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Abstract—Massive MIMO brings both motivations and 

challenges to develop the 5th generation Mobile wireless 

technology. The promising number of users and the high 

bitrate offered per unit area are challenged by uplink 

pilot contamination due to pilot reuse and  a limited 

number of orthogonal pilot sequences. 

This paper proposes a solution to mitigate uplink pilot 

contamination in an indoor scenario where multi-cell 

share the same pool of pilot sequences, that are 

supposed to be less than the number of users. This can 

be done by reducing uplink pilots using Channel State 

Information (CSI) prediction. 

The proposed method is based on machine learning 

approach, where a quantized version of Channel State 

Information (QCSI) is learned during estimation session 

and stored at the Base Station (BS) to be exploited for 

future CSI prediction. The learned QCSI are 

represented by a weighted directed graph, which is 

responsible to monitor and predict the CSI of User 

Terminals (UTs) in the local cell.  

We introduce an online learning algorithm to create and 

update this graph which we call CSI map. Simulation 

results show an increase in the downlink sum-rate and a 

significant feedback reduction. 

Keywords: Massive MIMO; Machine Learning; Pilot 

Contamination; Channel State Information Map. 

 

I. INTRODUCTION 

The incredible increase in the number of users that 

need to be connected with their mobile equipment’s to 

the Internet and the aggressive data transfer between 

UTs, demand the development of new generation of 

wireless networks with higher capacity. Massive 

MIMO offers a significant gain in achievable sum-rate 

using spatial multiplexing [1]. In multiple cell 

scenario, this achievable rate degrades due to the 

contamination effect of the uplink pilots from UTs of 

neighbor cells [2]. Researches on Massive MIMO had 

shown that increasing the number of antennas at the 

base station (BS) will reduce the fast fading effect and 

the noise effect while the pilot contamination effect 

persists [3], [4]. 

According to [1], It is recognized that the acquisition 

of channel knowledge is facilitated by time-division 

duplex (TDD) operation, where UTs need to transmit 

their pilots on the reverse link to allow channel 

estimation at the base station (BS). Under high 

mobility conditions, there is no enough time before the 

channel changes to transmit reverse pilots and then 

transmit the forward data streams. The short coherence 

interval leads to a limited number of orthogonal pilot 

sequences to be used within the UTs. Thus, pilot reuse 

may take place, which leads to uplink pilot 

contamination. 

In an indoor scenario, UTs and scattering objects are 

less mobile, which leads to a smoother change in 

channel state information compared to an outdoor 

scenario. This fact can increase channel coherence 

time for most UTs. 

Quantized channel state information was studied by 

[5], the authors propose a vector-quantization 

approach to channel state information encoding, which 

requires modest feedback bit rate. Another patent was 

published by the same authors on quantized channel 

information prediction in multiple antenna systems 

[6]. In this paper, we use a quantized CSI (QCSI) 

based on vector quantization of geometric attenuation 

and shadow fading parameters. 

CSI prediction can be modeled based (example [7]) or 

non-model based (example [8] using stochastic 

channel model). In [9] adaptive codebook geodesic 

based channel prediction is proposed, where 

simulation results show that the proposed scheme can 

effectively mitigate the feedback delay and clustering 

even with only a 4-bit codebook. CSI prediction at the 

base station was recently studied by [10], where the 

BS selects the set of user terminals that will exhibit 

pilot training. However, our proposed technique 

allows the UT to decide whether to send its pilot or 
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not. We follow the technique used in [8] to predict the 

CSI. 

This paper proposes a technique to reduce uplink pilot 

feedback by predicting CSI at the BS instead of 

estimating CSI for each uplink session. To perform 

this work we introduce two types of TDD formats, a 

predictive format that does not include pilots and an 

initiative format which is similar to conventional 

Massive MIMO TDD format. UTs decide which 

format to use based on the previous received SNR 

level. On high SNR, a predictive TDD format will be 

uploaded whilst initiative format will be uploaded at a 

low level for previously received SNR. At the base 

station, a quantized version of CSI will be learned and 

stored in connected nodes as a map that will be used 

later for channel prediction and precoding. The 

initiative TDD formats will be exploited as a learning 

session to update the CSI Map while predictive TDD 

formats demand the prediction of CSI of a specific UT. 

Such a technique will have a major impact on 

mitigating uplink pilot contamination and increasing 

system sum-rate.  

The intuition behind the CSI map was inspired  based 

on (hypothesis1 [11]), which was used for localization 

and proved by real measurements. We suppose that in 

each cell there exist a set of UTs that hold their 

positions for several coherence intervals. This makes 

sense in the indoor scenario due to limited space. Up 

to our knowledge, we are the first to introduce CSI 

map in the indoor Massive MIMO scheme. 

The following points can summarize the work 

achieved by this paper: 

 A proposed TTD reciprocity format that 

enables a reverse link without pilots. 

 A learning scheme to create and update the CSI 

map based on estimated and quantized CSI. 

 Finally, simulation results that show the 

performance of implementing CSI map. 

The rest of this paper is organized as follows: 

Next, we will present the system model, then a 

proposed reciprocity scheme will be presented. CSI 

map will be presented in section IV and then the used 

CSI quantization technique will be presented in 

section V. The proposed CSI map learning algorithm 

will be presented in section VI where numerical results 

will be discussed in section VII. At the end, we 

conclude our work in section VIII. 

 

Notations: In this paper, (.)T, (.)H denote transpose and 

Hermitian transpose, respectively. (.)* denote the 

conjugate, det(A) denote the determinant of A, ⊙ 

denote element-wise multiplication and ‖𝐴‖ denote 

the Frobenius norm. 

II. SYSTEM MODEL 

We consider a system of L cells, each cell served by 

one BS holding M antennas and K UTs each equipped 

with a single antenna. Assuming a TDD acquisition of 

channel knowledge, where CSI is estimated or 

predicted at the BS. During normal channel estimation 

phase, all users from the L cells uploads their assigned 

pilot sequences. Considering a worst-case scenario, 

where synchronized transmission is assumed in all 

cells [3], the received signal at the jth BS will be 

presented as following: 

𝐘𝑗
𝒖𝒑 = √𝑃𝑢∑𝑮𝑗𝑙𝑿𝑙

𝒖𝒑

𝐿

𝑙=1

+𝐖𝑗
𝑢𝑝                (1) 

Where 𝑮𝑗𝑙 is the M×K channel matrix between the jth 

BS containing M antennas and the K UTs in the lth cell, 

i.e. 𝑔𝑚𝑘 ≜ [𝑮]𝑚,𝑘 is the channel coefficient between 

the mth antenna of the BS and the kth user. 𝑿𝑙
𝒖𝒑 is the 

K×1 symbols vector simultaneously transmitted by the 

K users in the lth cell , 𝑃𝑢 is the normalized received 

SNR of each user by the BS and  𝐖𝑗
𝑢𝑝 is the M×1 

matrix which represents additive AWGN i.i.d noise 

vector  with zero-mean, unit-variance and CN 

(0,1).The coefficient 𝑔𝑚𝑘 can be written as: 

𝑔𝑚𝑘 = ℎ𝑚𝑘√𝛽𝑘                m=1,2,…,M (2) 

Where ℎ𝑚𝑘 is the fast fading coefficient from the kth 

UT to the mth antenna. √𝛽𝑘 models the geometric 

attenuation and shadow fading which is assumed to be 

independent over m and to be constant over many 

coherent time intervals and known prior. From (2) we 

obtain: 

𝑮 = 𝑯𝑫1/2  (3) 

Where 𝑯 is the M×K matrix of fast fading coefficients 

between the K users and the M antennas of the BS, i.e. 

ℎ𝑚𝑘 ≜ [𝑯]𝑚,𝑘 and D is the K×K diagonal matrix, 

where: [𝑫]𝑘,𝑘 = 𝛽𝑘  presents the large-scale fading 

between BS and user k. 

Therefore, (1) can be written as: 

𝐘𝑗
𝑢𝑝 = √𝑃𝑢∑𝑯𝑗𝑙𝐃𝑗𝑙

1/2
𝑿𝑗
𝑢𝑝

𝐿

𝑙=1

+𝐖𝑗
𝑢𝑝     

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
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𝐘𝑗
𝑢𝑝 = √𝑃𝑢𝑯𝑗𝑗𝐃𝑗𝑗

1/2
𝑿𝑙⏟        

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙

+ √𝑃𝑢 ∑ 𝑯𝑗𝑙𝐃𝑗𝑙
1/2
𝑿𝑗
𝑢𝑝

𝐿

𝑙=1,𝑙≠𝑗⏟              
𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙

+ 𝐖𝑗
𝑢𝑝 ⏟  

𝑛𝑜𝑖𝑠𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

        (4)           

Considering the uplink pilot session of length 𝜏 × 1, 

then the received signal at the jth BS in the lth cell will 

be presented as follows: 

𝐘𝑗
𝒑 = √𝜏𝑃𝑢∑𝑮𝑗𝑙[𝑿𝑙

𝒑⊙𝑺𝒍]

𝐿

𝑙=1

+𝐖𝑗
𝑢𝑝                (5) 

Where  𝑺 is a 𝐾 × 1 binary matrix with elements 𝑠𝑘 ∈
{0,1}, representing by 𝑠𝑘 = 0;  in this case UT that 

uploads a predictive TDD format (without pilots) and 

by 𝑠𝑘 = 1, in this case, UT uploads an initiative TDD 

format (using pilots). 𝑿𝑙
𝒑 is the 𝐾 × 1  matrix with 

elements 𝑥𝑙𝑘
𝑝, each represents a pilot sequence 

uploaded from the kth  UT of the lth cell. 

Let  𝐾′ ≤ 𝐾, be the set of UTs that uploads their pilots 

in each cell and 𝛼 =
𝐾′

𝐾
 , represents the probability of 

a UT in cell l to send an initiative TDD format. 

Considering the same pilot sequence is reused once in 

each cell, 𝐿′ = 𝑟(𝐿 × 𝛼) will represent the number of 

cells that upload the same pilot sequence, where 𝑟(. ) 
is a function that rounds to the nearest integer. 

 (6) Gives the Least Squares Estimation of the channel 

matrix at the jth BS: 

�̂�𝑗 = arg min𝑮𝑗𝑙 ‖
1

√𝑃𝑢
𝐘𝑗
𝑝 − 𝑮𝑗𝑙𝑿𝑗

𝑝𝑯
‖

2

                   (6) 

The solution of (6) can be expressed as (7): 

�̂�𝑗 = √𝜏𝑃𝑢𝑮𝑗𝑗 +√𝜏𝑃𝑢 ∑ 𝑮𝑗𝑙

𝑳′

𝒍=𝟏,𝒍≠𝒋

+ �̂�𝑗
𝑢𝑝
    (7) 

Where �̂�𝑗
𝑢𝑝

 AWGN still has i.i.d distribution with 

zero-mean, unit-variance and CN (0, 1). 

At the Forward link, the jth BS transmits a precoded 

matrix to all K UTs based on the estimated version of 

(7). Considering the use of eigen-beamforming linear 

precoder, the received signal at the K UT antennas can 

be represented as (8): 

𝐘𝑗
𝑑 = √𝑃𝑑∑𝑮𝑗𝑙

𝑇�̂�𝑗
∗
𝑿𝑗
𝒅

𝐿

𝑙=1

+𝐖𝑗
𝑑                  (8) 

𝑿𝑗
𝒅 is the K×1 symbols vector received by the K users 

in the lth cell , 𝑃𝑑 is the normalized received SNR of at 

each UT and  𝐖𝑗
𝑑 is the K×1 matrix represents 

additive AWGN i.i.d noise vector  with zero-mean, 

unit-variance and CN (0,1). 

From (7) and (8) we can obtain: 

𝐘𝑗
𝑑 = √𝑃𝑑∑𝑮𝑗𝑙

𝑇 [√𝜏𝑃𝑢∑𝑮𝑗𝑙

𝑳′

𝒍=𝟏

+ �̂�𝑗
𝑢𝑝
  ]

∗

𝑿𝑗
𝒅

𝐿

𝑙=1

+𝐖𝑗
𝑑       (9) 

According to [12] as 𝑀 ≫ 𝐾 the following relation 

holds 

(
𝑮𝑗𝑙
𝐻𝑮𝑗𝑙

𝑀
)
𝑀≫𝐾

= 𝑫𝑗
1/2
(
𝐇𝑗𝑙
𝐻𝐇𝑗𝑙

𝑀
)
𝑀≫𝐾

𝑫𝑗
1/2
 

≈ 𝑫𝑗
1/2
           (10) 

And     
1

𝑀
𝑯𝑗𝑙
𝑇𝑯𝑗𝑙

∗ = 𝑰𝐾𝛿𝑗𝑙      

Where 𝑰𝐾  is an Identity matrix with dimension 𝐾 × 𝐾 

and 𝛿𝑗𝑙 corresponds to the covariance factor of 𝐇𝑗𝑙 . 

From (9) and (10) we can write the received signal at 

the kth UT in the jth cell as: 

1

𝑀√𝑃𝑢𝑃𝑑
y𝑗𝑘

𝑑 = 𝛽𝑗𝑗𝑘𝑥𝑗𝑘
𝒅 + ∑ 𝛽𝑗𝑙𝑘𝑥𝑗𝑘

𝒅

𝑳′

𝑙=1,𝑙≠𝑗

 

Where 𝛽𝑗𝑙𝑘  corresponds to the large-scale fading 

between the kth UT in the lth cell and the jth BS, 𝑥𝑗𝑘  is 

the kth element of symbol vector 𝑿𝑗
𝒅. The signal to 

interference noise ratio of each UT can be written as: 

𝑆𝐼𝑁𝑅 =
𝛽𝑗𝑗𝑘
2

∑ 𝛽𝑗𝑙𝑘
2𝑳′

𝑙=1,𝑙≠𝑗

            (11) 

 

III. PROPOSED RECIPROCITY SCHEME 

We propose two types of TDD protocol format (see 

figure 1), initiative and predictive formats. 
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Figure 1 TDD protocol format 

At each transmission session (reverse link + forward 

link), UTs are categorized into two groups that defines 

which TDD protocol format should be used.  

During reverse link 

 UTs that have no previous known CSI at the 

BS or with low SNR regime during the 

previous downlink need to upload an 

initiative format, which is a conventional 

format to allow channel estimation at the BS. 

 UTs that have the previous high SNR during 

last transmission session do not need to send 

their pilots, supposing that BS can predict 

their next CSI. This group of UTs uploads 

their data using predictive TDD protocol 

format.  

During BS processing 

 BS have to estimate CSI for UTs sending 

their pilots (uploading initiative format) and 

predict (using CSI Map) the CSI of other UTs 

(uploading predictive format). 

 The uplink data can be estimated using a 

hybrid matrix of predicted QCSI and 

estimated CSI. 

During Forward Link 

 At the BS, precoding will take place using the 

hybrid channel matrix of estimated CSI and 

predicted QCSI. 

 Each Downlink field is tagged with a test 

symbol (known at both BS and UTs) to allow 

UTs to easy compute their SNR (referring to 

a specific threshold) and decide whether to 

use predictive or initiative format at the next 

transmission session. 

The BS can use the test symbol, as a control flag to 

oblige UTs to send their pilots. This can be done by 

reducing the associated power of the test symbol. 

The estimated CSI from users sending initiative format 

will be quantized and used as a learning data to update 

the CSI map. Figure 2 shows the proposed system 

diagram that represents different operation between 

BS and UTs during the transmission session. 

 

Figure 2 Block diagram shows different UT and BS 

reciprocity operations 

Referring to figure 2, TDD protocol switch at the BS 

is used to switch between predictive TDD protocol 

formats and initiative formats based on the header 

content, where channel prediction and channel 

estimation will take place respectively. At the UT side, 

SNR based switch will decide which format to upload 

based on previously measured SNR of the (Test 

Symbol). At the BS, CSI responding to initiative TDD 

formats will be estimated and then will be sent in 

parallel to precoding and map update. A quantized 

version of the estimated CSI (QCSI) will be used to 

update the CSI map after translations using a 

codebook.  

IV. CHANNEL STATE INFORMATION MAP 

We use graph theory and machine-learning approach 

to define a network of connected nodes. Each node 𝑁𝑖 
stores a reference of a unique QCSI, estimated from 

previous transmission sessions. Nodes are connected 

with weighted directed connections called edges (i.e. 

𝐸𝑖,𝑥 = 𝜔 refers to the edge directed from 𝑁𝑖 to 𝑁𝑥  with 

assigned weight 0 ≤ 𝜔 ≤ 1 that represents the 

frequency of this transition), see figure 3.  

 

Figure 3. CSI node map 

For example, if any UT uploads an initiative TDD 

format for two consecutive sessions, CSI map will add 
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a node for each QCSI (if not exist) and update or create 

the edge corresponding to the transition from 𝑁𝑖 to 𝑁𝑥 , 
where 𝑁𝑖 and 𝑁𝑥 correspond to the first QCSI and Next 

QCSI respectively. The weight of  𝐸𝑖,𝑥 will increase as 

much as there is a transition from 𝑁𝑖 to 𝑁𝑥 . In the case 

of no transition for several TDD sessions, an edge will 

be created from the current node to itself and will be 

updated as much as there is no transition. 

The CSI map had to monitor the CSI of each UT in the 

cell and it is updated on each CSI estimation (see 

figure 4). 

 

Figure 4. Conception of CSI map representing an indoor scenario 

In order to control the huge amount of nodes that had 

been created, a garbage collection algorithm was 

developed. This algorithm works periodically to delete 

nodes that have weakly connected edges, in other 

words, edge weights below a specific threshold TH 

will be disconnected then free nodes will be deleted.   

V. CSI QUANTIZATION 

The quantization of CSI in this paper is done at the BS 

and stored at the BS for later uses. QCSI parameters 

are stored in a two-part codebook 𝑍 and 𝑅 , where the 

first one stores a finite set of shadow fading parameters 

and the second one stores a finite set of distances 

between BS and UT. 

We model the channel between the jth BS and the kth 

UT of the lth cell as 𝑔𝑗𝑙𝑘 = √𝛽𝑗𝑙𝑘  ℎ𝑗𝑙𝑚𝑘 , 

i.e. ℎ𝑗𝑙𝑚𝑘 ≜ [𝑯𝑗𝑙]𝑚,𝑘. 

From (10), as M>> K we can ignore the effect of fast 

fading and simply write. 

𝑔𝑗𝑙𝑘 = √𝛽𝑗𝑙𝑘   

The large-scale fading decomposes as  𝛽𝑗𝑙𝑘 =
𝑧𝑗𝑙𝑘

𝑟
𝑗𝑙𝑘
𝛾  , 

where  𝑧𝑗𝑙𝑘  represents the shadow fading with 

lognormal distribution with standard 

deviation 𝜎𝑆ℎ𝑎𝑑𝑜𝑤 and  𝛾 is the path loss exponent. 

Followed a method used in [13] and [5], we can divide 

the space of all possible channel realization of Z and 

R into 𝐼, 𝑁 vector length respectively. 

Where �̂�𝑖 = {𝑍: |𝑧𝑖
2 − 𝑍| < |𝑧𝑗

2 − 𝑍| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑖 } 

and 𝑧𝑖  scalar representing region �̂�𝑖, and 

�̂�𝑛 = {𝑅: |𝑟𝑛
2 − 𝑅| < |𝑟𝑗

2 − 𝑅| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑛 } 

where 𝑟𝑛  scalar representing region �̂�𝑛. 

To design Z and R we use the classical non-uniform 

quantizer algorithm used in [5]. 

The parameters of Z and R can be acquired from 

estimated CSI by minimizing the root mean square 

error as follows: 

arg𝑚𝑖𝑛𝑧𝑖,𝑟𝑛 [
1

𝐼𝑁
∑ √�̂�𝑗𝑙𝑘

2 −
𝑧𝑖

𝑟𝑛
𝛾

𝐼,𝑁

𝑛=1,𝑖=1

] 

Where 𝐼, 𝑁 are the length of the finite codebooks Z and 

R respectively, and 𝑧𝑖 , 𝑟𝑛 are the ith and the nth 

elements of Z and R respectively, 𝑔𝑗𝑙𝑘  is the estimated 

version of CSI related to user k. 

VI. CSI MAP LEARNING ALGORITHM 

CSI learning algorithm corresponds to the systematic 

process of updating the directed edge weights and 

creating new nodes in the CSI map. The following 

flowchart of figure 5 presents the learning algorithm.  

 

Figure 5. Flowchart of CSI map learning algorithm 

Referring to the flowchart of figure 5, steps 1 and 2 

will estimate then quantize CSI respectively. At step 3 

a codebook will be used to find the indices of the 

QCSI, after that the algorithm will search for the 

existence of the estimated QCSI. In case the estimated 

QCSI is new, a node storing the indices of this QCSI 
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will be created and an edge from the previous node to 

the current node will be created. If the estimated QCSI 

is already on the map, the weight of the edge issued 

from the previous node to the current node will be 

updated. Weight update will take place on all edges 

connected to the last node before the transition. We 

define two weight update equations as follows: 

𝑊𝑐 (𝑛𝑒𝑤) = 𝑊𝑐 +  𝚯   

 Subjected to 𝚯 +𝑊𝑐 ≤ 1. 

𝑊𝑐′ (𝑛𝑒𝑤) = 𝑊𝑐′ − (
𝑊𝑐′

∑ 𝑊𝑐′
𝐹
𝑐′=1,𝑐′≠𝑐

)𝚯  Subjected to 

𝑊𝑐′ (𝑛𝑒𝑤) ≥ 0 

 

Where c corresponds to the index of the winning edge 

that represent the transition from the current node to 

the next node, c’ corresponds to the set of edge indices 

that issued from the current node and does not 

represent the transition. F is the number of edges 

issued from the current node and  0< 𝚯 < 1 controls 

the learning speed. 

The total weight of all edges issued from any node are 

limited as follows: ∑ 𝑊𝑐′
𝐹
𝑐′=1 = 1. 

At prediction phase, the next possible CSI of UTk can 

be simply found by following the edge with maximum 

weight issued from the current node. 

 

VII. NUMERICAL RESULTS 

In order to validate the performance of CSI map 

algorithm, we develop a simulation software, which is 

able to create and update CSI map at the BS. Our 

results consider a system with six cells each including 

one BS equipped with 420 antennas. The six cells 

cover an indoor area of 300 m2, representing a floor in 

a hotel. 

Each cell serves 30 UTs and shares an interference 

area of 15% of its cell area with neighbor cells. UTs 

are initially uniform normal distributed and moves 

randomly in the area. At each TDD session the new 

CSI estimated from UTs, are used to update the CSI 

map. The results presented in this paper ignores the 

error results from false CSI prediction.  

Figure 6 shows an increase in the sum-rate with 

different prediction hit ratios compared to 

conventional Massive MIMO, which is represented by 

zero hit ratio. 

The progression of the hit ratio will increase and goes 

toward stability as TDD sessions between BS and UTs  

increases. It is obvious from figure 7 that, the hit ratio 

is not stable before 50000 TDD sessions, which is due 

to the lack of CSI of new positions in the cell and it 

goes toward stability as much as the CSI map get more 

matured after several learning epochs.  

The increase in the hit ratio is directly proportional to 

the amount of uploaded predictive TDD formats (1-α), 

which leads to less uploaded pilots or initiative TDD 

formats and thus, less uplink pilot contamination.  

 

Figure 6. Sum-rate vs. SNR with different prediction hit rate 

 

Figure 7. Hit ratio with respect to the number of TDD sessions 

 

VIII. CONCLUSION 

We propose a technique to reduce uplink pilot 

feedback by predicting CSI at the BS instead of 

estimating CSI for each uplink session. Such a 

technique will have a major impact on mitigating 

uplink pilot contamination and increasing system sum-

rate. Simulation results had proved the efficiency of 

mitigating pilot contamination using CSI Map 

approach. Where further researches on the 

implementation of CSI Map in an outdoor scenario 

will be studied.    
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