machine-cover set,
because an SM-cover set contains usually only a few SMs
in comparison to the total number of SMs in which an STG
can be decomposed ([6]).

However, even when refining collision relations by using
all maximal trees, it is not always possible to avoid fake
collisions. The case where the method from Section 3.1
fails can be illustrated by a modification of the xyz example.

Example 4.1 (The xyz example modified.) Let us change
the initial marking of xyz from p1 to p5p6 (see Figure 7,a).

x+

z+

x-

z-

y-

y+

p1

p2 p3

p4
p5

p6

p7

a)

b)

p6’

z-’

y-’

011

p7’
010

p2’

p4’

p6’’

p3’

p5’’

x+’

z-’’

z+’

x-’

y+’

1-1

0-1

p1’
000

-0-

-1-

1-0

p5’
011

Figure 7: Unfolding of xyz STG with different initial mark-
ing

The unfolding for this initial marking is shown in Figure
7,b. There are four maximal trees in the unfolding: two
starting from place p60 (L10 = fp60; p70; p10; p30; p500g

and L20 = fp60; p70; p10; p20; p40; p600g) and two start-
ing from place p50 (L30 = fp50; p70; p10; p30; p500g and
L40 = fp50; p70; p10; p20; p40; p600g). In any of the trees
there are places in collision: p60 is either in collision with
p600 or with p500, while p50 is either in collision with p600 or
with p500. Hence no refinement of the collision relation can
detect them as fake ones, and it is impossible to conclude
about the absence of CSC conflicts in the xyz example by
the unfolding in Figure 7,b.

The failure to detect fake conflicts in the modified xyz
example by using the unfolding shown in Figure 7,b is
natural. Indeed, e.g., two collision pairs for place p60 are:
fp60; p600g and fp60; p500g. The marked regions for p60

and p600 should intersect in their cover because they are
instances of the same place p6 of the original STG, while
the marked regions for p60 and p500 will intersect because
these are instances of concurrent places p6 and p5 in the
STG. Note that two instances of the same place of an STG
can in general (but not in this example) be involved in a
true STG conflict, if they correspond to the intersection of
two reachable markings that are in CSC conflict.

There are two ways to overcome the above difficulty:

� To construct a smaller unfolding, by changing the ini-
tial marking. This method is considered elsewhere [9].

� To explore the set of states corresponding to a colli-
sion and check CSC by using this set explicitly. This
method is considered below.

4.1 Checking CSC conflicts by partial construc-
tion of binary states

If the approximation cubes C(p10) and C(p20) of places
p10 and p20 are intersecting (c12 = C(p10) \C(p20) 6= ;),
a straightforward way to check whether this intersection
implies a real CSC conflict would be to construct all states
corresponding to c12 in the marking regions of p10 and p20
and to compare the transitions enabled in these states. We
will denote this process by the term “state restoration”.

The advantage of this method is that it gives the exact
information on CSC conflicts, while its difficulty is in the
high cost (exponential in general) of the state construction.
However, in practice, the marking region of a place often
contains much less states than the entire unfolding; further-
more, only part of these states belong to the intersection of
cubes.

To construct the states corresponding to some cube c we
first need to identify in an unfolding all the regions (called
on-regions) where cube c evaluates to 1. Similar to the
marked regions of places, these on-regions are defined by
sets of cuts (slices, as shown below) h�0

c
;Θ0ci, where �0

c

is the “first” cut, in which cube c evaluates to 1 and Θ0c

contains all the “last” cuts in which c still evaluates to 1.

Definition 4.1 A cut �0
c

is called a minimal cut, or min-cut,
for cube c if in �0

c
cube c evaluates to 1 and

� either �0
c

is the initial cut,

� or in any cut �10 immediately preceding �0
c

(i.e.

9t0; �10
t
0

! �0
c
) cube c evaluates to 0.

Definition 4.2 A cut �0c is called a maximal cut, or max-
cut, for cube c if in �0c cube c evaluates to 1 and

� either �0c is a final cut of the unfolding,

� or in any cut �10 immediately succeeding �0c (i.e.

9t0; �0c
t
0

! �10) cube c evaluates to 0.

A min-cut �0
c

points to the cut in which cube c is turned
on for the “first” time after being set off. 7

Definition 4.3 A max-cut �0ci of cube c matches a min-cut
�0
ci

if
1. �0

ci
) �0ci

2. for any other min-cut �0
c

of c, if �0
c
) �0ci then

�0
ci
6) �0

c
and

3. for any other max-cut �0c of c, if �0
ci
) �0c then

�0c 6) �0ci.

Definition 4.3 associates any min-cut �0
ci

with the max-
cuts “adjacent” to it. Adjacency is seen here in terms of
partial order) on a set of cuts: by Condition 2 if a max-
cut �0ci matches the min-cut �0

ci
then no other minimal or

maximal cuts can occur in between �ci and �0ci (otherwise
�0
ci

and �0ci cannot be considered as adjacent ones).
After reaching �0

ci
cube c remains “On” until one of the

max-cuts �0ci is reached. Beyond �0ci c immediately turns
off. Hence a part of the unfolding between a min-cut �0

ci

and a max-cut �0ci corresponds to a part of the ON-set of
cube c. Since there exist in general (due to conflicts, as
shown below) several max-cuts matching the same min-cut
�0
ci

, we will denote this matching set of max-cuts as Θ0ci

(Θ0ci = f�0cig).
The following property indicates that only conflict cuts

can be included into a matching set of maximal cuts. This
shows that the derivation of the ON-set of cube c does not
depend on the degree of concurrency, and hence that highly
concurrent STGs can be easily handled.

Property 4.1 [9] Any two max-cuts for cube c �10ci and
�20ci from the same matching set Θ0ci are in conflict.

The following property shows that the min-cut �0
c

and
the set of max-cuts Θ0c define a slice of the unfolding. It can
be easily proved by applying Propery 4.1 and examining
all the conditions of Definition 2.3.

Property 4.2 The set of cuts fm0g such that 8m0: �0
c
)

m0) �0c for some �0c 2 Θ0c is a slice Sc = h�0
c
;Θ0ci.

Definition 4.4 A slice Sc = h�0
c
;Θ0ci is an ON-slice of a

cube c if 8m0 2 Sc: �0c) m0) �0c for some �0c 2 Θ0c.

The following property guarantees monotonicity, i.e. the
absence of “value gaps”, in an ON-slice.

Property 4.3 [9] In any cut m0 2 Sc cube c evaluates to
1.

Input: unfolding N
0
= hP

0
; T

0
; F

0
;Λi

Output: set of On-set slices ON of c

main
ON = ;

Find ON-set(N’, ON)

Find ON-set(N’, ON)
Min = ;

Find min-cuts(N’,Min)
/* Finds all minimal cuts of c ‘‘first’’
reachable from the initial marking */
/*(i.e. �10

c
2 Min)6 9�2c) �1c) */

foreach minimal cut �
0

ci
2 Min do

Find match-cuts(�0

ci
, Θ0ci)

ON = ON[h�0

ci
;Θ0ci

i

Calculate next cuts for slice h�0

ci
;Θ0cii

/* Cuts next to some cuts in h�0

ci
;Θ0cii,

in which c evaluates to 0
foreach next cut m

0 do
Modify(N’,m’)
/* Removes from N

0 nodes that are
in) or # with places of m

0 */
Find ON-set(N’, ON)

endfor
endfor

Figure 8: Algorithm for the calculation of ON-set for cube
c.

The procedure for calculating the slices corresponding
to the ON-set of cube c is shown in Figure 8. This algo-
rithm first finds all the min-cuts of cube c (set Min) that are
reachable from the initial marking without passing through
another min-cut (procedure Find min-cuts). For all these
cuts it constructs the corresponding ON-slices by calculat-
ing the matching sets of max-cuts (procedure Find match-
cuts). However the unfolding may have other minimal cuts
of c that succeed cuts from Min (cube c can be set and
reset several times). To find them we iterate the procedure
starting from cuts m0 that immediately succeed (“next cut
m0”) some ON-slice. The iteration means that we transfer
the initial marking of the unfolding tom0 (i.e. remove from
the unfolding everything that precedes or in conflict with
m0) and proceed with the derivation of the ON-set from
the modified unfolding. Eventually, the full ON-set will be
constructed.

Procedures Find min-cuts and Find match-cuts are pre-
sented in detail in [9].

After the ON-set of cube c is found we can return to
the original task of detecting CSC conflicts. This task,
for a pair of collision places p10 and p20, consists of the
following steps:

1. Let C(p10) and C(p20) be the cubes approximating
p10 and p20 and c = C(p10) \C(p20) 6= ;.

2. Find the intersection of the ON-set of c with the
marked regions of p10 and p20 (denoted by ON (p10)
and ON (p20)).

7Cube c can be set and reset many times. To be more precise min-cuts
must be enumerated and referred to by �

0

ci
for the i-th setting of cube c.

When no ambiguity arises we will omit this index.

3. Construct the binary states ofON (p10) and ON (p20).

4. Check for CSC conflicts explicitly, using the binary
states of ON (p10) and ON (p20).

All the steps of this procedure are trivial to implement,
with the exception of Step 2, which was discussed above.
Let us consider apply the suggested method to the STG
and its unfolding shown in Figure 9,a,b.

d+

p1

p2

p3

p4

a+

p6 p7

p9 p10

p11 p12

p13 p14

p15

e+

b-c+

d-

a-

c-

e-

p5

b-

c+

e+
p8

b+

p3’

p4’

a’+

p9’

p13’

p15’

b’-c’+

d’-

a’-

c’-

p5’

b’-

c’+

e’+

e’+

p7’

p8’

b’+

p1’
---0-

p2’
---1-

p14’

p6’

d’+

p10’

b)

p11’ p12’

e’-

11-1-

11-0-

max-cut

min-cut

.

...

a)

cube c: 11-0-

min-cut

max-cut1

max-cut2

Figure 9: Derivation of On-set for a cube

Example 4.2 Let us choose a maximal tree L =
fp10; p20; p120; p140g in the unfoldingof Figure 9,b. Places
p10 and p140 in this tree are in collision. The intersection
of their approximation cubes gives cube c =- - -0- \ 11-0-
= 11-0-.

The marked region of p10 starts from initial marking
p10p30 and ends in marking p10p90p100. This is the first
unfolding segment in which the ON-set of cube c is con-
structed. In the initial marking of this segment cube c
evaluates to 0. Event a0+ differentiates the binary state
of m0

0 from cube c. Hence we transfer the initial marking
of the segment immediately after the firing of a0+: this
will be the basic marking of a0+, with binary state 11000.
In this binary state cube c evaluates to 1 and hence this
is the min-cut �0

c1. To find the matching set of max-cuts
for �0

c1 let us determine the set of transitions that force
c to reset. They are: a�; b�; d+. Only d+ and b�
have instances in the considered unfolding segment. We
should remove from the segment all instances of d+ and
b� together with their successors. The remaining part
has two maximal configurations: one corresponding to cut
p10p50p100 and another to cut p10p70. These cuts forms
the matching set of �0

c1 and the construction the an ON-
slice of c within the marking region of p10 is completed:
ON (p10) = fp10p40; fp10p50p100; p10p70gg. The set
of binary states corresponding to ON (p10) is:f110*0*0*,
11*10*0, 11*0*0*1, 11*10*1g.

In the marked region of p140 cube c evaluates to 1 in its
initial marking p110p140, hence this marking is a min-cut
for c. The marked region of p140 does not contain any
transition that resets c, thus the single max-cut of c corre-
sponds to the single maximal configuration of the marked
region, p150p140. The set of binary states corresponding to
ON (p140) is:f111*01, 11001*, 1*1000g.

By checking the binary states corresponding toON (p10)
and ON (p140) (e.g., pair of states 110*0*0* and 1*1000)
it is easy to conclude that the collision between p10 and
p140 indeed corresponds to a CSC conflict.

5 Conclusions
We have presented a method of checking Signal Tran-

sition Graphs for state coding conflicts, in particular iden-
tifying whether an STG satisfies Complete State Coding.
The latter is a key condition for an STG specification to
be implementable in logic. The overall framework is based
on the STG unfolding, whose potential advantage over the
more traditional state graph approach is in the partial order
representation of concurrent behaviour. Whilst the STG
unfolding is known to help avoid the exploration of the full
state space when solving some verification problems such
as boundedness and consistency checks in STGs, there has
been very little research in using unfoldings for circuit syn-
thesis. In particular, the previously known method [18] for
deriving logic from STG unfolding offered an important
conceptual approach based on approximated boolean cov-
ers of the unfolding elements. It was however inefficient
because it could not distinguishbetween true and fake CSC
conflicts among the intersections of approximate ON and
OFF covers of synthesized signals.

This paper provides an in-depth study of the coding
conflict phenomenon by using the approximation-based
approach. A necessary condition for CSC conflicts to
exist exploits “partial” coding information (about place in-
stances) which is made available from the computation of
a maximal tree in the unfolding. Whilst this condition in
many practical cases coincides with real conflicts, and is
computationally efficient, it may hide the so called “fake”
conflicts. This paper presents a refinement technique aimed
at resolving such situations, at the expense of extra compu-
tational costs. This technique limits the search to the parts
of the unfolding that may potentially exhibit a fake conflict.
Those parts need explicit state traversing, which may be
exponentially hard.

The overall efficiency of the method in practice can
only be established after extensive experiments with bench-
marks. It will require developing a novel set of STG bench-
marks, because the existing ones (used e.g. in [8, 2]) are
known to illustrate the power of state graph based tech-
niques, rather than that of STG unfoldings, in synthesis
tasks. This task, along with the software implementation
of the proposed algorithms, will be addressed in the near
future.

References
[1] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from

Graph-theoretic Specifications. PhD thesis, MIT, June 1987.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: a tool for manipulating concurrent

specificationsand synthesisof asynchronouscontrollers. IE-
ICE Trans. Inf. and Syst., E80-D(3):315–325, March 1997.

[3] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge
University Press, 1995.

[4] J. Esparza. Model checking using net unfoldings. In M.-C.
Gaudel and J.-P. Jouannaud, editors, TAPSOFT’93: The-
ory and Practice of Software Development. 4th Int. Joint
Conference CAAP/FASE, volume 668 of Lecture Notes in
Computer Science, pages 613–628. Springer-Verlag, 1993.

[5] J. Esparza, S. Römer, and W. Vogler. An improvement of
McMillan’s unfolding algorithm. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 1055
of Lecture Notes in Computer Science, pages 87–106, Pas-
sau, Germany, March 1996. Springer-Verlag.

[6] M. Hack. Analysis of production schemata by Petri Nets.
Technical Report TR 94, Project MAC, MIT, 1972.

[7] M. A. Kishinevsky, A. Y. Kondratyev, A. R. Taubin, and
V. I. Varshavsky. Concurrent Hardware. The Theory and
Practice of Self-Timed Design. John Wiley and Sons Ltd.,
1993.

[8] A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor,
O. Roig, and A. Yakovlev. Checking signal transition graph
implementability by symbolic bdd traversal. In Proc. of
European Design and Test Conference, pages 325 – 332,
Paris(France), March 1995.

[9] A. Kondratyev, J. Cortadella, M.Kishinevsky, L. Lavagno,
A. Taubin, and A. Yakovlev. Identifying state coding con-
flicts in asynchronous circuit specifications using petri net
unfoldings. Technical Report TR No. 614, Computing Sci-
ence, University of Newcastle upon Tyne, October 1997.

[10] A Kondratyev, Kishinevsky M., Taubin A., and Ten S. A
Structural Approach for the Analysis of Petri Nets by Re-
duced Unfoldings. In Applications and Theory of Petri Nets
1996. 17th International Conference. Proceedings, volume
1091 of Lecture Notes in Computer Science, pages 346–365,
1996. Osaka, Japan, June.

[11] A. Kondratyev and A. Taubin. On verification of the speed-
independent circuits by STG unfoldings. In International
Symposiumon AdvancedResearchin AsynchronousCircuits
and Systems, Salt Lake City, Utah, USA, November 1994.

[12] K. L. McMillan. A technique of state space search based on
unfolding. Formal Methods in System Design, 6(1):45–65,
1995.

[13] S. M. Nowick and D. L. Dill. Automatic synthesisof locally-
clocked asynchronous state machines. In Proceedings of
the International Conference on Computer-Aided Design,
November 1991.

[14] E. Pastor, O. Roig, J. Cortadella, and R. Badia. Petri net anal-
ysis using boolean manipulation. In 15th International Con-
ference on Application and Theory of Petri Nets, Zaragoza,
Spain, June 1994.

[15] Enric Pastor, Jordi Cortadella, Alex Kondratyev, and Oriol
Roig. Structural methods for the synthesis of speed-
independent circuits. In Proc. of European Design and Test
Conference, pages 340 – 347, Paris(France), March 1996.

[16] J. L. Peterson. Petri Nets, volume 9. ACM Computing
Surveys, No. 3, September 1977.

[17] L. Y. Rosenblum and A. V. Yakovlev. Signal graphs: from
self-timed to timed ones. In International Workshop on
Timed Petri Nets, Torino, Italy, 1985.

[18] A. Semenov, A. Yakovlev, E. Pastor, M. Pena, J. Cortadella,
and L. Lavagno.Partial order approach to synthesis of speed-
independent circuits. In Third International Symposium on
Advanced Research in Asynchronous Circuits and Systems,
Eindhoven, April 1997.

[19] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton,
and A. Sangiovanni-Vincentelli. SIS: A system for sequen-
tial circuit synthesis. Technical Report UCB/ERL M92/41,
U.C. Berkeley, May 1992.

