
On the stability and performance of the solution of sparse
linear systems by partitioned procedures

Abal-Kassim Cheik Ahamed* Frédéric Magoulès†

Abstract — In this paper, we present, evaluate and analyse the performance of parallel synchronous
Jacobi algorithms by different partitioned procedures including band-row splitting, band-row sparsity
pattern splitting and substructuring splitting, when solving sparse large linear systems. Numerical
experiments performed on a set of academic 3D Laplace equation and on a real gravity matrices arising
from the Chicxulub crater are exhibited, and show the impact of splitting on parallel synchronous
iterations when solving sparse large linear systems. The numerical results clearly show the interest of
substructuring methods compared to band-row splitting strategies.
Keywords — Jacobi methods; Parallel computing; Synchronous iterations; Band-row splitting;
Band-row sparsity pattern splitting; Substructuring methods.

1 Introduction
In applied sciences a system of partial differential equations (PDEs) is used as a fundamental physical
and mathematical model which is solved numerically. To obtain a numerical solution of PDE,
discretization methods (finite difference/volume/element methods) are applied, and linear systems
with very large sparse matrices are obtained after some linearization process, if necessary. In scientific
computing, solving large linear systems is often the most expensive part, both in terms of memory
space and computation time. A system of linear equations can be written in the matrix notation as

Ax = b, (1)

where A is a n × n matrix, b the right-hand side in Cn and x in Cn represents the solution vector
we are looking for. The system (1) has a unique solution if and only if the matrix A is non-singular,
which means that the determinant of the matrix A is non-zero. There are several methodologies to
solve this type of large linear system, e.g., sparse direct solvers, iterative solvers, and a combination
of those. In this paper, we focus on parallel synchronous Jacobi methods with different splitting
strategies to efficiently solve large and sparse linear systems, arising from the discretization of finite
element methods. The synchronous parallel algorithms have been for solving these systems in a
context of heterogeneous multi-core systems.

The rest of the paper is structured as follows. Section 2 introduces the motivations and backgrounds of
parallel computing in scientific computing. In Section 3, we describe Jacobi algorithm and present the
main points of its implementation in parallel for different partitioning, leading to the design of linear
algebra operations. We also give some properties and convergence results of Jacobi splitting methods.
Section 4 presents the partitioning procedures of the data. This section also details substructuring
methods. The next section (Section 5) briefly presents the kernel of the library we used for the
computation of linear algebra operations. The hardware configuration used in the experiments is also

*CUDA Research Center, Applied Mathematics and Systems Laboratory, CentraleSupélec, Université Paris-Saclay, France.
†CUDA Research Center, Applied Mathematics and Systems Laboratory, CentraleSupélec, Université Paris-Saclays, France

(correspondence, frederic.magoules@hotmail.com).

Preprint June 30, 2016

ar
X

iv
:2

11
2.

02
37

7v
1

 [
m

at
h.

N
A

]
 4

 D
ec

 2
02

1

described in Section 5. Numerical experiments and test cases are reported and discussed in Section 6.
Finally, Section 7 concludes this paper.

2 Background in Parallel Computing

2.1 Parallel architectures
Parallel computing is a set of hardware and software techniques allowing the simultaneous execution
of sequences of independent instructions on different processes and/or cores. The set of hardware and
software techniques consists of various architectures of parallel computers and various models of
parallel programming.
Parallel computing [6] [24] [17] [14] has two objectives: accelerate the execution of a program
by distributing work and executing a big problem with more material resources (memory, storage
capacity, processor, etc.). A parallel computer can be: a multi-core processor having at least two
physical computing units on the same chip or a supercomputer, which gathers the components of
several computers (processors and memories) in only one machine, or a distributed platform made up
of several independent machines, homogeneous or heterogeneous, connected with one another by a
communication network. In the jargon, the supercomputer is more often called a cluster.

2.1.1 Classifications of parallel architectures

In literature, there are several classifications of parallel architectures based on various criteria. In this
paper, we present briefly the most largely used classification in parallel computing: the taxonomy
of Flynn [16]. This classifies parallel architectures in several categories, according to whether great
volumes of data are processed in parallel (or not) or whether a large number of instructions are
being carried out at the same time (or not). In the taxonomy of Flynn, one distinguishes four
classes: SISD (Single Instruction, Single Data), SIMD (Single Instruction, Multiple Data), MISD
(Multiple Instruction, Single Data) and MIMD (Multiple Instruction, Multiple Data). The SISD
class represents most conventional computing equipment which has only one computing unit. The
sequential computer (traditional uniprocessor machine) can process only one operation at a time.
The SIMD class corresponds to computers which have a large number of computing units, e.g.
array processors or GPUs. The computer can exploit multiple data against a single instruction to
perform operations which may be naturally parallelized. At each clock cycle, all the processors of
a SIMD computer carry out the same instruction on different data simultaneously. The MISD class
corresponds to the parallel machines which perform several instructions, simultaneously, on the same
data. These architectures are uncommon and are generally used for fault tolerance. MIMD represents
the most used class in the taxonomy of Flynn. In this architecture, multiple autonomous processors
simultaneously execute different instructions on different data, e.g. distributed systems. They exploit
a single shared memory space or a distributed memory space. Computers using MIMD have a number
of processors that function asynchronously and independently.

2.1.2 Memory model

In parallel computing, we have two main models of memory management [10] [24]: shared memory
and distributed memory. These two models help define the mode of data access to the data of the
other cooperating processors in a parallel computation for a given process. In a shared memory model,
the processors are all connected to a "globally available" memory. All the processors have a direct
access to the same physical memory space via powerful links of communication (e.g. cores of a
single machine). The second memory model is generally used in parallel computers with distributed
resources, e.g. a grid or cluster. In this model, each processor has its own individual memory location.
Each processor has no direct knowledge of other processors’ memory. However, access to the data
of the distributed memories is ensured by message passing between cooperating processors through

2

a communication network. In this paper, we focus on algorithms in parallel distributed-memory
computing.

2.2 Parallel algorithms
Parallel computations are fundamental and ubiquitous in numerical analysis and large application
areas, when we deal with the problem of large-size. Distributed computing constantly gains in impor-
tance and has become an important tool in common scientific research work [7]. When computation
is done in parallel, the simplest solution consists in synchronizing the processors during iterations.
In that particular field of parallel programming, the commonly used model is the synchronous mes-
sage passing. In the synchronous case [1] [4], communications are strongly penalizing the overall
performance of the application. Indeed, they often involve large idle periods, especially when the
processors are heterogeneous. The performance of algorithms strongly depends on the management
of interprocessor communication. Parallel algorithms require that a large number of parameters,
such as the number and the typology of the processors, be taken into account. Therefore, in parallel
processing, the step of data distribution is crucial and strongly impacts the performance of algorithms.

In this paper, we pay special attention to substructuring method, which is the precursor of non-
overlapping domain decomposition methods [23] [34] [32] [36][18] [25].

3 Jacobi iterations
The Jacobi method [30] is a stationary iterative method based on splittings [31] of the matrix
A ∈ Kn×n. Let

A = M −N, (2)

be a splitting of A, such that M is a non-singular matrix. The iterative algorithm associated with the
splitting (2) is defined by{

u(0) given,
u(k+1) = M−1Nu(k) +M−1b, ∀ k ∈ N.

(3)

Let T = M−1N and c = M−1b. The matrix |T | is defined such that |T | = (|Ti,j |), for i, j ∈
{1, . . . , n}. The speed of the algorithm is determined by the quantity ρ(T), where ρ(T) denotes the
spectral radius of the matrix T . More accurately, the bounded value of the error between the exact
solution and the approximate solution at iteration k is expressed by:

∀ε > 0, ‖u(k) − u∗‖ ≤ (ρ(T) + ε)k‖u(0) − u∗‖ (4)

Theorem 3.1. The sequential and parallel synchronous algorithms (3) converge if and only if the
spectral radius ρ(T) < 1.
The Jacobi algorithm is obtained by considering M and N in algorithm (3) such as M = D is the
diagonal part of A (non-singular), N = −(L+ U) where L and U are the strictly lower and upper
triangular of A, i.e. {

u(0) given,

u(k+1) = D−1
(
b− (L+ U)u(k)

)
, ∀ k ∈ N

(5)


u

(0)
i given,

u
(k+1)
i =

1

aii

bi − n∑
j=1
j 6=i

aiju
(k)
j

 , i = {1, . . . , n}, k ∈ N.
(6)

3

Figure 1 shows the scheme of the Jacobi method (5). Considering the algorithm (6), the computations

D u(k+1) +

U

L

u(k) = b

Figure 1: Design of the Jacobi algorithm

of the components u(k)
i , i ∈ {1, . . . , n} are independent, which signifies that their update can be

performed in parallel. The Jacobi algorithm converges more slowly, but is fully parallelizable. The
jacobi iteration given in algorithm (5) can be rewritten in the following form,{

u(0) given,

u(k+1) = D−1
(
b−Au(k)

)
+ u(k), ∀ k ∈ N

(7)

as described by the authors in [13]. Algorithm 1 present vectorial version of Jacobi algorithm [13].
The parallel version consists in computing all operations locally and then exchange the local residual
between cooperating processors in order to compute the global convergence. The crucial points in
parallel iterative algorithms consists of the stoping criteria and the convergence detection steps. The
stopping criterion implemented in this work is based on simultaneous local convergence [2] [3] [4] of
all the processors. The convergence of the Jacobi method is ensured if the matrix A is diagonally
dominant: ∀ i ∈ {1, . . . , p}, |aii| ≥

∑
j=1
j 6=i

|aij |. The authors presented in [13], an original Jacobi im-

plementation that helps optimize the solution of sparse linear systems on GPU-based implementation.

Algorithm 1: Jacobi method: vectorial version
input : n: size of the matrix,

A: n× n square matrix, b: right-hand side vector,
u(0): initial guess,
ε: tolerance threshold, K: maximum number of iterations

output : u: solution vector

1 Choose an initial guess u(0) to the solution
2 k ← 0

3 Compute D−1 //- - D−1 is computed once before the iterations
4 while Loop until convergence do
5 q ← Au(k)

6 // Compute r ← b−Au(k)
7 r ← b− q
8 //- - Compute ‖r‖ ≡ ‖u(k+1) − u(k)‖/‖D−1‖
9 ‖r‖ ← ‖b−Au(k)‖

10 if ‖r‖ ≤ ε then
11 k ← k + 1
12 break;
13 end
14 u(k+1) ← u(k) +D−1r
15 k ← k + 1

16 end

4

4 Matrix partitioning
The main step in parallel processing consists in distributing the data on the cluster processors, which is
commonly called parallel distributed computing. In this section, we describe how data are distributed
among processors for different splitting strategies: band-row, band-column, and substructuring split-
ting. The distribution of data is accomplished as a preprocessing step, independently from the solver
code. The data such as matrix, right hand-size, vector solution and local to global, are written into a
file, and will be input for the solver code. The matrix is read from and written into the matrix market
file [8] [19].

In this work, we have developed and implemented a code for partitioning data in order to control
and adapt the splitting to the studied parallel algorithms. This choice has allowed us to be free and
implement parallel algorithms as we like. The substructuring splitting uses METIS software [22] for
partitioning graphs and then perform matrix partitioning into sub-structures.

To illustrate the advantages and disadvantages of these types of partitioning, we will focus on the
matrix-vector product, which is the most expensive operation in linear algebra [11] [26].

4.1 Sparse matrix formats
The treatment of large sparse matrices in parallel [21] requires a good choice of storage format that
helps the computations of involved operations. The basic idea behind sparse matrix storage is to store
only the non-zero matrix elements. The distribution of non-zero coefficients depends on the features
of the original problem. The performance of the algorithms strongly depends on the data structure of
the sparse matrices as demonstrated in [9] [37] [5] [33] [35] [27] [28].

In this work, the matrices are stored in compressed sparse row (CSR) format in order to optimize
the memory storage and to make advantage of sparse structure for memory access. Compressed
Sparse Row (CSR), described in Figure 3, is widely used because of minimal memory usage and the
simplicity of the implementation.
To illustrate this storage formart, let us consider the sparse matrix A described in Figure 2(a). In the
following example, we consider a matrix indexed from 1. Figure 2(b) draws the pattern of non-zero
values of the matrix A. The sparse matrix A ∈ Cn×n is stored in three one-dimensional arrays.

A =


-5 14 0 0 0

0 8 1 0 0

2 0 10 0 0

0 4 0 2 9
0 0 15 0 7


(a) Example matrix A, nnz first non-zero on the
row

5

4

3

2

1

1 2 3 4 5

� F

� F

� F

� F F

� F

(b) Non-zero pattern of a matrix A

Figure 2: Example of non-zero pattern of a sparse matrix A

Two arrays of size nnz, AA and JA, store respectively the non-zero values, through major row
storage (row by row) and the column indices, thus JA(k)1≤k≤nnz is the column index in A matrix
of AA(k)1≤k≤nnz . Finally, IA, an array of size n + 1 that stores the list of indices at which each
row starts. IA(i)1≤i≤n and IA(i+ 1)− 1 correspond respectively to the beginning and the end of
the ith row in arrays AA and JA, i.e., IA(n+ 1) = nnz + 1.

5

AA = −5 / 14 / 8 / 1 / 2 / 10 / 4 / 2 / 9 / 15 / 7,

JA = 1 / 2 / 2 / 3 / 1 / 3 / 2 / 4 / 5 / 3 / 5,

IA = 1 / 3 / 5 / 7 / 10 / 12

Figure 3: Compressed-Sparse Row (CSR) storage format

4.2 Band-row splitting
The partition of the equation set leads to allocating each processor a band of rows corresponding
to the block of the processed vectors. In Figure 4 where an example of band-row splitting is given,
these terms are located in a colorful area. The band-row splitting approach consists in partitioning the
matrix A of size n× n into horizontal band matrices. Each processor is in charge of the management
of a band-row matrix of size Np × n and the associated unknown vector x of size Np × 1, as drawn
in Figure 4. This method of partitioning by band-row allows to exhibit a sufficient degree of properly
balanced parallelism. This implies assigning all processors, a block of equally sized rows, containing
approximately the same number of non-zero coefficients. Unfortunately, it suffers from a major lack
of granularity for implementation on a distributed memory system.

=

F

F

F

F

F

F

F

F

F

F

n

Np

F F F F

F F F F

F F F F

F F F F F

F F F

F F F F

F F F F F

F F F F

F F

F F F F

F

F

F

F

F

F

F

F

F

F

y A x

Figure 4: Example of band-row splitting of a matrix

4.2.1 Naive splitting

The first splitting is the naive one, which consists in storing both matrices and vectors without any
other informations. The principle of the local matrix-vector product with row-band splitting consists
in multiplying the local band row matrix by the global (gathered) vector. This implies data exchange
between all processors (MPI_ALLGATHER). To perform the matrix-vector product, each processor
needs to receive and/or send missing information of the vector x from/to cooperating processors.
According to the sparsity of the matrix, i.e., the distribution of non-zero values, the processor may
receive and/or send unnecessary information which overload the communication. This operation is
very expensive for large-size matrices. The communications dominate the computations for large-size
matrices. One solution to overcome this problem is to take into account the sparsity pattern of the
local matrix, in order to send/receive only the necessary data from/to cooperating processors.

6

4.2.2 Sparsity Pattern splitting

In this technique, in addition to the naive splitting data, we store the information of dependencies from
local to cooperating processors and from cooperating to local processors, according to the sparsity
pattern of the local matrix. Each processor has both a list of receive and a list of send dependencies,
which keeps data exchange to a minimum. Figure 5 gives an example of splitting a sparse matrix into
three band rows. Table 0(b) gives the corresponding list of dependencies for sending to cooperating

S1

S2

S3

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10

F F F F

F F F F

F F F F

F F F F F

F F F

F F F F

F F F F F

F F F F

F F

F F F F 10

9

8

7

6

5

4

3

2

1

1

F

F

F

F

F

F

F

A x

Figure 5: Example of splitting of a matrix into three band rows

processors of the splitting described in Figure 5. The corresponding list of dependencies for receiving
from cooperating processors of the splitting described in Figure 5 is reported in Table 0(a).

(a) Receiving dependencies

Local proc. Recv. proc List Dependency nodes
1 ← 2 4 - 5 - 6
2 ← 1 1 - 3
2 ← 3 7 - 9 - 10
3 ← 1 2 - 3
3 ← 2 4 - 5 - 6

(b) Sending dependencies

Local proc. Send. proc List Dependency nodes
1 → 2 1 - 3
1 → 3 2 - 3
2 → 1 4 - 5 - 6
2 → 3 4 - 5 - 6
3 → 2 7 - 9 - 10

Table 1: List of receiving and sending dependencies of the splitting described in Figure 5.

The dependency nodes drawn in gray color in Table 1 correspond to zero values in vector x. In fact,
we can remove these nodes from the list of dependencies. In this study, the band-row splitting with the
“Sparsity Pattern” technique takes into account both the sparsity of the matrix and the vector. However,
this technique does not guarantee a perfect load balance. One solution for a perfect load-balance
consists in partitioning the weighted graph (graph where the weight of the vertex vi associated with
the row i is its number of non-zero values) associated with the matrix in k parts with the minimal
amount of edges cut. This solution leads to finding a good distribution of the sparse matrix on the
parallel processors. The concept consists in storing the ith row of the matrix on processor j if the
vertex vi is in the ith sub-part. Then, we have equal weight in each band of the splitting. The bands
may be composed with non-contiguous rows.

Matrix-vector product The processor that will perform the matrix-vector product for a band-row
has only the corresponding terms of the vector x, the colored area in Figure 4. In order to carry out
the sparse matrix-vector, this process needs all the terms of the vector x. The first step, therefore,
consists in collecting the terms that lacking from the colored area in Figure 4. As it is the same
for all processors, it will therefore be necessary to reconstruct the full vector x on each processor.
This operation corresponds to a classic collective exchange, where each is both a transmitter and a

7

receiver. In this work, instead of using the collective operation, MPI_Allgather, including the message
passing library (MPI) [20], we use the equivalent Send/Recv, with a left-right ordering of sending and
receiving. For the processor p, the left-right ordering consists in respectively sending and receiving
to and from k = p − 1, k = p + 1, k = p − 2, k = p + 2, k = p − 3, k = p + 3, ..., if k > 0.
This process is described in Figure 6. The number of arithmetical operations requires to perform the

Figure 6: Send/Recv ordering of the processor p

local sparse matrix-vector multiplication, which is approximately
K × n
s

, where s is the number of
processors, n the dimension of the matrix, and K the average number of non-zero coefficients per
row. On the other hand, the total number of terms of the vector x to recover before performing the

product is approximately
(s− 1).n

s
, if the local matrix has non-zero values in almost all columns.

The amount of data is not small compared with the number of arithmetic operations. Optimizing
communications consists in finding a way to drastically limit the number of external values of vector
x, located on the others processors, and is necessary to compute the product by the matrix.

Basic linear algebra operations The computation of the dot product is a relatively simple operation.
Each processor performs a local dot product, i.e., multiplies its elements and sums them, from their
two local vectors. Finally, the local sums are added using MPI_ALLREDUCE with the MPI_SUM
operation. Then each processor has the global dot product. Operations such as an addition of vectors,
the element wise product, etc. do not change compared to the sequential code.

4.3 Substructuring methods
The substructuring method is the precursor of non-overlapping domain decomposition methods [23] [34] [32] [36].
The substructuring method is based on decomposition of the original structure into several sub-
structures. The term substructuring is a way to describe the general method allowing to decompose
splitting among subdomains sharing a common interface. This method is most often used as a way to
reduce the number of unknowns in the linear system by eliminating the interior unknowns. .
Consider again the system of linear equations,

Au = f, (8)

where A is a n× n square non-singular matrix, f and u represent respectively the right-hand side
and the solution vector we are looking for. Let us consider the field K, usually R or C.

4.3.1 Principle of substructuring methods

In order to illustrate the substructuring method, we consider a problem steming from the finite element
discretization of an elliptic partial differential problem. To simplify the analysis, we consider the
Laplace equation. However, the analysis can be carried out for any coercive elliptic problem. The
model problem for the unknown u, in a bounded domain Ω with homogeneous Dirichlet boundary
conditions on the boundary ∂Ω = Γ can be expressed as: for f ∈ L2(Ω), find u ∈ H1(Ω) such that
−∇2u = f in Ω and u = 0 on Γ. An equivalent variational formulation of this problem can be

8

formulated as: for f ∈ L2(Ω), find u ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω),

∫
Ω

∇u.∇v =

∫
Ω

b.v. This

problem is well posed, i.e. it has one and only one solution. After a Galerkin discretization with finite
elements and a choice of nodal basis, the linear system (8), Au = f , is obtained, where f denotes the
right-hand side, u the unknown and A the stiffness matrix which is sparse. The following shows the
main steps for performing a matrix-vector product using a splitting into sub-structures.

4.3.2 Matrix splitting

In practice, mesh partitioning is a crucial step of the finite element method. A finite element matrix is
associated with a finite element mesh and the elements of the matrix are correlated with the interaction
of the basis functions defined in the elements of the mesh. The total matrix is calculated as an assembly
of elementary matrices. Let us consider a global domain Ω partitioned into two subdomains without
overlap Ω1 and Ω2, with a shared interface Γ as drawn in Figure 7. When a suitable numbering of the

Figure 7: Splitting into two subdomains

degrees of freedom is harnessed, the stiffness matrix of the initially considered model problem can be
written as in the following matrix:

A =

 A[11] 0 A[13]

0 A[22] A[23]

A[31] A[32] A[33]

 (9)

It is formulated considering the case where the set of nodes numbered 1 and 2 are respectively
associated to the subdomains Ω1 and Ω2. The last set of nodes numbered 3 corresponds to the
interface nodes of both subdomains. It is possible to split the original system (8) into blocks A[11] 0 A[13]

0 A[22] A[23]

A[31] A[32] A[33]

 u[1]

u[2]

u[3]

 =

 f[1]

f[2]

f[3]

 (10)

where u = (u[1], u[2], u[3])
t is the unknown vector and f = (f[1], f[2], f[3])

t is the right-hand side.
The blocks A[13] and A[23] are respectively the transpose matrix of A[31] and A[32], and the blocks
A[11] and A[22] are symmetric positive-definite if A was symmetric positive-definite. By assigning
the different subdomains at distinct processors, the local matrices can be formulated in parallel as
follows:

A1 =

(
A[11] A[13]

A[31] A
{1}
[33]

)
and A2 =

(
A[22] A[23]

A[32] A
{2}
[33]

)
. (11)

The blocks A{1}[33] and A{2}[33] denote the interaction between the nodes on the interface Γ, respectively
integrated in subdomains Ω1 and on Ω2, i.e.

A[33] = A
{1}
[33] +A

{2}
[33] (12)

9

In practice, the subdomains Ω1 and Ω2 respectively know the set of nodes (1, 3) and (2,3).

4.3.3 Matrix-vector product

As described in [11] [12] [28], iterative Krylov algorithms require performing one or more multiplica-
tion(s) of the matrix A by a descent direction vector u = (u[1], u[2], u[3])

t at each iteration. With the
splitting into two subdomains, the global matrix-vector multiplication can be written as follows: y[1]

y[2]

y[3]

 =

 A[11] 0 A[13]

0 A[22] A[23]

A[31] A[32] A[33]

 u[1]

u[2]

u[3]


=

 A[11]u[1] +A[13]u[3]

A[22]u[2] +A[23]u[3]

A[31]u[1] +A[32]u[2] +A[33]u[3]


Considering the local matrices’ described in equation (11), we can independently compute both local
matrix-vector products as follows(

y[1]

y
{1}
[3]

)
=

(
A[11]u[1] +A[13]u[3]

A[31]u[1] +A
{1}
[33]u[3]

)

(
y[2]

y
{2}
[3]

)
=

(
A[22]u[2] +A[23]u[3]

A[32]u[2] +A
{2}
[33]u[3]

)

Since A[33] = A
{1}
[33] + A

{2}
[33], and y[3] = y

{1}
[3] + y

{2}
[3] . According to this last remark, SpMV can be

calculated in two steps:
• calculate the local matrix-vector multiplication in each subdomain
• assemble, the local contributions on the interface

The first step involves only local data. The second requires the exchange of data between processes
dealing with subdomains with a common interface. In order to assemble interface values of neigh-
boring subdomains, each processor responsible for a subdomain must know the description of its
interfaces.

4.3.4 Exchange at the interfaces

When a subdomain Ωi has several neighboring subdomains, we denote Γij the interface between Ωi

and Ωj as described in (see Figure 8, Page 10). An interface is identified by its neighboring subdomains

Figure 8: Sub-structure interface description

and the equations associated with its nodes. The interface is evaluated from its subdomains using
the sparse matrix-vector product. This computation is in two steps for each neighboring subdomain
(Algorithm 2): collect the values of the local vector y = Au for all interfaces nodes, and then send

10

this list to the y vector of the interface equation. The next step consists in updating these changes to

Algorithm 2: Construct inner buffer and send to neighboring
input : ns: number of interface nodes

number_of_neighboring: number of neighboring subdomains
y: values on the whole subdomain
lists: list of the interface nodes

output : buffers: sending buffer
1variable s, i

1 for s← 1 : number_of_neighboring do
2 for i = 1 : ns do
3 buffers(i) = y(lists(i))
4 end
5 Send buffers to neighbour(s)
6 end

all neighboring subdomains at interfaces equations. First, the contributions of the array containing the
result of the matrix-vector product at the interface are received, and then values on the corresponding
interface nodes are updated. This processus is described in Algorithm 3. When an equation is shared

Algorithm 3: Receiving interface results and updating interface equations
input : ns: number of interface nodes

number_of_neighboring: number of neighboring subdomains
y: values on the whole subdomain
lists: list of the interface nodes

output : buffers: receiving buffer
1variable s, i

1 for s← 1 : number_of_neighboring do
2 Receive buffers from neighbour(s) for i = 1 : ns do
3 y(lists(i)) = y(lists(i)) + buffers(i)
4 end
5 end

by several interfaces, the node value of the local vector y = Au in question is sent to all interfaces to
which it belongs. For any number of subdomains, the mechanism of interface exchange and update is
similar to those previously presented.
The use of the substructuring approach in iterative algorithms is inherently parallel and makes it
an excellent candidate for implementation on parallel computers. Indeed, we can distribute the
subdomains over all available processors and thus compute the matrix-vector products locally,
independently and in parallel, and use the distributed memory in order to limit the memory usage. As
explained previously, after the computing of the local matrix-vector multiplications, they required
to be assembled along the interface. The key ingredient of the data is the local matrix C that arises
from the finite element discretization. With this approach, each node i only needs to store Ci, the
corresponding local matrix to the subdomain Ωi, which is only a fraction of the original matrix.
The dot product requires that each processor compute a weighted combination of the interface
contributions in order to update its own data. After that, an MPI_ALLREDUCE is required to compute
the global inner product.
The iterative substructuring method introduces only two new steps, which reside in data exchange.
They consist firstly in sharing the contributions of the local computed SpMV at the interface. Each
machine requires to know the list of nodes along the interface and the number of neighboring
subdomains. Secondly, in assembling results over the cluster in order to piece together the local
scalar product. This action, realized with MPI, is independent from the splitting. Finally, another
advantage of this algorithm is that it can easily be generalized for n subdomains. This approach
however, presents two disadvantages. The first drawback arises from a computational point of view.
The granularity, i.e., the number of operations to be performed by the processors compared to the
amount of data received or sent by the processors may be weak. Indeed, here the granularity is
proportional to the number of nodes in the subdomains compared to the number of nodes on the
interface. The number of operations depend on the first parameter and the data transfer depends on

11

the second parameter. If a lot of subdomains are used, the interface size will not be small compared to
the local sub-problem size. This means that the processors realize few computing operations (a local
matrix-vector product) and a lot of communications. The second and more important drawback is an
algorithmic one. The classical parallel preconditioners per subdomain are based on an incomplete
factorization of the local matrices. Such preconditioners are less and less efficient when the number
of subdomain increases.

5 Benchmark environments

5.1 Alinea: an hybrid CPU/GPU library
In this section, we present the main features of the library, Alinea, we have implemented and used
in this paper to perform effectivly advanced linear algebra and solving linear systems on both CPU
and GPU. Alinea stands for Advanced LINEar Algebra. Alinea is targeted as a scalable software for
proposing effective linear algebra operations on both CPU and GPU platforms. It includes numerous
algorithms for solving linear systems, with different matrix storage formats, with real and complex
arithmetics in single and double precision, on both CPU and GPU devices. Alinea is devoted to
simplifying the development of engineering and science problems on CPU and GPU by discharging
most of the difficulties encountered when using these architectures, particularly with GPU. Alinea
investigates and seeks the best way to effectively implement linear algebra operations and solver
algorithms on both CPU and GPU. It also allows to write the same code for the CPU and GPU
versions of an algorithm easily. The library is implemented in C++ language and proposes a simple C
API interface. The main features of Alinea described in Table 2 which are applied to real and complex
arithmetic numbers, simple and double precision.

type function example reference
vector-vector addition & multiplication w = u+ αv BLAS 1
vector-vector scalar product p =< u, v > BLAS 1

vector norm q = ||u|| BLAS 1
matrix-vector sparse product y = A ∗ x BLAS 2
matrix-matrix matrix product C = A ∗B BLAS 3

solver direct x = LU(A, b)
solver iterative x = CG(A, b)

Table 2: Alinea (Advanced LINEar Algebra) main levels

We are dealing with huge matrix systems and therefore parallel computing becomes an important
issue for optimization. The GPU version with CUDA or OpenCL, written in C++, has the task to
load the methods into the GPU, to control the data transfer and to manage the memory. This concept
allows to develop a much more modular code, easier to use for users or developers. Indeed, each
block is independent and the use of templates allows a very intuitive use of the library, regardless
of the architecture or the data type selected (real, complex, simple precision or double-precision).
Therefore, the available C++ methods are identical. The template is designed to <T,U>, where T is
the type of value, e.g., double or std::complex<double> and U the type of index, e.g., int or
unsigned int.

5.2 Hardware configuration
The performance of our algorithms depends on the characteristics of the test machines [15] [11] [30] [26].
The calculations depend on the precision (single or double) and the hardware support. In this paper,
the experiments have been performed on MRG/LISA cluster, which is a in-house cluster of our team.
MRG/LISA is an hybrid CPU/GPU cluster, whose characteristics are given in Table 3. The cluster
consists of 6 CPU nodes (C1, C2, . . . , C6) and 8 CPU/GPU nodes (G1, G2, . . . , G8). The version of
the MPI library used is OpenMPI (OpenRTE) 1.6.5.

12

node OS CPU GPU

C1, C2, C3

C4, C5, C6

Linux 64 bits
Ubuntu 14.04 LTS
system ’/’: 55GB
swap: 30GB
/home: 180GB

Intel(R) Xeon(R) E5410
2,33GHz, 2 × 4 = 8 cores
RAM: 8 GB
MPI (OpenRTE) 1.6.5

none

G1, G2, G3, G4

Linux 64 bits
Ubuntu 14.04 LTS
system ’/’: 55GB
swap: 30GB
/home: 180GB

Intel(R) Core(TM) i7
2,80GHz, 2 × 4 = 8 cores
RAM: 8 GB
MPI (OpenRTE) 1.6.5

Tesla K20c 4799MB
GTX 570 1279MB
CUDA v6.5
Double precision

G5, G6, G7, G8

Linux 64 bits
Ubuntu 14.04 LTS
system ’/’: 55GB
swap: 30GB
/home: 180GB

Intel(R) Xeon(R) E5-2609
2,10GHz, 4 × 6 = 24 cores
RAM: 16 GB
MPI (OpenRTE) 1.6.5

G5, G6, G7
Quadro K4000 3071MB
G8
Quadro K600 1023MB
G5, G6, G7, G8
CUDA v6.5
Double precision

The interconnected network is a switched, star shaped 10Mb/s Ethernet network.

Table 3: MRG/LISA hybrid computing clusters

6 Numerical results
In this section, we report the numerical experiments of parallel synchronous Jacobi method for
different splitting models include naive band-row splitting (BANDROW (JB)), optmized band-row
splitting (BANDROW-OP (JBO)) and substructuring methods (SUBSTRUCTURING (JSS)). The
execution times reported in this part correspond to the average time of 10 executions.

6.1 Matrices tested
To evaluate the comparison of the three splitting strategies presented in this paper, we consider the
3D Laplace equation (Poisson equation):

−∆u = f, (13)

in the domain Ω = [0; 250, 000]× [0; 250, 000]× [0; 250, 000], which is projected into [0; 1]× [0; 1]×
[0; 1]. The projection conserves the geometry, the discretization topology (h remains uniform), the
number of nodes and elements, the layers and the partitioning.

6.1.1 Set-1: 3D Laplace equation, academic test cases

The first set of data consists of academic test cases, which consider that u(x, y, z) satisfies the
following Dirichlet boundary conditions,

u(x, y, z) = 0, ∀ (x, y, z) ∈ {0; 1} × [0; 1]× [0; 1],

u(x, y, z) = 0, ∀ (x, y, z) ∈ [0; 1]× {0; 1} × [0; 1],

u(x, y, z) = 0, ∀ (x, y, z) ∈ [0; 1]× [0; 1]× {0; 1}.
(14)

The right hand side is defined such that f(x, y, z) = cos(x+ y).

CUBE-35937 CUBE-274624
instance Figure 9(a) Figure 9(b)
x−range [0 : 0.03125 : 1] [0 : 0.015625 : 1]
y−range [0 : 0.03125 : 1] [0 : 0.015625 : 1]
z−range [0 : 0.03125 : 1] [0 : 0.015625 : 1]
Number of nodes 35, 937 274, 624

Table 4: Statistics of the academic cube meshes: luf_cube-35937 and luf_cube-274624

Thist first set includes two matrices of size 35, 937 and 274, 624 obtained from the finite element
discretization of the equation (13). The features of their corresponding meshes are reported in Table 4.
Figure 9 gives an example of the finite element mesh of the CUBE-35937 (see Figure 9(a), Page 14)
and CUBE-274624 (see Figure 9(b), Page 14).

13

(a) luf_cube-35937 (b) luf_cube-274624

Figure 9: Finite element mesh examples of the cube

6.1.2 Set-2: 3D gravitational potential equation

The second set of data are obtained from the finite element discretization of the gravitational potential
equation. The gravitational potential of a density anomaly distribution is a particular case of the
equation (13) with a right hand side defined such that f(x, y, z) = 4πGδρ(x, y, z), where δρ is the
density anomaly and G the gravitational constant. The domain Ω = [0; 250, 000]× [0; 250, 000]×
[−15, 000; 0] is related to the region of Chicxulub impact crater, which is located underneath the town
of Chicxulub in Yucatán, southwest of Mexico on the Yucatán Peninsula. The domain Ω is projected
into [0; 1]× [0; 1]× [0; 0.06].
The features of this domain are presented by the authors in [29]. We also consider homogeneous
Dirichlet boundary conditions, which are defined on the vertical faces (xz−plane and yz− plane), i.e.{

u(x, y, z) = 0, ∀ (x, y, z) ∈ {0; 1} × [0; 1]× [0, 0.06],

u(x, y, z) = 0, ∀ (x, y, z) ∈ [0; 1]× {0; 1} × [0, 0.06]
(15)

The density anomaly δρ are coming from geological surveys of Chicxulub impact crater. The mesh
characteristics of the Set-2 used for the finite element discretization of the gravitational potential
equation are reported in Table 5.

(a) Original meshes
original mesh

LEVEL #0 LEVEL #1
x−range [0 : 2500 : 250, 000] [0 : 1250 : 250, 000]
y−range [0 : 2500 : 250, 000] [0 : 1250 : 250, 000]
z−range [−15, 000 : 2500 : 0] [−15, 000 : 1250 : 0]
Number of nodes 71, 407 525, 213
Number of elements 60, 000 480, 000
Size of element ≈ 4330.12702 ≈ 2165.06351
Total interface size 96, 234 391, 510

(b) Projected meshes
projected mesh

LEVEL #0 LEVEL #1
x−range [0 : 0.01 : 1] [0 : 0.005 : 1]
y−range [0 : 0.01 : 1] [0 : 0.005 : 1]
z−range [0 : 0.01 : 0.06] [0 : 0.005 : 0.06]
Number of nodes 71, 407 525, 213
Number of elements 60, 000 480, 000
Size of element ≈ 0.0173 ≈ 0.0087
Total interface size 96, 234 391, 510

Table 5: Statistics of the original and projected meshes

The matrices are identified by gravi_hexas100x100x6_0 (level #1) and gravi_hexas100x100x6_1
(level #2).

6.1.3 Sketches of matrices of test cases

Table 6 sums the tested matrices of the numerical expermiments. The table reports the main properties
of each matrix: h the size of the matrix, nnz the number of non-zero values, density the density
that corresponds to the number of non-zero values divided by the total number of matrix coefficients,
nnz/h the mean row density, max_row the maximal row density, σ(nnz/n) or nnz/h stddev the

14

standard deviation of the mean row density (nnz/h) and bandwidth the upper bandwidth, which is
equal to the lower bandwidth in the case of a symmetric matrix. The first and second pictures represent
respectively for each matrix the pattern of non-zero values and an histogram of the distribution of
non-zero values per row.

luf_cube-35937
h = 35,937 density = 0.059
nz = 759,667 bandwidth = 1,123
max row = 27 nz/h = 21.139
nz/h stddev =
9.741

Structured FEM problem, 3D Laplace equation, cube [0 : 0.03125 :
1]× [0 : 0.03125 : 1]× [0 : 0.03125 : 1].

luf_cube-274625
h = 274,625 density = 0.009
nz = 6,563,167 bandwidth = 4,291
max row = 27 nz/h = 23.899
nz/h stddev =
7.621

Structured FEM problem, 3D Laplace equation, cube [0 : 0.015625 :
1]× [0 : 0.015625 : 1]× [0 : 0.015625 : 1].

gravi_hexas100x100x6_0
h = 71,407 density = 0.032
nz = 1,656,131 bandwidth = 10,303
max row = 27 nz/h = 23.193
nz/h stddev =
6.174

Structured FEM problem, 3D gravitational potential equation, paral-
lelepiped [0 : 0.01 : 1]× [0 : 0.01 : 1]× [0 : 0.01 : 0.06].

gravi_hexas100x100x6_1
h = 525,213 density = 0.005
nz = 13,107,979 bandwidth = 463,803
max row = 27 nz/h = 24.957
nz/h stddev =
4.820

Structured FEM problem, 3D gravitational potential equation, paral-
lelepiped [0 : 0.005 : 1]× [0 : 0.005 : 1]× [0 : 0.005 : 0.06].

Table 6: Sketches of matrices obtained with the finite element discretization of the Set-1 and Set-2

6.2 Experimental results
The system is solved in parallel using a Jacobi splitting (Section 3). The benchmark consists in
an analysis of the Jacobi method declined in 3 versions: BANDROW (JB), BANDROW-OP (JBO)
and SUBSTRUCTURING (JSS), which correspond respectively to the Jacobi method with naive
band-row partitioning, optimized band-row partitioning and substructuring partitioning (Section 4).
The experiments have been performed on LISA cluster, which is described in Table 3 with the set of
matrices described in Table 6. We have used the nodes (C1, C2, C3, C4, C5, C6).
The convergence criterion is the weighted norm defined by ‖D

(
u(k+1) − u(k)

)
‖∞ < ε, where the

residual threshold ε = 10−8. The norm is weighted to the diagonal D.
Table 7, Table 8 and Table 9, Table 10 show the numerical results of the experiments. These tables
report respectively the experimental results of the BANDROW (JB), BANDROW-OP (JBO) and
SUBSTRUCTURING (JSS) synchronous Jacobi method.
These tables are organized as follows. The number of processors is given in the first column, and the
results of the BANDROW (JB), BANDROW-OP (JBO) and SUBSTRUCTURING (JSS) synchronous
Jacobi method are respectively reported from column 2 to 4, from column 5 to 7, and from column 8
to 10. For each method, the first column gives the number of iterations (# iter), the second column
collects respectively the communication (exchange) times and the solver execution times in seconds

15

(s). The third column gives the efficiency (eff) of the synchronous algorithm upon the sequential code
(one processor).

SYNCHRONOUS
J-BANDROW J-BANDROW-OP J-SUBSTRUCTURING

#p (#n) # iter. time (s) eff. # iter. time (s) eff. # iter. time (s) eff.
comm – total comm – total comm – total

1 746 0.0 – 10.9 100% 746 0.0 – 10.9 100% 746 0.0 – 10.9 100%
8 746 34.5 – 35.8 3.81% 746 1.5 – 3.1 43.81% 699 1.4 – 3.2 42.09%

16 746 67.0 – 67.7 1.01% 746 0.3 – 2.5 26.94% 678 1.5 – 2.6 25.88%
24 746 98.5 – 98.9 0.46% 746 0.5 – 2.9 15.96% 680 1.9 – 2.9 15.52%
32 746 132.6 – 132.9 0.26% 746 0.6 – 2.3 14.84% 646 1.7 – 2.4 14.46%
40 746 169.2 – 169.4 0.16% 746 0.4 – 2.4 11.38% 617 1.6 – 2.5 10.93%
48 746 547.5 – 547.6 0.04% 746 0.6 – 2.7 8.43% 582 1.9 – 2.6 8.70%
56 746 650.6 – 650.8 0.03% 746 0.8 – 2.3 8.48% 568 1.7 – 2.5 7.68%
64 746 734.6 – 734.7 0.02% 746 1.1 – 2.1 8.13% 525 1.8 – 2.4 7.02%

Table 7: Numerical results of luf_cube-35937

Normally, the number of iterations of all synchronous algorithms should be identical independently
from the number of processors for all algorithms. The band-row versions give the same number of
iterations for all numbers of processors. In contrast, the number of iterations of the synchronous
substructuring algorithm is a little different. The effects on the number of iterations can be explained
by the use of simultaneous local convergence as a stopping criterion. In fact, the global convergence
depends on the local convergence, where the local subdomain depends on the number of processors.

SYNCHRONOUS
J-BANDROW J-BANDROW-OP J-SUBSTRUCTURING

#p (#n) # iter. time (s) eff. # iter. time (s) eff. # iter. time (s) eff.
comm – total comm – total comm – total

1 2,216 0.0 – 238.4 100% 2,216 0.0 – 238.4 100% 2,216 0.0 – 238.4 100%
8 2,216 848.7 – 882.7 3.38% 2,216 14.9 – 53.9 55.27% 2,132 13.7 – 48.0 62.02%
16 2,216 1,617.8 – 1,634.2 0.91% 2,216 2.3 – 37.1 40.21% 2,098 14.5 – 32.1 46.35%
24 2,216 2,675.6 – 2,686.6 0.37% 2,216 3.3 – 33.8 29.40% 2,067 13.7 – 27.8 35.74%
32 2,216 3,222.1 – 3,229.7 0.23% 2,216 2.9 – 28.7 25.98% 2,041 14.6 – 24.6 30.25%
40 2,216 3,725.8 – 3,731.7 0.16% 2,216 6.7 – 34.5 17.29% 1,995 17.2 – 27.1 21.95%
48 2,216 4,341.1 – 4,345.9 0.11% 2,216 6.6 – 33.6 14.79% 1,980 17.7 – 25.8 19.27%
56 2,216 4,957.1 – 4,961.2 0.09% 2,216 6.2 – 31.2 13.64% 1,907 16.5 – 24.7 17.26%
64 2,216 7,055.0 – 7,058.6 0.05% 2,216 5.7 – 28.0 13.31% 1,889 16.2 – 23.0 16.18%

Table 8: Numerical results of luf_cube-274625

In parallel synchronous algorithms, the substructuring is always fast, in particular with a large number
of processors. The naive band-row algorithm is the slowest. This version is slow because of a growing
number of communications.

SYNCHRONOUS
J-BANDROW J-BANDROW-OP J-SUBSTRUCTURING

#p (#n) # iter. time (s) eff. # iter. time (s) eff. # iter. time (s) eff.
comm – total comm – total comm – total

1 6,234 0.0 – 159.5 100% 6,234 0.0 – 159.5 100% 6,234 0.0 – 159.5 100%
8 6,234 650.1 – 668.2 2.98% 6,234 121.8 – 142.7 13.97% 6,234 8.4 – 33.8 59.00%
16 6,234 1,099.4 – 1,108.5 0.90% 6,234 105.2 – 133.1 7.49% 6,184 9.1 – 22.9 43.58%
24 6,234 1,644.8 – 1,650.9 0.40% 6,234 107.3 – 137.4 4.83% 6,130 12.0 – 25.7 25.82%
32 6,234 2,284.2 – 2,288.7 0.22% 6,234 105.3 – 136.6 3.65% 6,163 14.7 – 23.7 21.02%
40 6,234 5,655.7 – 5,659.4 0.07% 6,234 103.6 – 152.2 2.62% 5,940 12.7 – 22.8 17.50%
48 6,234 6,889.4 – 6,892.5 0.05% 6,234 110.7 – 151.7 2.19% 6,201 10.4 – 22.9 14.48%
56 6,234 7,422.6 – 7,425.3 0.04% 6,234 108.2 – 150.7 1.89% 6,025 11.8 – 21.7 13.11%
64 6,234 8,435.8 – 8,438.5 0.03% 6,234 98.1 – 149.2 1.67% 6,011 14.5 – 22.6 11.02%

Table 9: Numerical results of gravi_hexas100x100x6_0

We can see in all tables that with the optimized version we considerably decrease the number of
exchanges and therefore improve the execution time of the solver. These results are even more

16

SYNCHRONOUS
J-BANDROW J-BANDROW-OP J-SUBSTRUCTURING

#p (#n) # iter. time (s) eff. # iter. time (s) eff. # iter. time (s) eff.
comm – total comm – total comm – total

1 13,791 0.0 – 2,713.0 100% 13,791 0.0 – 2,713.0 100% 13,791 0.0 – 2,713.0 100%
8 13,791 9,508.5 – 9,907.6 3.42% 13,791 5,994.3 – 6,891.7 4.92% 13,791 66.0 – 469.7 72.20%
16 13,791 19,564.6 – 19,760.2 0.86% 13,791 6,869.0 – 7,399.3 2.29% 13,637 66.0 – 273.7 61.95%
24 13,791 27,329.7 – 27,453.9 0.41% 13,791 7,002.2 – 7,689.7 1.47% 13,791 71.9 – 222.8 50.73%
32 13,791 34,939.7 – 35,030.2 0.24% 13,791 7,309.4 – 8,429.6 1.01% 13,456 97.7 – 228.3 37.13%
40 13,791 42,060.2 – 42,132.9 0.16% 13,791 7,475.9 – 9,768.5 0.69% 13,734 116.4 – 210.4 32.24%
48 13,791 49,218.6 – 49,278.7 0.11% 13,791 6,513.5 – 10,769.9 0.52% 13,674 104.9 – 191.9 29.46%
56 13,791 56,170.8 – 56,223.9 0.09% 13,791 6,370.3 – 10,940.9 0.44% 13,590 105.5 – 187.8 25.80%
64 13,791 62,913.8 – 62,965.6 0.07% 13,791 7,770.8 – 11,921.9 0.36% 13,069 86.6 – 164.6 25.76%

Table 10: Numerical results of gravi_hexas100x100x6_1

important when the problem is large in size, as we can observe in Table 10. To overcome the lake of
the synchronous algorithms, asynchronous variants can be considered, especially with a large number
of processes. However, for small problems asynchronous algorithms may be less efficient.

7 Conclusion
This paper evaluates and analyses the performance of parallel synchronous Jacobi algorithms by
different splitting strategies including band-row splitting, band-row sparsity pattern splitting and sub-
structuring splitting. Matrices arising from the finite element discretization of diverse equations (3D
Laplace equation, 3D gravitational potential) with different meshes are used as a testbed. The results
clearly show the interest of the substructuring methods compare to band-row parallel synchronous
algorithms to solve sparse large linear systems.

References
[1] J. Bahi, S. Contassot-Vivier, and R. Couturier. Performance comparison of parallel programming

environments for implementing AIAC algorithms. In Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, pages 247–254. IEEE, 2004.

[2] J. Bahi, S. Contassot-Vivier, R. Couturier, and F. Vernier. A decentralized convergence detection
algorithm for asynchronous parallel iterative algorithms. IEEE Transactions on Parallel and
Distributed Systems, 16(1):4–13, 2005.

[3] J. Bahi, R. Couturier, K. Mazouzi, and M. Salomon. Synchronous and asynchronous solution
of a 3D transport model in a grid computing environment. Applied Mathematical Modelling,
30(7):616–628, 2006.

[4] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. An Efficient and Robust Decentralized
Algorithm for Detecting the Global Convergence in Asynchronous Iterative Algorithms. In J. M.
L. M. Palma, P. R. Amestoy, M. Daydé, M. Mattoso, and J. C. Lopes, editors, High Performance
Computing for Computational Science - VECPAR 2008, volume 5336, pages 240–254. Springer
Berlin Heidelberg, 2008.

[5] J. M. Bahi, R. Couturier, and L. Z. Khodja. Parallel gmres implementation for solving sparse
linear systems on gpu clusters. In Proceedings of the 19th High Performance Computing
Symposia, HPC ’11, pages 12–19, San Diego, CA, USA, 2011. Society for Computer Simulation
International.

[6] K. E. Batcher. Design of a massively parallel processor. Computers, IEEE Transactions on,
100(9):836–840, 1980.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numerical methods,
volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[8] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra. Matrix Market: A
Web Resource for Test Matrix Collections. In The Quality of Numerical misc: Assessment and
Enhancement, 1977, London, UK, pages 125–137. Chapman & Hall, Ltd., 1997.

17

[9] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on the GPU: conjugate
gradients and multigrid. ACM Transactions on Graphics, 22(3):917, 2003.

[10] U. Carlini and U. Villano. Transputers and parallel architectures. Ellis Horwood, 1990.
[11] A.-K. Cheik Ahamed and F. Magoulès. Fast Sparse Matrix-Vector Multiplication on Graphics

Processing Unit for Finite Element Analysis. In 14th IEEE International Conference on High
Performance Computing and Communications (HPCC 2012), Liverpool, UK, June 25-27, 2012,
pages 1307–1314. IEEE, 2012.

[12] A. K. Cheik Ahamed and F. Magoules. Iterative Methods for Sparse Linear Systems on Graphics
Processing Unit. In 14th IEEE International Conference on High Performance Computing and
Communications (HPCC 2012), Liverpool, UK, June 25-27, 2012, pages 836–842. IEEE, 2012.

[13] A.-K. Cheik Ahamed and F. Magoulès. Efficient implementation of Jacobi iterative method for
large sparse linear systems on graphic processing units. The Journal of Supercomputing, pages
1–22, 2016-03-24.

[14] R. Ciegis, D. Henty, B. Kaagström, and J. ˇZilinskas. Parallel scientific computing and op-
timization: Advances and Applications, volume 27. Springer Science & Business Media,
2008.

[15] D. Evans and M. Hatzopoulos. A parallel linear system solver. International Journal of
Computer Mathematics, 7(3):227–238, 1979.

[16] M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Transactions on
Computers, C-21(9):948–960, 1972.

[17] I. Foster. Designing and building parallel programs: concepts and tools for parallel misc
engineering. Addison-Wesley, 1995.

[18] M. Gander, L. Halpern, F. Magoulès, and F.-X. Roux. Analysis of Patch Substructuring Methods.
International Journal of Applied Mathematics and Computer Science, 17(3), 2007.

[19] K. Georgiev and Z. Zlatev. Numerical experiments with applying approximate LU-factorizations
as preconditioners for solving SLAEs with coefficient matrices from the "Sparse Matrix Market".
In AIP Conference Proceedings 1487, St. Constantine and Helena, Bulgaria, June 11-16, 2012,
pages 104–111, 2012.

[20] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable parallel programming with the
message-passing interface. Computers & Mathematics with Applications, 40(2-3):419, 2000.

[21] R. Hassani, A. Fazely, R.-U.-A. Choudhury, and P. Luksch. Analysis of Sparse Matrix-Vector
Multiplication Using Iterative Method in CUDA. In The 8th IEEE International Conference on
Networking, Architecture and Storage (NAS), Xi’an, China, July 17-19, 2013, pages 262–266.
IEEE, 2013.

[22] G. Karypis and V. Kumar. METIS: A misc Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. Version 4.0,
1998.

[23] P. Le Tallec. Domain decomposition methods in computational mechanics. In J. T. Oden, editor,
Computational Mechanics Advances, volume 1 (2), pages 121–220. North-Holland, 1994.

[24] F. T. Leighton. Introduction to parallel algorithms and architectures, volume 188. Morgan
Kaufmann San Francisco, 1992.

[25] F. Magoulès. Substructuring techniques and domain decomposition methods. Saxe-Coburg
Publications, 2010.

[26] F. Magoulès and A.-K. Cheik Ahamed. Alinea: An Advanced Linear Algebra Library for
Massively Parallel Computations on Graphics Processing Units. International Journal of High
Performance Computing Applications, 29(3):284–310, 2015.

[27] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz. Auto-tuned Krylov methods on cluster
of graphics processing unit. International Journal of Computer Mathematics, 92(6):1222–1250,
2014.

[28] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz. Fast Iterative Solvers for large
compressed-sparse row linear systems on Graphics Processing Unit. Pollack Periodica, An
International Journal for Engineering and Information Sciences, Akadémiai Kiadó, 10(1):3–18,
2015.

[29] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz. Optimized Schwarz method without

18

overlap for the gravitational potential equation on cluster of graphics processing unit. Interna-
tional Journal of Computer Mathematics, 93(6):955–980, 2016.

[30] A. Margaris, S. Souravlas, and M. Roumeliotis. Parallel Implementations of the Jacobi Linear
Algebraic Systems Solve. CoRR, abs/1403.5805, 2014.

[31] D. O’Leary and R. White. Multi-Splittings of Matrices and Parallel Solution of Linear Systems.
SIAM Journal on Algebraic Discrete Methods, 6(4):630–640, 1985.

[32] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations.
Oxford University Press, 1999.

[33] L. Ren, X. Chen, Y. Wang, C. Zhang, and H. Yang. Sparse LU Factorization for Parallel Circuit
Simulation on GPU. In Proceedings of the 49th Annual Design Automation Conference, DAC
’12, pages 1125–1130. ACM, 2012.

[34] B. F. Smith, P. E. Bjorstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[35] B. Suchoski, C. Severn, M. Shantharam, and P. Raghavan. Adapting Sparse Triangular Solution
to GPUs. In The 41st International Conference on Parallel Processing Workshops (ICPPW),
Pittsburgh, PA, US, September 10-13, 2012, pages 140–148. IEEE, 2012.

[36] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and Theory, volume 34
of Springer Series in Computational Mathematics. Springer-Verlag, 2005.

[37] S. Xu, H. X. Lin, and W. Xue. Sparse Matrix-Vector Multiplication Optimizations based on
Matrix Bandwidth Reduction using NVIDIA CUDA. In The 9th International Symposium on
Distributed Computing and Applications to Business Engineering and Science (DCABES), Hong
Kong, China, August 10-12, 2010, pages 609–614. IEEE, 2010.

19

	1 Introduction
	2 Background in Parallel Computing
	2.1 Parallel architectures
	2.1.1 Classifications of parallel architectures
	2.1.2 Memory model

	2.2 Parallel algorithms

	3 Jacobi iterations
	4 Matrix partitioning
	4.1 Sparse matrix formats
	4.2 Band-row splitting
	4.2.1 Naive splitting
	4.2.2 Sparsity Pattern splitting

	4.3 Substructuring methods
	4.3.1 Principle of substructuring methods
	4.3.2 Matrix splitting
	4.3.3 Matrix-vector product
	4.3.4 Exchange at the interfaces

	5 Benchmark environments
	5.1 Alinea: an hybrid CPU/GPU library
	5.2 Hardware configuration

	6 Numerical results
	6.1 Matrices tested
	6.1.1 Set-1: 3D Laplace equation, academic test cases
	6.1.2 Set-2: 3D gravitational potential equation
	6.1.3 Sketches of matrices of test cases

	6.2 Experimental results

	7 Conclusion

