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Abstract

A significant percentage of online content is now published and
consumed via the mechanism of crowdsourcing. While any user can
contribute to these forums, a disproportionately large percentage of
the content is submitted by very active and devoted users, whose con-
tinuing participation is key to the sites’ success. As we show, people’s
propensity to keep participating increases the more they contribute,
suggesting motivating factors which increase over time. This paper
demonstrates that submitters who stop receiving attention tend to
stop contributing, while prolific contributors attract an ever increas-
ing number of followers and their attention in a feedback loop. We
demonstrate that this mechanism leads to the observed power law in
the number of contributions per user and support our assertions by an
analysis of hundreds of millions of contributions to top content sharing
websites Digg.com and Youtube.com.

1 Introduction

Websites allowing Internet users to produce, share, rate and classify content

have become increasingly popular in the last decade and now represent many

of the Internet’s most frequently visited pages1. The most successful of these

1http://www.alexa.com/topsites.
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efforts have experienced rapid growth and attained mainstream popularity,

while many others have stayed small or disappeared.

It has been observed that the distribution of the number of contribu-

tions per user in many popular peer production efforts follow a heavy-tailed

power law form, in which the most active users contribute a disproportion-

ately large percentage of the content [1]. Indeed, these active members often

demonstrate extraordinary devotion, contributing for many months or more

at an elevated rate, and are often responsible for much of the popular con-

tent. Their continuing participation is therefore critical to the success of a

peer production effort.

The power law distribution in contributions per user indicates that active

users are more likely to continue the more they contribute [1], suggesting

incentives which increase over time. In previous survey-based studies, users

cited motivations such as enjoyment, intellectual stimulation, idealism, and

a sense of belonging as important to why they participated [2, 3, 4, 5, 6].

While these factors no doubt carry weight in a complex way for many users

[7], it seems unlikely that they continue to strengthen after weeks or months

of contributing. And while status and recognition play a key role in some

intimate online communities [5, 6, 8, 9], they are less relevant in one-to-many

content-sharing forums which nevertheless display the same power law in the

distribution of contributions.

Getting attention paid to one’s contributions is a form of value [10]; people

are willing to forsake financial gain for it [11]. Attention was previously

shown to spur further contributions in video sharing [12] and blogging [13].

However, no attempt was made to account for social effects in how attention

was allocated among the various contributors in this work.

This paper addresses how attention and followers affect contributions

to peer production websites, and in particular how they motivate prolific

contributors to remain active for a long time. We first demonstrate a strong

correlation between lack of attention and users’ decision to stop contributing

in both Youtube.com and social news site Digg.com. Next, we show that

the more users contribute, the greater their following (as measured by their

number of digg “fans” or youtube “subscribers”), and the more attention
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they tend to receive from these followers. Finally, we present a mechanism

incorporating these empirical findings which explains the observed power law

in the distributions of contributions per user. Taken together, our findings

suggest that the feedback loop of attention is an important ingredient in a

successful of a peer production effort because of its role in motivating devoted

contributors to persist.

2 Data

In order to test our theory we collected data from Digg.com and Youtube.com,

the foremost social news and video sharing websites respectively. In both

cases, users submit content that can be consumed by other users, either in

the form of a link to news stories (Digg) or a video (Youtube).2 In both

systems, attention is transparent and easily observable, and the users are

allowed to create “fan” links to other users so they can easily follow each

others’ contributions.

Digg lets its users share news stories they discover from the Internet

in the form of an URL. On this website each new submission immediately

appears on a repository web page called “upcoming stories”, where other

members can find it and, if they like it, add a “digg” to it. A so-called “digg

number” is shown next to each story’s headline, which simply counts how

many users have dugg the story in the past. If an upcoming story receives a

sufficient number of diggs within a certain time period, it will be lifted from

the pool of upcoming stories and be displayed on the front page, in which

case it is said to be “promoted” or become “popular”.3 A popular story

normally keeps accumulating diggs for a few more days, before it eventually

saturates (i.e. stops receiving diggs) [14]. The final digg number of a story

thus measures the total amount of attention it received in its lifetime.

Our first data set contains 2,676,160 stories submitted by 372,701 users

2In general, all users can see all items; Youtube does allow people to make their videos
private or password protected, but this service is rarely used in practice.

3The actual proprietary algorithm used to determine whether a story qualifies to appear
on the front page is more complex and will not be discussed in this paper.
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between Digg’s inception in December 2004 and January 3, 2008. A total

number of 59,853,763 diggs made on these stories, including their timestamps

and submitter IDs, were fully recorded.

We also collected data from Youtube.com, a popular website where users

can upload, view and share video clips. Similar to Digg, a “view count”

number is displayed next to each video’s title, measuring how many times

it has been watched. However, in contrast with digg numbers which always

saturate, this view count may increase ad infinitum [15].4 Our second data

set consists of 9,896,784 video uploads submitted by 579,470 Youtube con-

tributors between the website’s inception in February 2005 and May 1, 2008.

For each video we recorded its submission date, uploader ID and “final” view

count as of May 1, 2008.

As a counterpart of Digg’s “popular stories”, Youtube also advertises a

list of “promoted/featured videos” on its front page, which are chosen by the

website staffs based on their personal tastes instead of an objective algorithm.

Unfortunately in our data set we do not have the information which videos

have been promoted. Therefore in order to calculate the “popular ratio” as

we did for Digg, we had to resort to our own definition of “popular videos”.

We defined a video to be “popular” if and only if it received more than 10,000

views before May 1, 2007 when the data was collected, where 10,000 is the

mean and 90% quantile of all view counts in our data set. We also defined a

video to be “final” if it is the last upload of its contributor and was uploaded

three months before the data collection time (i.e. uploaded before February

1, 2008).

4There are at least two reasons why the digg number of news stories saturates but the
view count of videos does not. First, videos are not as time-sensitive as news stories, so
their novelty decays more slowly. Second, people search for videos on Youtube but browse
through news stories on Digg, so it is easier to discover vintage videos than vintage stories.
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3 The active core and decreasing stopping

probability

We previously mentioned that a disproportionate number of contributions

to online peer production efforts are made by a small number of very ac-

tive users. This is true of Digg and Youtube as well. As demonstrated in

Fig. 1, the distribution of the number of contributions per user exhibits a

heavy power-law tail. In this figure we include only those users who seem

to have become inactive, by not contributing for at least T months before

the date of data capture, in order to accurately represent the “final” number

of contributions for users. Of course, it is impossible to ascertain whether

a given user has truly stopped or is merely taking an extended break, but

in practice there may not be a large difference between these two states in

terms of the user’s morale and motivation. We selected T = 3 in creating

these plots; other choices produce similar results.

The power law in number of contributions per user is of interest in our

context not only because it indicates the presence of an active core of par-

ticipants, but also because of what it implies about users’ motivation. Given

a large number of users, the proportion that stop after making their n’th

contribution is

P (stop after n) =
N(n)∫ nmax

n N(m)dm
,

where N(n) is the number of users making n contributions and then stopping

and nmax is some empirical maximum number of contributions. Empirically,

at the high end, N(n) follows a power law form, N(n) ∼ n−k with k > 1, so

therefore

P (stop after n) ∼ 1/n+ (n/nmax)−k+1.

We thus see that the probability a user stops contributing decreases the more

he contributes [1].
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Figure 1: Distribution of the the number of submissions (n) for (a) Digg and

(b) Youtube. The number of submissions follows a power-law distribution on

Digg, and has a long tail on Youtube. It is evident that while the majority

of users made relatively few contributions, there is also a considerable pro-

portion of users who contributed substantially. For example, in our data sets

3,381 Digg users submitted more than 100 news stories, and 12,171 Youtube

users uploaded more than 100 videos.
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4 Attention and the role of popularity

As an alternative to user-cited motivating factors listed above, we propose

that contributors to Digg and Youtube are motivated by attention. We first

provide empirical evidence of this, and then describe how attention a user

receives tends to keep increasing via a follower reinforcement mechanism,

thereby explaining the power law in contributions per user.

4.1 Lack of attention is correlated to stopping

If Digg contributors are motivated by attention, we would expect that story

submitters whose stories do not achieve popularity be more likely to stop

than others. Again, we use a threshold of 3 months of inactivity to demarcate

stopping; even if a user returns after a long hiatus, he most likely was quite

unmotivated during his time away. We thus chose the 30,157 users who

submitted no less than 5 stories before they stopped (i.e. submitted at least

5 stories before October 3, 2007 and had no activity since then till January

3, 2008, when our data was collected), and calculated the fraction of popular

stories among all the 30,157 n’th last stories, for n = 1, 2, 3, 4, 5. The result

is plotted in Fig. 2 as the green curve. As one can see more than 4% of all the

5th last stories eventually became popular, but only 2% of the last stories

had the same luck. This is consistent with our conjecture that a contributor

is more likely to stop when she fails to receive enough attention. To show

that our result is robust, we repeated the calculation for two more groups

of users who submitted no less than 10 and 20 stories in their lifetime. The

fraction of popular stories again exhibits declining trends for both groups, as

can be seen from the blue and red curves in Fig. 2.

We then calculated the popular ratio of all Youtube videos submitted in

each week of the year 2007 (denoted by r(t)), as well as the popular ratio

of all final videos submitted in the same weeks (denoted by rf (t)), where

popularity was defined in Section 2.5 Finally, we plotted the two sets of

5Because the view count of Youtube videos increases infinitely, late submissions gener-
ally receive less view counts than earlier ones. It no longer makes sense to plot the fraction
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Figure 2: Popular ratio versus reverse submissions index for Digg contribu-

tors. The horizontal axis marks the reverse index of a user’s submission, so

that −1 is her last submission, −2 is her second last submission, and so on.

The green, blue and red curves are calculated for those users who submitted

no less than 5, 10 and 20 stories in their lifetime, respectively.

ratios in Fig. 3. As one can see the final videos on average are less popular

than the other videos submitted in the same weeks, which is consistent with

our hypothesis that lack of popularity triggers cessation. A paired t-test of

the alternative hypothesis “rf (t) < r(t)” yields a p-value less than 0.001,

again supporting our hypothesis.

4.2 Attention tends to increase with the number of

submissions

The evidence presented above suggests a strong correlation between popu-

larity (attention received) and productivity (tendency to contribute). It is

of popular videos as a function of the video’s reverse submission index, as we did in the
study of Digg (Fig. 2). This is because one would not able to tell whether the final videos
received less view counts because they are less popular or simply because they have been
on the website for a shorter time. Hence it is only meaningful to compare the view counts
of videos submitted not far apart in time.
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Figure 3: The red circles in this figure represent the popular ratios of Youtube

videos submitted in each week of 2007. The blue squares represent the pop-

ular ratios of all final submissions made in the same weeks. As can be seen

most squares lie below the circles, indicating that the final submissions re-

ceived less attention than the earlier ones.
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thus natural to ask whether one could develop a model to predict a user’s

productivity from her popularity. Suppose that the amount of attention

each user receives from one submission is a random variable X. Consider for

benchmark purpose the following simplest stopping rule. If a contributor’s

latest submission surpasses some “successful” threshold θ (which may also

be random and may be a different random variable for each person) she will

continue to contribute, otherwise she will stop.6 Under these assumptions it

is straightforward to show that the number of user submissions n will follow

a geometric distribution: pn = p(1 − p)n−1 for n ≥ 1, where p = P (X > θ).

This, however, is at odds with the power-law distribution of user productivity

which exhibits a long tail.

The reason for this discrepancy lies in our assumption that the amount

of attention received by each submission is always drawn from the same

distribution, so that each submission has an equal chance to succeed. If we

assume instead that the attention received by each contributor is positively

reinforced as time goes on, then those who have been contributing for a

longer time will be more likely to obtain a “successful” status with their new

submissions, thus less likely to stop. Such a modification would lead to a tail

distribution of user submissions that is longer than the geometric tail and

closer to the power-law tail that has been observed on Digg, Youtube and

many other websites.

To verify this reinforcement theory we plotted the amount of attention

received by each submission as a function of the submission index, for both

Digg and Youtube. The results are shown in Fig. 4. It can be seen that the

received attention X grows more or less proportionally with the submission

index n, which confirms the existence of attention reinforcement. Mathe-

matically, we can write X = anY where a is a positive constant and Y is

a multiplicative noise with mean one.7 Assuming the same stopping rule as

before, a new submission with index n will fail to be successful with prob-

6A more realistic model would assume that a user’s stopping probability depends not
only on the popularity of her last submission but also on her earlier ones. This will not
change the following discussion in a fundamental way.

7We assume multiplicative noise instead of additive noise because there is empirical
evidence that attention growth is a multiplicative process [14].
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Figure 4: The amount of attention received by each submission as a function

of the submission index. The n’th point in each figure plots the average

amount of attention (digg number or view count) received by all submissions

whose index lies between 20(n−1) and 20n, right inclusive. In plotting (a) we

made use of the full Digg data set with the removal of four contributors who

had abnormally many fans. They are ObamaforAmerica (Barack Obama,

9896 fans and 49 submissions), teamhillary (Hillary Clinton, 1305 fans and

14 submissions), Gravel08 (Mike Gravel, 2609 fans and 3 submissions), and

jayadelson (Jay Adelson, CEO of Digg, 1956 fans and 40 submissions). In

plotting (b) we filtered out all videos submitted in January 2007 from the

Youtube data set (c.f. footnote 5).
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ability P (anY < θ) = P (aY/θ < 1/n). Let F be the CDF of the random

variable aY/θ. We see that a contributor who made n past submissions will

stop at n with probability

F
(

1

n

)
= F (0) +

F ′(0)

n
+O

(
1

n2

)
=
F ′(0)

n
+O

(
1

n2

)
, (1)

where F ′(0) is a positive constant. Suppose the number of contributions

in the population follows a distribution pn, or equivalently, a fraction pn of

contributors stop at n contributions. Using this notation and ignoring the

higher-order terms for large n, Eq. (1) can be written as

pn

pn + pn+1 + · · ·
=
F ′(0)

n
. (2)

Defining G(n) = pn + pn+1 + · · · and approximating G(n) with a continuous

function, we have

− G′(n)

G(n)
=
F ′(0)

n
. (3)

The solution to this equation is G(n) ∼ n−F ′(0), which implies that pn =

−G′(n) ∼ n−F ′(0)−1. We have thus shown that the number of contributions

has a power-law tail, in accordance with the empirical observations.

4.3 Attention is reinforced by one’s followers

While our reinforcement theory offers a tentative explanation for the long tail

distribution of user contribution, it does not tell us why such reinforcement

exists. It is possible that the contributors learn by experience what is favored

by the general population and adapt their contributions to the popular de-

mand. This would explain why later submissions have higher popularity, but

not the linear dependency (Fig. 4). To answer this question one needs to

look into the constituents of a contributor’s potential audience.

As a matter of fact, previous empirical studies have shown that the ma-

jority of diggs received by a Digg story in the upcoming phase (i.e. before

it is promoted to the front page) come from the contributor’s “fans”. This
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is due to the fact that Digg implemented a social filtering system that al-

lows its users to designate other users as “friends” and easily track friends’

activities [16]. When a contributor submits a story to Digg, her fans (those

who designated the contributor as friend, also called “reversed friends”) can

discover the story through a friend interface and digg it if they like it. On

Youtube there is a similar “subscription” mechanism that allows its users to

subscribe to other users’ videos. When a contributor releases a new video it

immediately become visible to her fans (those who subscribed to her videos)

through a subscription interface.

Because a considerable portion of attention a contributor receives can be

attributed to her fans, the contributor’s publicity (measured by the number

of fans) could act as the important missing link between popularity and pro-

ductivity. A contributor with many past contributions (high productivity)

naturally has many fans (high publicity). Her fans naturally pay a lot of at-

tention to her next contribution (high popularity). This in turn incentivizes

the contributor to make more contributions (higher productivity), thereby

closing the reinforcement loop.

To test the role of publicity we recorded the fan number of each contrib-

utor in our Digg data set on January 3, 2008. We then tracked the digg

number of all stories submitted in the next two weeks (between January 3,

2008 and January 17, 2008). A total number of 145,081 such stories were

submitted by 30,341 contributors. Fig. 5(a) plots the contributors’ publicity

(number of fans on January 3) as a function of their productivity (number

of contributions before January 3), and Fig. 5(b) plots their popularity (fi-

nal digg number of each new contribution submitted between January 3 and

January 17) as a function of their publicity. It can be seen from the two fig-

ures that a contributor’s popularity is roughly proportional to her publicity,

which in turn is roughly proportional to her productivity. Summarizing the

two results, this explains why popularity grows linearly with productivity,

which is what we found from Fig. 4(a).

We next performed a similar measurement on Youtube. On February 7,

2008 we recorded the subscription number of each contributor in our Youtube

data set. A total number of 86,620 contributors submitted 260,002 videos in

13
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Figure 5: We recorded the digg number of all 145,081 stories submitted by

30,341 Digg contributors between January 3, 2008 and January 17, 2008,

as well as the contributors’ fan number on January 3, 2008. (a) Publicity

(number of fans) as a function of productivity (number of past contributions).

The n’th data point plots the average fan number of those contributors who

submitted 2n−1 ≤ m < 2n stories before January 3, 2008. (b) Popularity

(digg number) as a function of publicity (number of fans). The n’th data

point plots the average digg number of all stories whose contributor had

2n−1 ≤ m < 2n fans on January 3, 2008.
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Figure 6: We recorded the view count of 260,002 videos submitted by 86,620

Youtube contributors between February 7, 2008 and February 21, 2008, as

well as the contributors’ subscription number on February 7, 2008. (a) Pub-

licity (number of subscribers) as a function of productivity (number of past

contributions). The n’th data point plots the average subscription number

of those contributors who uploaded 2n−1 ≤ m < 2n videos before February

7, 2008. (b) Popularity (digg number) as a function of publicity (number of

subscribers). The n’th data point plots the average view count of all videos

whose contributor had 2n−1 ≤ m < 2n subscribers on February 7, 2008.

the following two weeks (between February 7, 2008 and February 21, 2008).

We plotted the average subscription number of these contributors as a func-

tion of their past productivity (Fig. 6(a)), and also plotted the average view

count each contributor received in the two studied weeks as a function of

their subscription number (Fig. 6(b)). Again we observed proportionality in

both figures.
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5 Conclusion

In this paper we have shown that attention is a likely motivating factor for

the active core of participants to two popular peer production websites. Fol-

lowers affect contributions to peer production websites, and motivate prolific

contributors to remain active for a long time. We demonstrated a strong

correlation between lack of attention and users’ decision to stop contributing

in both youtube.com and social news site digg.com. We then showed that

the more users contribute, the greater their following (as measured by their

number of digg “fans” or youtube “subscribers”), and the more attention

they tend to receive from these followers. Finally, we presented a mechanism

incorporating these empirical findings which explains the observed power law

in the distributions of contributions per user. Taken together, our findings

suggest that the feedback loop of attention is an important ingredient in a

successful of a peer production effort because of its role in motivating devoted

contributors to persist.
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