
Component-Based Design: Towards Guided Composition

S. Moschoyiannis and M. W. Shields
Department of Computing

University of Surrey
Guildford, Surrey

GU2 7XH
United Kingdom�

s.moschoyiannis, m.shields � @eim.surrey.ac.uk

Abstract

In this paper, we present a mathematical model for the
composition of software components, at a semantic mod-
elling level. We describe a mathematical concept of a sin-
gle software component and identify properties that ensure
its potential behaviour can be captured. Based on that, we
give a formal definition of composition and examine its ef-
fect on the individual components. We argue that properties
of the individual components can, under certain conditions,
be preserved in the composite. The proposed model can be
used for guiding the composition of components as it ad-
vocates formal reasoning about the composite before the
actual composition takes place.

1. Introduction

The development of large-scale, evolvable software sys-
tems in a timely and affordable manner can, potentially,
be realised by assembling systems from pre-fabricated
software components. The component-based approach to
software engineering is emerging as the key development
method, as it advocates the (re)use of existing (independent)
software components in producing the final system.

Inevitably, in the context of component-based software
engineering (CBSE) emphasis is placed on composition. It
can be argued that software systems built by assembling to-
gether independently developed and delivered components
sometimes exhibit pathological behaviour. Part of the prob-
lem seems to be that developers of such systems do not have
a precise way of expressing the behaviour of components at
their interfaces, where the inconsistencies occur. Graphi-
cal notations such as Koala [30] and the widely used UML
[21, 2] attempt to capture behavioural aspects of a system,
but lack an associated formalism to aid designers in pre-

cisely describing dynamic properties of components. Com-
ponents may be developed at different times and by differ-
ent developers with, possibly, different uses in mind. Their
different internal assumptions, further exposed by concur-
rent execution, may give rise to emergent behaviour when
these components are used in concert, e.g. race conditions,
deadlocking behaviour, etc.

Current efforts to address the technical problems are di-
rected at providing support for predicting properties of the
assemblies of components before the actual composition
takes place. Yet, this requires prior knowledge of the in-
dividual components’ properties. We argue in favour of an
a priori reasoning [14] approach to CBSE, in which reason-
ing about composition is based on properties of the individ-
ual components. First, it must be shown that the compo-
nents adhere to their own specifications. Based on correct-
ness of individual components, their composition can then
be guided to meet the specification of a larger system as well
as predict the behaviour of the composite. In order to prove
that a software component meets its own specification, and
even more importantly, will continue to do so when fitted
together with other components, we need a well-grounded
mathematical framework. The ability to formally describe
the concurrent behaviour of interacting components is a key
aspect in component-based design.

In this paper, we describe a formal model for software
components, at a semantic modelling level, which can be
used to describe and reason about generic issues related to
components and their composition. In particular, we for-
mally specify a single software component, identifying con-
ditions that ensure it is ’well-behaved’. We also give a for-
mal definition of the composition of components. We argue
that when we put two well-behaved components together,
the resulting system is also well-behaved. (i.e. the condi-
tions hold for the composite).

The proposed mathematical model is based on a fairly
simple idea. The static structure of a component is de-

scribed by a sort (see Definition 2.1) while its dynamic char-
acteristics are captured by tuples of sequences which model
calls to operations on interfaces of the component. Putting
together such sequences, one for each interface, we form
sets of vectors of sequences. Each coordinate corresponds
to an interface of the component. It represents the behaviour
of the component at that interface, during the period of op-
eration in question. We restrict the component model by
imposing certain conditions; that is, discreteness and local
left closure. Each component defined in this way, can be
associated with an event structure -like object, called a be-
havioural presentation [24]. Thus, the component model
can be related to a general theory of non-interleaving repre-
sentation of behaviour [25].

As for composition, it takes place via complementary in-
terfaces with the restriction that each interface corresponds
to a unique (input or output) port of the component. The
static structure of the composite is formed by those of the
components. The dynamic characteristics comprise be-
haviours of each component and these must agree on con-
nected interfaces.

The use of tuples of sequences to model concurrent be-
haviour was first introduced by one of the authors [22].
However, the vector language used to describe the input /
output behaviour of a software component in the proposed
model, differs in important respects from that in [22] and
rather, is reminiscent of the use of streams in [6] to repre-
sent messages communicated along the channels of a com-
ponent. In fact, the setout of our model is quite similar to
the algebraic specification model of Broy. It is worth men-
tioning though that in [6] both finite and infinite sequences
of messages are considered whereas we only work with fi-
nite sequences of calls to operations.

Common ground between the two models can be found
in the mathematical concept of a software component and
particularly, in describing the static characteristics of a com-
ponent. The difference lies with the use of the notion of
sort. In [6] it is considered to be the set of messages as-
sociated with each channel of the component while in our
model the notion of sort (see Definition 2.1) is used in a
more abstract sense and refers to the static picture of a
component as a whole. Semantically, a component in [6]
is represented by a predicate defining a set of behaviours
where each behaviour is represented by a stream processing
function. In this respect, the two models diverge since our
model is mostly based on the order theoretic structure of
the set of behaviours of a component and is then related to
behavioural presentations, which provide an operational se-
mantics expressive enough to model non-determinacy, con-
currency and simultaneity as distinct phenomena.

This paper is structured as follows. The next section de-
scribes a formalism for specifying a single software compo-
nent, including component properties that allow us to char-

acterise a component as normal (see Definition 2.6). In Sec-
tion 3, we outline a mathematical framework for the com-
position of components. We return to the idea of normality
in Section 4 where the effect of composition, in terms of
preservation of property normality, is examined. Finally,
Section 5 includes some concluding remarks and a discus-
sion on future work.

2. Formal Specification of a Component

A software component can be understood as an encap-
sulated software entity with an explicit interface to its en-
vironment which can be used in a variety of configurations.
At a specification level, a component provides services to
other components and possibly requires services from other
components in order to deliver those promised. The offered
services are made available via a set of provides interfaces
while the reciprocal obligations are to be satisfied via a set
of requires interfaces.

In line with the object-oriented paradigm, we take a
black box view of a component [9, 28]. Its functionality
is made available to the rest of the system only through its
interfaces. Pictorially [30], a component is a square box
with a number of input and output ports. Each port is as-
sociated with an interface and communication with other
components is established via the operations of each inter-
face. We shall assume a countable infinite set � of interface
names and a countable infinite set ��� of operations of those
interfaces, both sets remaining fixed for the remainder of
this paper. The following definition merely formalises the
picture of a typical component.

Definition 2.1 We define a (component) sort to be a tuple�����
	��������������
where

� 	���� � is a set of provides interfaces

� � � � � is a set of requires interfaces

� � ��� 	 ��� � ��� � � ��� �"!#� � �%$#� is the set of calls to
operations associated with interface

$
and we require that

	 ��& � � �('
. Define � � �)	 ��� � � .

These sets and this function comprise the static structure
of a typical component. As for its dynamic characteristics
we introduce the notion of behaviour vectors in our model.

Definition 2.2 Suppose that
�

is a sort. We define * � to
be the set of all functions + � � ��� ���-, such that for each$/. � � + �%$#��.0� � �%$#� , . We shall refer to the behaviour vec-
tors of * � as

� �
-vectors.

By
�1�2�%$#� , we denote the finite sequences over

�3�2�%$#�
. Thus,

the function + returns the finite sequences of calls to opera-
tions made at and by interface

$
, for each interface

$
of the

component.

<<comp spec>>
CMenu

CTuner

IDetectSignal

<<comp spec>>

IOutput

IFineTune

ISearchFre

IChangeChannel

Figure 1. Component specification architec-
ture

Based on the above definitions, we obtain a mathemati-
cal concept of a component. We shall define a component� to consist of the static structure described by a sort

�
to-

gether with a language of
�3�

-vectors.

Definition 2.3 A component � is a pair
�#� �� �

, where

� � is the sort of �
� � � * � and

���� '
is the set of behaviours of � .

The main concept behind employing
� �

-vectors is that
the behaviour of the component as a whole may be de-
scribed by assigning to each interface

$
a sequence of calls

to operations of an interface. Being focused on fundamental
principles, we base our model on abstract component con-
cepts where calls to operations of an interface correspond
to events, that is, arrivals or departures of signals at ports of
the component, and component behaviour is represented by
tuples of sequences of signals entering or leaving the com-
ponent through its ports.

Example 2.1 Consider a small and simplified extract of a
TV platform, related to the MENU fuctionality of TV set.
The MANUAL STORE options are provided by the inter-
action of the components of Figure 1 which depicts the
component specification architecture using the notation of
[21, 7]. The stereotype ��� comp spec ��� is introduced
to describe component specifications and the UML lollipop
notation is used for interfaces. The component architecture
of Figure 1 comprises a set of application-level components
together with their structural relationships and behavioural
dependencies [12].

The CMenu component requires services through inter-
face IDetectSignal in order to implement the promised ser-

vices via interfaces ISearchFre and IFineTune that it pro-
vides. The ISearchFre interface has operations highlight-
Item and startSearch. Calls to these operations shall be de-
noted by �
	 , ��� respectively, for abbreviation. The IFine-
Tune interface has operations highlightItem, incrementFre
and decrementFre, abbreviated by �	 , �� and �� respec-
tively. The CMenu component establishes communication
with users via its provided interfaces ISearchFre and IFine-
Tune. A user requests to search the available frequency for
a program via the ISearchFre interface. The CMenu com-
ponent cannot satisfy the requested operation itself and re-
quires a component providing the IDetectSignal interface to
conduct the frequency search on its behalf. This is done by
invocation of an operation detectingSignal (abbreviated by�) on its required interface IDetectSignal, which is imple-
mented by the CTuner component.

In what follows, we apply the mathematical theory pre-
sented earlier to model the CMenu component. Its pro-
vided interfaces ISearchFre and IFineTune will be de-
noted by ��� and ��� and the required interface IDe-
tectSignal by ��� . Thus,

	�� ��� ��� ����� , ��� ��� ����� .
Hence, � � �)	 � � � � ��� ��� ��� ��� � and of course,	 � & � � � '

. Function
� �

as defined in Defini-
tion 2.1 provides the set of calls to operations associ-
ated with each interface. Hence,

� � � �!� � ��� �#" ��$�� ,� � � ��� � �%� �" �$ �&�� and
� � � ��� � ��� � "�� .

It can be seen that
� � � 	 � �� � #� � �

is a sort. And if
we write

�('�*) �+ �
for the function + of Definition 2.2 with

+ � ��� � �,'
, + � ��� � �,)

and + � ��� � �,+
we can define the set

of behaviours for the CMenu component as,� ��� �(-��-��-�� � � " �-��-�� �(-� " �-�� � � " � $ �-��-�� �(-� " $ �-�� �(-� " & .-��" � � " " $ �-�� � � " � $ �-� � " �"� � " � $ " �-�� � � " " �-�� � � " " $ & �-�� � � " � $ " � " � �
It turns out that � ��� � .� � is a component (recall Def-

inition 2.3) where
��� � 	 � �� � #� � �

is a component sort
and

�
is a subset of all behaviour vectors * � .

The mathematics of
�1�

-vectors is given in [26] and is
very similar to that of [25]. The main difference is that
while vectors in [25] describe behaviour of systems of se-
quential processes combined using something like the par-
allel composition operator /0/ of CSP [10],

� �
-vectors de-

scribe behaviour of systems using something like the inter-
leaving operator /1/0/ of CSP.

In this paper, we present the fairly basic properties of� �
-vectors. If + and 2 are sequences we write +#3 2 for the

concatenation of + and 2 . As is well known, this operation
is associative with identity

-
, where

-
denotes the empty

sequence. We also have a partial order on sequences given
by +5476 if and only if there exists 2 such that +83 2 � 6 ,
and this partial order has a bottom element

-
. It is also well

known that concatenation is cancellative, thus 2 is unique.
Further, the set of behaviour vectors * � is a monoid with

binary operation ’.’ and identity
-

. It is also a partially or-

dered set with partial order ’ 4 ’ and bottom element
-

. The
interested reader is referred to [26] where the order theoretic
properties of * � are established.

We shall now introduce two basic operations on the set
of behaviours of a component, based on the order theoretic
properties of the set * � .

Definition 2.4 Let 2 and + be behaviour vectors in
� �

*�� . Then,

1. 2 � + is defined to be the vector 6 which satisfies
6 �%$#�/��� $�� � 2 �%$#�" + �%$#��� , each

$

2. 2 � + is defined to be the vector 6 which satisfies
6 �%$#�/��� � '3� 2 �%$#� + �
$#��� , each

$

In terms of partial orders the above operations essentially
give the greatest lower bound and the least upper bound of
2 + . �

, in the usual sense of lattices and domain theory
[8, 31]. Recall that if

�	� 4 � is a partially ordered set [8]
then the least upper bound of

' 	 �' � .
� , if it exists, is the
least element

'(.��
such that

' 	 .' � 4 '
. We denote it

by
' 	 � ' � . The greatest lower bound, denoted by

' 	 � ' � ,
is the largest element

' .��
such that

' 4 ' 	 �' � . Notice
that these are computed coordinate-wise for the behaviour
vectors of our model.

A key property of the sets * � is that they possibly con-
tain discrete subsets. Before introducing discreteness, we
also need to define consistent completeness. We shall say
that

�
is consistently complete if and only if i)

- �� . �
and ii) whenever + 	 + � 6 . �

such that + 	 + � 4�6 , then
+ 	 ��+ � . �

. In short, the notion of consistent complete-
ness for a poset dictates that whenever two of its elements
are less or equal than a third in the set, their least upper
bound not only exists but is also in the poset.

Now, we can impose the first condition on a software
component.

Definition 2.5 Let � � and ��� be sets with � � finite, and� ��� � � � � � ��� � , and suppose that
� � * � , then we

shall say that
�

is discrete iff

1.
�

is consistently complete

2. If 2 	 2 � . � , then 2 	 � 2 � . ��� 2 	 � 2 � . �

Let � � �#� �� � be a component; if
�

is discrete, then � is
discrete.

Informally, the above definition refers to vectors in the
set of behaviours

�
of the component which have at least

two distinct immediate predecessors and says that both the
least upper bound and the greatest lower bound of these pre-
decessors must exist and also belong to the set of behaviours�

. In short, such vectors together with their predecessors
must constitute finite lattices.

The justification for this constraint is as follows. A set
of behaviours of a software component may be translated
into an object called a behavioural presentation, introduced
in [25], which generalises the event structures of [20] in al-
lowing time ordering of events to be a pre-order rather than
a partial order, thereby allowing the representation of simul-
taneity as well as concurrency. A behavioural presentation
is a quadraple

� � �� �� �� � - where � is a set of occur-
rences,

� � � � � � is a set of points,
�

is a set of events
and

� � � � � is the occurrence function that associates
occurrences of events with the events of which they are oc-
currences - which satisfies ��������� � � . The intuition is
that each � . � represents that point in time reached after
all occurrences that constitute it have taken place.

�1�"! �/�$#
is to be read ’

!
is an occurrence of

#
’.

A software component can be associated with a be-
havioural presentation by exploiting a basic order theoretic
property of behavioural presentations related to primes. In
this context, the notion of prime refers to vectors which
have a unique other vector immediately below them (see
also [19]). The ordering among elements of the set of be-
haviours of the component is based on the relation %'& de-
fined as follows. For 2 + .5�

, 2 %(&�+ implies that 2 � +
and if 6 .5�

is such that 2 4 6 � + , then 6 � 2 . All +
in

�
which have a unique 2 in

�
immediately below them,

are considered to be primes in
�

.
As far as component-based design is concerned, we wish

to constrain components in such a way that they can be asso-
ciated with a subclass of behavioural presentations, namely
those that are discrete. This gurantees that i) there are no
infinite ascending or descending chains of occurrences of
events, with respect to time ordering, which would give rise
to Zeno type paradoxes, ii) there are no ’gaps’ in the time
continuum and iii) there is an initial point where nothing has
happened. We also wish to ensure that the behavioural pre-
sentation for each component contains one occurrence for
each call to an operation to one of its interfaces. This can
be guaranteed by a property called local left closure, which
we now define.

Definition 2.6 Suppose that � ��� � .� � is a component.
We shall say that � is locally left closed iff whenever 2 . �
and
$. � � and

' . �1�2�%$#�
such that

- � ' � 2 �
$#� , then
there exists + . � such that + 4 2 and + �%$#� �,'

.
If � is discrete and locally left closed, then we shall say

that � is normal.

Effectively, the local left closure property ensures that
there will be a distinct prime in

�
for each simultaneity

class of calls to operations received or transmitted, during
the time of this behaviour. This resolves ambiguities that
may arise from not having enough points to describe the
course of the behaviour in question; not the start or the

(, b b ,)Λ Λ1 3

(, b b ,)Λ Λ1 2

(Λ, Λ, Λ)

(, b ,)Λ 1 Λ (a , ,)1 Λ Λ

(a , b ,)1 1 Λ (a a , ,)1 2 Λ Λ

(a , b b ,)1 1 2 Λ 1 2 Λ (a a , , c)1 2 Λ 1

(a , b b b ,)1 1 2 3 Λ

1

1 2 1 1(a a , b , c)

(a a , b ,)

Figure 2. Order structure of elements in
�

end, but the ’gaps’ in between. In order to provide a pre-
cise description of a discrete behaviour we require that ev-
ery occurrence of an event is ’recorded’ in the set of be-
haviours of the component. This implies the presence of a
distinct prime element in

�
for each simultaneity class of

incidences, and for each appropriate interface.

Example 2.2 In this example, we examine discreteness and
local left closure of the CMenu component of example 2.1.
The ordering structure of the elements in

�
is shown in Fig-

ure 2 and we shall use it to illustrate the idea of normality
for the CMenu component.

It can be seen in the Hasse diagram of Figure 2 that�(-� " & .-��" � � " " $ & �-�� and
� � " � $ " � " � are the max-

imal behaviour vectors of the component, in the sense that
they do not describe earlier behaviour than any other vector
in

�
. Likewise, vector

� - .- .-��
is the minimal behaviour

vector representing behaviour of the component in which
nothing has happened.

Based on Figure 2, we examine the discreteness property
of the CMenu component. In order to do so, we concentrate
on vectors + in

�
with at least two distinct incomparable

immediate predecessors. They, together with their prede-
cessors should constitute (finite) lattices, according to Defi-
nition 2.5 of discreteness. That this is so, is best illustrated
diagrammatically. By inspection, we have the case depicted
as a Hasse diagram in Figure 3, which exhibits the charac-
teristic structure of a lattice.

It can be seen in the illustration of Figure 3 that we only
include those vectors of

�
with at least two distinct imme-

diate predecessors. To see that
� � " � $ " � " � , � � " " $ �-�� ,� �#".� $ �" �-�� and

� �#" �" �-�� are such vectors, focus on the
four rhombus-like shapes formed in Figure 2. The Hasse

(Λ, Λ, Λ)

(, b ,)Λ 1 Λ (a , ,)1 Λ Λ

(, b b ,)Λ Λ1 2 (a , b ,)1 1 Λ (a a , ,)1 2 Λ Λ

(a , b b ,)1 1 2 Λ 1 2 Λ (a a , , c)1 2 Λ 1

1 1

1(a a , b ,)

1 2(a a , b , c)

Figure 3. Discreteness of CMenu component

(a a , , c)1 2 Λ 1

Λ11(a , b ,)

1 1 2 3 Λ(a , b b b ,)

(a , b b ,)1 1 2 Λ

Λ 1 2 Λ(, b b ,)

1 ΛΛ(, b ,)

Λ 1 3 Λ(, b b ,)

1 2 1 1(a a , b , c) 1 2 1 1(a a , b , c)

(a a , ,)ΛΛ1 2

(a , ,)Λ Λ1

Λ11(a , b ,)

21 1(a a , b ,)

Λ 1 Λ(, b ,)

Λ

.

Figure 4. Local left closure of CMenu compo-
nent

diagram of Figure 3 then, demonstrates that together with
their predecessors they constitute lattices. Indeed, the least
upper bound and the greatest lower bound of the distinct im-
mediate predecessors exist and are in

�
, in all four cases.

This implies that the CMenu component is discrete (in con-
formance with Definition 2.5).

For local left closure, we concentrate on those vectors
in

�
with at least one component containing a coordinate

with length greater than one and examine their predeces-
sors. Again, we feel it is easier to demonstrate that the
property holds diagrammatically.

Figure 4 demonstrates that for each vector in
�

with
at least two events in one of its coordinates there is some
other vector in

�
which has either the same sequence of

events, at that specific coordinate, or the same reduced by
one event. This implies that the CMenu component is lo-

cally left closed.
Having established both discreteness and local left clo-

sure for the CMenu component, we have shown that it is
normal. Consequently, its set of behaviours can be associ-
ated with a behavioural presentation (see [19, 26] for this as-
sociation), modelling the potential behaviour of the CMenu
component.

In terms of justifying such a constraint in a clear and ac-
cessible way to the non-theoretical designer of component-
based systems, we feel that the diagrammatic representation
of the normality property could not be considered as a suc-
cess factor on its own, although designers seem to be keen
on working with diagrams rather than formalisms or math-
ematics.

The process of checking a software component against
normality starts with forming the set

�
of behaviours. In

doing so, a component designer should include only those
vectors that describe desired behaviour. Then, while check-
ing for discreteness and local left closure of the component,
other vectors might need to be added in the set

�
(to sat-

isfy the normality property). The component designer is to
decide whether the additional vectors represent desired be-
haviour or not. If they do not, then the design should be
refined to ensure that the component shall not exhibit in-
stances of such behaviour, under any circumstances, in the
course of achieving the desired behaviour.

In terms of our example, a component designer would
most likely not include

� ��".� $ �" �-�� in the set of behaviours�
as this vector does not represent desired behaviour. Re-

call that operation � � has as an ’immediate’ consequence
the invocation of � 	 . A call to operation 	 before � 	
actually occurs, is likely to cause the component to ex-
hibit pathological behaviour (in that a search for a chan-
nel has not been completed while the user requests to fine
tune the signal). While checking for discreteness, vector� � " � $ " �-�� would be added to make the component dis-
crete. Therefore, the designer would become aware that in
achieving

� � " � $ " � " � the component might experience
pathological behaviour (i.e.

� � " � $ " .-��) which might
leave it in an inconsistent state. Based on this indication,
the component design could then be refined accordingly.

3. Formalisation of Component Composition

In this section, we discuss the major theme of compo-
sition of components. First, we present a mathematical
framework for combining components and then, we exam-
ine the effect of their composition.

Current component technologies such as the OMG’s
CORBA Component Model, Microsoft’s COM+ and Sun’s
EJB support rapid assembly of systems from pre-fabricated
software components. However, there is little, if any,

support for reasoning about the resulting system until its
parts have been combined, executed and tested. To ad-
dress this issue and thus, facilitate predictable assembly of
component-based systems there must be some way to for-
mally reason about the behaviour of the composite based on
properties of the individual components.

Naturally, composition takes place via complementary
interfaces, that is, interfaces that are required by one com-
ponent and provided by another. We assume disjoint sets
of ’requires’ and ’provides’ interfaces for each of the com-
ponents. As a result, a condition is required on the set of
interfaces of a component; its elements must be pairwise
consistent.

Definition 3.1 Suppose that
� " � $ are sorts. We say that� " and

� $ are consistent and we write
� "�� � $ if and only

if

� 	���� & 	���� �)'
� ����� & �������('
��� $/. � � � & � � � � � � � �%$#� ��� � � �%$#�
Suppose that � 	 and � � are components where�	� ��� � � .� � � , each
 . Then, � 	 and � � are consistent, and

we write � 	 � � � , if
� " � $ are consistent.

Definition 3.2 Suppose that
� " and

� $ are consistent
sorts. Define

� "�� � $ � � where,

� 	�� ���
	���� � 	���� �� �
����� � ����� �
� ��� ��� � ��� � ����� �� �
	���� � 	���� �
� ���2�
$ � ������� �%$#� wherever

$. � ���
 � � � (recall
that � ��� � 	 ��� � ����� from Definition 2.1)

Lemma 3.1 Suppose that
� " � $ are consistent sorts, then� "�� � $ is a sort.

Proof (sketch). We first prove that
�

is a well de-
fined function. Since � � � � � � � � � � , it suffices to show
that if

$/. � � � & � � � then
� � � �
$ � ��� � � �
$#�

which is pre-
cisely point (3) of Definition 3.1. Finally, we note that	 � & � � � 31303 � ' which completes the proof (see [27]).

Informally, the above definitions say that the sort of the
resulting system is formed from those of the components by
eliminating all interfaces participating in internal commu-
nication. This is illustrated in Figure 5 using the notation
of [21, 7] for the components of example 2.1. Composition
takes place via IDetectSignal interface which is a ’provides’
interface of CTuner and a ’requires’ interface of CMenu.
Notice that it is hidden in the resulting composite compo-
nent CsMenuTuner which is stereotyped by ��� composite

IFineTune

IChangeChannel

ISearchFre

IOutput

<<composite spec>>
CsMenuTuner

<<comp spec>>
CMenu

IOutput

<<comp spec>>
CTuner

IFineTune

ISearchFre

IDetectSignal

IChangeChannel

Figure 5. Composition of CMenu and CTuner

spec ��� . The other interfaces remain visible and comprise
the set of ’requires / provides’ interfaces for the composite
of CMenu and CTuner.

As far as the dynamics are concerned, we motive the def-
inition as follows. In any behaviour of the composite sys-
tem, each component � � will have engaged in a piece of
behaviour + � . If

$
is an interface common to both � � and ��� ,

then it will be a provided interface of one and a required in-
terface of the other. Without loss of generality, suppose that
it is a provided interface of � � and a required interface of ��� .
Then, + � �%$#� represents the sequence of calls to operations
made from � � to � � through interface

$
, which (assuming no

delays) is precisely behaviour + � �%$#� .
Definition 3.3 Suppose ��	 � � are sets of interfaces and� � � � � � � � � ��� � ,
 � � � . We shall say that vectors
2 � . * �� � are consistent, and we write 2 	 ��2 � if

2 	 �����	�
��� � 2 � ������
���

where � � � denotes the restriction of function � to
�

. De-
fine,

2 	 � 2 � ��� 2 	 � 2 � � ����������
where � 	�� � � is the symmetric difference of � 	 and � � , de-
fined to be

� � 	 � � � � � � � � 	 � .
Now, we can give a formal definition of composition of

components.

Definition 3.4 Suppose that � 	 � � are consistent compo-
nents, where � � � � � � .� � � , each
 . Then, we define� " � � $ ��� � �� � where,

� ����� " � � $
� ��� � "�� � $ where

� 	 � � � �%� + . * � /� 2 	 . � 	 � 2 � . � � � 2 	 � 2 ��� + � 2 	 �52 � �
It is straightforward to show that � " � � $ ���#� �� � is a

component whenever � 	 � � are consistent components. In-
deed,
�

is a sort by Lemma 3.1 and
� � * � by definition.

[27] contains the complete proofs of the above
results and establishes the algebraic properties of
composition. For instance, ’ � ’ is commutative since� 	 � � � � � � � � 	 whenever � 	 � � are consistent com-
ponents. Note that using a technical lemma [27] it is
possible to combine a third sort with the composite sort
of two components, thus allowing further composition
of the composite with another component (or another
composite). In terms of mathematical theory, it can be
shown that, for

� " � $ � & with
� � � � �
 ����

we have����� � " � � $ � � � & � � "�� � � $ � � & � ���
	 � � � �� � � ,
where

	 � �� �
and
� �

are defined in a way similar to that
of Definition 3.2.

Example 3.1 In this example, we apply the formalism in-
troduced above to describe the composition of CMenu and
CTuner components of the previous examples. We assume
that CTuner has also been formally specified in the way
CMenu was in example 2.1. The ’requires’ and ’provides’
interfaces of the two components are in the center of atten-
tion now and thus are written using their full names (as these
appear in Figure 1) rather than their abbreviations used in
previous examples.

Referring to Definition 3.1, the two components
have no ’provides’ and no ’requires’ interfaces in com-
mon. Thus,

	 ��� & 	 ��� �)'
and
� ����� � ��� �)'

.
However, they do have an interface in common; IDe-
tectSignal is a requires interface of CMenu and a
provides interface of CTuner, as can be seen in Figure
5. Thus, � ��� & � ��� ��� � � #"! # � !	# $�$�� � % � , for which� ��� � � � #"! # � !	# $�$(� �&% � ��� � " � � � ��� � � � #"! # � !	# $�$(� �&% �
where � 	 denotes a call to operation detecting() as in
example 2.2.

The composition �(' � �*) , where ��' � �#� ' .� ' �
denotes the CMenu component and ��) ��� �) ��) �
denotes the CTuner component, is defined by� � ��' � ��) ��� � .� � where

� �����) � � '
� �����) � � '
The sort

�
of � is the composite sort of the sorts

� ' and�) and is obtained as follows.	 � ��� 	 ��� � 	 ��� �	 � � ��� � � ��� �/�
��� � # # � � ��+-, � # � , $ � #(. 2 � # �&/ + � �0$'# / + � � � # % �

Note that IDetectSignal does not appear in
	 �

, though it is
in
	 ���

, because it also belongs to
� ���

.� ��� � � � � � ��� � �	 �
	�� ��� 	�� � � ��� � � 2 ! �#2 ! �
Note that IDetectSignal does not appear in

� �
because it

belongs to
	�� �

.
The fuction

�1�
satisfies

�1���%$#�/���1��1 �
$ �
wherever$/. � ��1 2� �43 �.

refers to all ’free’ interfaces (i.e.
non-connected interfaces) of the composite component� . For instance, in the case of interface IFineTune,

� � � � , $ � #(. 2 � # � ��� ��� � � , $�� #�. 2 � # � �%� �" �$ �& �
since � , $�� #(. 2 � # . � ��� . Recall that function

� �
as-

sociates an interface with the set of all possible calls to
operations on that interface.

The set of behaviours
�

of the composite component
contains all vectors + for which there exist some vector 2 '
in

� ' and some vector 2) in
�) such that:

� 2 ' � 2) refers to behaviour at the non-connected in-
terfaces and is either 2 ' or 2) depending on which
component the interface in question belongs to.

� 2 ' � 2) indicates behaviour at the connected inter-
face IDetectSignal of the two components. For this
interface, 2 ' ������������	��
��������� � � " � 2) ������������	��
���������

.

In the above expression, � 	 refers to the one element se-
quence (notice that there are no curly brackets) of calls to
operations made to IDetectSignal. In contrast, � 	 in the ex-
pression

�1� � � � � #"! # � !	# $�$�� �&% � ��� � " � � ��� � � � � #"! # � !	# $�$(� �&% �
we examined earlier in this example refers to the set of calls
to operations associated with the IDetectSignal interface.

In further explanation, a frequency search is requested by
CMenu via a call to operation � 	 that enables CTuner to per-
form the frequency search, e.g. by detecting a signal in the
available bandwidth. Therefore, the behaviour described by
2 ' , restricted to interface IDetectSignal, consists of a call
to operation � 	 , in our simplified example, and is precisely
the behaviour also described by 2) at interface IDetectSig-
nal.

4. Normality of the Composite System

Based on Definition 3.2 and Definition 3.4 we have for-
mally defined a notion of composition of components. Es-
sentially, the sort of the resulting system is defined to be the
composite of the components’ sorts. The dynamics of the
system reflect the fact that a behaviour involves behaviours
from of each component and that these must agree on shared
/ connected interfaces.

In Section 2 we considered constraints on the set of be-
haviours of a single component that ensure it is well be-
haved; that it is normal. In this section, we concentrate on
the effects of composition on normal components and in
particular, preservation of the normality property.

First, we define a notion of compatibility among compo-
nents.

Definition 4.1 Suppose that � " ��� � " �� " � and� $ ���#� $ �� $ � are components. Then, they are com-
patible if and only if

1. � 	 and � � are consistent

2. If + 	 . � 	 and + � . � � such that + 	 � + � then

� If 2 	 .%� 	 such that 2 	 4 + 	 then
� 2 � .%� �

such that 2 � 4 + � and 2 	 ��2 �� If 2 � .%� � such that 2 � 4 + � then
� 2 	 .%� 	

such that 2 	 4 + 	 and 2 	 ��2 �� If 2 . � 	 � � � and 2 4 2 	 � 2 � then
� 2 	 . � 	

and 2 � . � � such that 2 � 4 + � , each
 , and
2 � 2 	 � 2 �

3. If 6 � 6 � � . � � , each
 , such that 6 	 ��6 � 6 � 	 ��6 � �
and 6 	 � 6 � � 6 � 	 � 6 � � then for each
 , 6 � � 6 � .� � .

Based on the above definition, it can be shown that the
composite � 	 � � � is locally left closed whenever � 	 � � are
locally left closed and compatible components.

Lemma 4.1 If � 	 and � � are compatible components which
are locally left closed, then so is � 	�� � � .
Proof. Let + . � 	 � � � and let

$. � � � � � � � and let- � ' � + �%$#� , then + � + 	 � + � for + 	 . � 	 and + � . � � .
Without loss of generality let

$. � � � � � � so that + �
$#� �
+ 	 �%$#� . By local left closure of � 	 , there exists 2 	 . � 	 such
that 2 	 4 + 	 and + �%$#� � '

. By Definition 4.1, there exists
2 � .,� � such that 2 � 4 + � and 2 	 � 2 � . So 2 	 �,2 � .� 	 � � � and 2 	 � 2 � 4 + and

� 2 	 �,2 � � �
$#� ��'
which

means precisely that � 	 � � � is locally left closed.

In order to prove that the normality property holds for the
composite, we must further show that � 	 � � � is discrete. To
do that, we need the following lemma.

Lemma 4.2 Suppose that � 	 and � � are compatible normal
components and 2 + 6 . � ��� � �����

such that 2 + 4 6 ,
then

� 2 �0+ . � ��� � � � �
� 2 �0+ . � � � � � � �

Proof. See Lemma 4.3 and Lemma 4.4 in [27].

Finally, the main result of this section.

Theorem 4.1 If � 	 and � � are compatible normal compo-
nents, then � 	 � � � is normal.

Proof. By Lemma 4.1 (local left closure) and Lemma 4.2
(discreteness).

Therefore, we have argued that under certain conditions,
mainly captured by the notion of compatible components in
Definition 4.1, two normal components can be put together
and the resulting system shall also be normal.

5. Conclusions and Future Work

In this paper, we presented the foundations of an abstract
model for the composition of components, at a semantic
modelling level. We described an arguably liberal model
for the behaviour of a single component and established
conditions on the model (i.e. normality) which ensure that
the associated behavioural presentation is discrete and the
potential behaviour of the component in hand can be cap-
tured. Based on the formal definition of composition, we
examined the effect of combining components and derived
conditions which may be used to guide composition as they
guarantee that the composite of two normal components is
also normal. Therefore, we argue that the proposed abstract
component model allows for formal reasoning about prop-
erties of the composite based on properties of the individual
components.

The mathematical landscape of this work consists of a
wide variety of concurrency theories, from Mazurkiewicz
traces [15] to event structures [20] to process algebras
[5, 10, 17, 18] and is thus located within established the-
oretical computer science. However, up to this point, our
work has been mostly theoretical. If this theory is to be of
any practical use then it must be presented in a way accessi-
ble to the non-theoretician. For this reason, we are looking
into pragmatic extensions of the UML [7, 16] as a possible
medium for transferring our theoretical results to practice
by embedding them in this industrially well-known stan-
dard.

Component behaviour could be described by employing
(a subset of) the UML [21] diagrams, namely the collab-
oration, sequence and statechart diagrams. These are pri-
marily used for capturing dynamic aspects of objects but
can also be used for component behaviour, as was (par-
tially) demonstrated in our examples. However, there is
no standard associated formalism and the UML diagrams
provide a semi-formal description of behaviour. The UML
includes OCL [21] which introduces logical expressions for
describing constraints that complement the UML diagrams
in terms of pre- and postconditions of interface operations.
Yet, OCL seems to lack the appropriate expressiveness to
describe provides / requires dependencies, also called com-
ponent contracts [28], as it is applied to the class level rather
than a higher software unit level such as components or
frameworks. This is tackled in [12] and [13] by using a
Catalysis [9] like notation to describe component interac-
tions and frameworks, respectively. Work is in progress in
this area and especially in increasing the expressive power
of OCL (see [4]), in order to aid designers in writing spec-
ifications for certain aspects of a system under dynamic in-
teraction conditions. Possible correspondence between re-
sults of this work and the temporal relations derived from
behavioural presentations in our model needs to be further

investigated.
Another interesting approach to formalising software

components is that of [11] which describes a distributed
logical framework for formalising components and their
composition. The initial set out is quite different to our
model since [11] introduces a module distributed temporal
logic,

3 �)�� , for inter- and intra-module communication
which can be also adopted for components in a straight-
forward manner [12]. However, similarly to our approach,
[11] also considers an event structure -like object, called
labelled prime event structures, used to provide an opera-
tional semantics to

3 �)�� . In this way, [11] can use event
structures as the basis for deriving causality and conflict re-
lations to address non-determinacy and concurrency among
occurrences of events. As for composition, it is addressed
through an elegant categorical construction.

We illustrated our approach by means of a simple ex-
ample, but it is also important that we expose our theory to
real-life case studies. As well as revealing possible deficien-
cies of the theory, a reasonable case study would inevitably
place focus on more practical aspects of component-based
design. For instance, we are interested in relaxing Defini-
tion 4.1 of compatible components which seems to be quite
strong as it stands. Currently, we are also investigating ap-
proaches to describing component interactions such as the
use of session types [29] or interaction patterns [3] which
tend to sacrifice expressiveness in order to achieve compu-
tational tractability. We envisage embedding our mathemat-
ical theory in similar, more practical approaches.

It would also be interesting to determine ways in which
the tuples of sequences, used to describe component be-
haviour at the interfaces, could be enhanced to provide addi-
tional behavioural information. The proposed mathematical
framework allows for precise modelling of the order of calls
to operations at interfaces of components. One issue under
further investigation is to consider not only the order of calls
to operations but also the order in which their corresponding
responses are received.

One possible extension of our work is to consider com-
position of components in terms of automata. In particu-
lar, the local left closure property has as a consequence that
when two behaviour vectors 2 + are such that 2 � + and
2 � 6 � + for no behaviour vector 6 then + � 2 3 # , where#

is a vector each of whose coordinates is either a single ac-
tion or the empty sequence. We may accordingly associate
each component with an automaton having vectors such as

#
as labels on transitions. This also paves the way for employ-
ing UML statecharts to describe the behaviour of software
components. The automata we have in mind can be seen
as elaborations of asynchronous transition systems [1, 23]
and specialisations of hybrid transition systems [25]. Fur-
ther, it has been shown that every component generates such
automata and every automaton generates a component. As

a result, the component model may admit a complete au-
tomata theory. An automata-theoretic view of composition
is currently under investigation.

Acknowledgements

We would like to thank the anonymous refereees for the
useful comments.

References

[1] M. A. Bednarczyk. Categories of Asynchronous Systems.
PhD thesis, University of Sussex, 1988.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Object Technolgy Series, Ad-
dison Wesley, 1999.

[3] A. Braccialli, A. Brogi, and F. Turini. Coordinating Interac-
tion Patterns. In Proceedings of SAC’01. ACM Press, 2001.

[4] J. Bradfield, J. Küster Filipe, and P. Stevens. Enriching OCL
Using Observational mu-Calculus. In R. D. Kutsche and
H. Weber, editors, Proceedings of Fundamental Approaches
to Software Engineering (FASE 2002), volume 2306 of Lec-
ture Notes in Computer Science, pages 203–217. Springer
Verlag, 2002.

[5] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A The-
ory of Communicating Sequential Processes. Journal of the
ACM, 31(3):560–599, 1984.

[6] M. Broy. Algebraic Specification of Reactive Systems. The-
oretical Computer Science, 239(2000):3–40, 2000.

[7] J. Cheesman and J. Daniels. UML Components. Component
Software Series, Addison Wesley, 2001.

[8] B. A. Davey and H. A. Priestley. Introduction to Lattices
and Order. Cambridge Mathematical Textbooks, Cambridge
University Press, 1990.

[9] D. F. D’Souza and A. C. Wills. Objects, Components and
Frameworks with UML: The Catalysis Approach. Object
Technology Series. Addison wesley, 1999.

[10] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[11] J. Küster Filipe. Fundamentals of a Module Logic for Dis-
tributed Object Systems. Journal of Functioning and Logic
Programming, 2000(3), March 2000.

[12] J. Küster Filipe. A Logic-Based Formalisation for Compo-
nent Specification. Journal of Object Technology, special
issue: TOOLS USA 2002 Proceedings, 1(3):231–248, 2002.

[13] J. Küster Filipe, K. K. Lau, M. Ornaghi, K. Taguchi,
H. Yatsu, and A. C. Wills. Formal Specification of Catalysis
Frameworks. In Proceedings of the 7th Asia-Pacific Soft-
ware Engineering Conference, pages 180–187. IEEE Com-
puter Society Press, 2000.

[14] K. K. Lau. Component Certification and System Prediction:
Is there a Role for Formality? In Proceedings of ICSE’01,
4th International Workshop on Component-Based Software
Engineering, Toronto, Canada, 2001.

[15] A. Mazurkiewicz. Basic Notions of Trace Theory. In
de Bakker, de Roever, and Rozenberg, editors, Linear Time,
Branching Time and Partial Orders in Logics and Models for
Concurrency, volume 354, pages 285–363. Springer Verlag,
1988.

[16] S. Mellor and M. Balcer. Executable UML. Object Technol-
ogy Series. Addison Wesley, 2002.

[17] A. J. R. Milner. Calculus for Communicating Systems. vol-
ume 92 of Lecture Notes in Computer Science. Springer Ver-
lag, 1980.

[18] A. J. R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[19] S. Moschoyiannis and M. W. Shields. A Formal Approach to
Software Components. Submitted paper to Formal Aspects
of Computing, 2002.

[20] M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event
Structures and Domains, part 1. Theoretical Computer Sci-
ence, 13:85–108, 1981.

[21] OMG. Unified Modelling Language Specification, ver-
sion 1.4. OMG document formal/01-09-67, available from
http://www.omg.org/technology/documents/formal/uml.htm,
February 2001.

[22] M. W. Shields. Adequate Path Expressions. In Proceed-
ings of Semantics for Concurrent Computation, volume 70
of Lecture Notes in Computer Science, pages 249–265.
Springer Verlag, 1979.

[23] M. W. Shields. Concurrent Machines. Computer Journal,
28:449–465, 1985.

[24] M. W. Shields. Behavioural Presentations. In de Bakker,
de Roever, and Rozenberg, editors, Linear Time, Branching
Time and Partial Orders in Logics and Models for Concur-
rency, volume 354, pages 671–689. Springer Verlag, 1988.

[25] M. W. Shields. Semantics of Parallelism. Springer-Verlag
London, 1997.

[26] M. W. Shields and D. Pitt. Component-Based Systems I:
Theory of a Single Component. Technical Report SCOMP-
TC-01-01, Department of Computing, University of Surrey,
2001.

[27] M. W. Shields and D. Pitt. Component-Based Systems II:
Composition of Components. Technical Report SCOMP-
TC-03-01, Department of Computing, University of Surrey,
2001.

[28] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison Wesley, 1997.

[29] A. Valecillo, T. Vasconcelos, and A. Ravara. Typing the
Behaviour of Objects and Components using Session Types.
Fundamenta Informaticae, XX(2002):1–15, 2002.

[30] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala Component Model for Consumer Elec-
tronics. IEEE Transactions on Computers, 33(3):78–85,
2000.

[31] G. Winskel and M. Nielsen. Models for Concurrency. In
S. Abramsky, D. Gabbay, and T. Maibaum, editors, Hand-
book of Logic in Computer Science, vol. 4, Semantic Mod-
elling, pages 1–148. Oxford Science Publications, 1995.

