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Abstract—A user stores his personal files in a cloud, and
retrieves them wherever and whenever he wants. For the sake
of protecting the user data privacy and the user queries privacy,
a user should store his personal files in an encrypted form in a
cloud, and then sends queries in the form of encrypted keywords.
However, a simple encryption scheme may not work well when
a user wants to retrieve only files containing certain keywords
using a thin client. First, the user needs to encrypt and decrypt
files frequently, which depletes too much CPU capability and
memory power of the client. Second, the service provider couldn’t
determine which files contain keywords specified by a user if
the encryption is not searchable. Therefore, it can only return
back all the encrypted files. A thin client generally has limited
bandwidth, CPU and memory, and this may not be a feasible
solution under the circumstances. In this paper, we investigate
the characteristics of cloud computing and propose an efficient
privacy preserving keyword search scheme in cloud computing. It
allows a service provider to participate in partial decipherment to
reduce a client’s computational overhead, and enables the service
provider to search the keywords on encrypted files to protect the
user data privacy and the user queries privacy efficiently. By
proof, our scheme is semantically secure.
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encryption; partial decipherment

I. Introduction

Cloud computing [1], which dynamically provides reliable
services over the Internet, is one of the 2009 Top 10 Strategic
Technologies [2]. Recently, many academic and industrial
organizations have started investigating and developing tech-
nologies and infrastructure for cloud computing. The represen-
tative cloud platforms include Amazon Elastic Compute Cloud
(EC2) [3], Google App Engine [4], and Microsoft Live Mesh
[5].

A user stores his personal files in a cloud, and retrieves them
wherever and whenever he wants. We consider the following
application: a user U pays a service provider S for a storage
service in order to store his email messages, and later he wants
to retrieve only emails containing certain keywords when he
is traveling with a thin client, such as a wireless PDA and a
mobile phone. It is trivial to do so when the email messages
are stored in the form of a plain-text, which will introduce
undesirable security and privacy risks. For example, U is a
technician in Company A who takes in charge of after-sale
services. He stores all the emails sent from the customers in

a cloud when he is in his office with a desktop, and retrieves
them to tackle the customer’s service requests when he is
out with a PDA. An attacker who intercepts and captures
the communications is able to know the customer’s privacy
information as well as some important business secrets. What
is worse is that an untrustworthy service provider is able to
easily obtain all the information and sell it to the biggest rival
of Company A. As described in Haclgiimfi et al [6], there
are two main attacks under such a circumstance, i.e., outer
attacks initiated by unauthorized outsiders and inner attacks
initiated by untrustworthy service providers. In some cases,
we couldn’t fully trust a service provider, but still need its
service. Therefore, it needs to provide some mechanisms to
protect the user data privacy and the user queries privacy in
cloud environment.

The simplest solution is to encrypt the emails before storing
them in a cloud and send queries in the form of encrypted
keywords. For example, a user may use his public key to
encrypt the email message body and its keywords before
sending it to a service provider, and then sends queries in
the form of encrypted keywords to retrieve the email. Since
the secret key is only known to the user himself, an attacker
has no idea of the encrypted files and the user queries patterns.
However, such a simple encryption scheme may introduce
other problems: (1) It depletes too much CPU capability and
memory power of the client during the encryption and decryp-
tion; (2) The service provider couldn’t determine which emails
contain keywords specified by a user if the encryption is not
searchable. Therefore, it can only return back all the encrypted
emails. Generally speaking, a thin client has only limited
bandwidth, CPU and memory, therefore a simple encryption
scheme couldn’t work well under these circumstances.

In this paper, we dedicate to solve the above problems and
propose an efficient privacy preserving keyword search scheme
in cloud computing. Our contributions are threefold:

1) It supports keyword search on encrypted data. It enables
a service provider to determine whether a given email
contains certain keywords specified by a user, but have
no idea of any information about both the specified key-
words and the encrypted emails. It is able to protect the
user data privacy and the user queries privacy efficiently



during the search process.
2) It is efficient and practical. It enables a service provider

to participate in partial decipherment so as to reduce
a user’s computational overhead, but has no ability to
recover the plain-text. It is well suited to be applied to
cloud computing.

3) It is a provably secure scheme. We first define an
efficient privacy preserving keyword search scheme, and
give its security definition in the sense of semantic
security. And then we construct the scheme based on
bilinear maps, and prove that it is semantically secure
assuming the BDH problem is hard [8].

This paper is structured as follows. We first review some
important background and definitions in Section 2. We
then describe an efficient privacy preserving keyword search
scheme and give its security definition in Section 3. We
construct the scheme based on bilinear maps and prove that
it is semantically secure in Section 4. Finally we present our
future work and conclude this paper in Section 5.

II. Preliminaries

A. Related Work

Boneh et al [7] introduce a public key encryption with
keyword search (PEKS) scheme, which supports the keyword
search on encrypted data. The application context is as follows:
(1) Bob sends to Alice an email encrypted under Alice’s public
key; (2) Alice’s email gateway wants to test whether the email
contains the keyword urgent so that it could route the email
accordingly; (3) But Alice does not want the email gateway
to be able to decrypt her messages. Boneh et al define and
construct a mechanism that enables a gateway to test whether
the word urgent is a keyword in the email using a trapdoor
provided by Alice, but learn nothing about the email. This
notion could be applicable to cloud environment with some
improvements.

In cloud environment, Alice and Bob might be the same
person who pays for a storage service. If a user wants to re-
trieve emails containing certain keywords when he is traveling
with a PDA, PEKS couldn’t work well. According to PEKS, a
service provider returns back encrypted emails after finishing
the search, and a user needs to decrypt them by himself.
Frequent decryption will deplete too much CPU capability and
memory power of the client and lose critical virtue of cloud
computing. For the sake of reducing a user’s computational
overhead, we allow a service provider to participate in partial
decipherment, but keep the plain-text to be blind to the service
provider. Under normal circumstances, a user stores encrypted
files once, but retrieves and decrypts them for many times.
Our approach could reduce a user’s computational overhead
largely.

Diament et al [11] first introduce the notion of an efficient
dual receiver cryptosystem, which enables a ciphertext to be
decrypted by two independent receivers. The main disadvan-
tage of the dual receiver cryptosystem is that the server needs
to send an auxiliary private key to a client for decrypting a

partial ciphertext, which is insecure in the real environment.
Recently, there is much work on keyword search on encrypted
files, such as Song et al [9], Bennett et al [10], and Chang et al
[12]. In this paper, we borrow the idea of partial decipherment,
and propose an efficient privacy preserving keyword search
scheme by improving PEKS, which requires no private key
transmission and is more applicable to a cloud environment.

B. Related Definitions

In this section, we introduce some definitions in Boneh et
al [8] to form the basis of our scheme. Let G1 and G2 be two
cyclic groups of some large prime order q. We view G1 as an
additive group and G2 as a multiplicative group.

Definition 2.1 (Bilinear Maps): We call e a bilinear map if
e : G1 × G1 → G2 is a map with the following properties:

1) Computable: There is a polynomial time algorithm to
compute e(g, h) ∈ G2, for any g, h ∈ G1.

2) Bilinear: e(gx, hy) = e(g, h)xy for all g, h ∈ G1 and all
x, y ∈ Z∗q.

3) Non-degenerate: if g is a generator of G1, then e(g, g)
is a generator of G2.

Definition 2.2 (BDH Parameter Generator): We say that a
randomized algorithm IG is a BDH parameter generator if
IG takes a sufficiently large security parameter K > 0,
runs in polynomial time in K, and outputs the description of
two groups G1 and G2 of the same prime order q and the
description of a bilinear map e : G1 × G1 → G2.

Definition 2.3 (BDH Problem): Given a random element
g ∈ G1, as well as gx, gy, and gz, for some x, y, z ∈ Z∗q, compute
e(g, g)xyz ∈ G2.

Definition 2.4 (BDH Assumption): If IG is a BDH param-
eter generator, the advantage AdvIG(B) that an algorithm B has
in solving the BDH problem is defined to be the probability
that B outputs e(g, g)xyz on inputs G1, G2, e, g, gx, gy, gz,
where (G1,G2, e) is the output of IG for a sufficiently large
security parameter K, g is a random generator of G1, and x,
y, z are random elements of Z∗q. The BDH assumption is that
AdvIG(B) is negligible for any efficient B.

III. An Efficient Privacy Preserving

Keyword Search Scheme

A. Definitions

Suppose a user U is about to store an encrypted email with
keywords W1, . . . ,Wk on a service provider S, where k ∈ Z+.
Keywords may be words in headline or accepted date, and k
is relatively small. U sends the following message to S:

MS GU2S = [E1(Upub, S pub,m), E2(Upub,W1), . . . , E2(Upub,Wk)]

where Upub is U’s public key, S pub is S’s public key, and m is
the email message body. E1 and E2 are public key encryption
algorithms. U encrypts the email message body using his own
public key Upub, the service provider’s public key S pub, and
E1. And then U encrypts keywords W1, . . . ,Wk using his own
public key Upub and E2. Finally, U appends to the encrypted
email message body with all the encrypted keywords and sends
MS GU2S to S.



Our goal is to enable U to send a trapdoor TW for a certain
keyword W which is encrypted under his private key to S,
which will enable S to find out all emails containing the
keyword W, but learns nothing else. S then participates in
the partial decipherment to calculate an intermediate result
of the decipherment using its private key before returning
the relevant encrypted emails back. We formally define the
efficient privacy preserving keyword search scheme (EPPKS
for short) below. EPPKS supports multiple keywords search
on the encrypted data. For the sake of illustration, we only
show a single keyword search case in this paper.

Definition 3.1 (EPPKS): EPPKS consists of seven ran-
domized polynomial time algorithms as follows:

1) Keygen: takes a sufficiently large security parameter
K1 as an input, and produces a public/private key
pair (Upub,Upriv) for a user. We write Keygen (K1) =

(Upub,Upriv). Let K2 be a sufficiently large security
parameter, we write Keygen (K2) = (S pub, S priv) for a
service provider.

2) EMBEnc: is a public key encryption algorithm that
takes two public keys Upub and S pub, and a message
m ∈ M as inputs, and produces m’s cipher-text Cm ∈ CM .
We write EMBEnc (Upub, S pub,m) = Cm.

3) KWEnc: is a public key encryption algorithm that takes
a public key Upub, and a keyword Wi ∈ W (i ∈ Z+) as
inputs, and produces Wi’s cipher-text CWi ∈ CW . We
write KWEnc (Upub,Wi) = CWi .

4) TCompute: takes a private key Upriv and a keyword W j

( j ∈ Z+) as inputs, and produces W j’s trapdoor TW j . We
write TCompute (Upriv,W j) = TW j .

5) Test: takes a public key Upub, an encrypted keyword
CWi , and a trapdoor TW j as inputs, and outputs 1 or 0.
We write Test (Upub,CWi ,TW j ) = 1 if Wi = W j, and 0
otherwise.

6) Decrypt: takes a private key S priv, a public key Upub, and
a cipher-text Cm as inputs, and outputs an intermediate
result Cρ. We write Decrypt (S priv,Upub,Cm) = Cρ.

7) Recovery: takes a private key Upriv, a cipher-text Cm,
and an intermediate result Cρ as inputs, and outputs the
plain-text m. We write Recovery (Upriv,Cm,Cρ) = m.

The user and the service provider run Keygen to generate
their public/private key pairs respectively. Given Upub and
S pub, U runs EMBEnc to encrypt an email message body.
Given Upub, U runs KWEnc to encrypt keywords respec-
tively. When U wants to retrieve emails containing keyword
W j ( j ∈ Z+), he runs TCompute to generate W j’s trapdoor TW j

and sends it to S. S runs Test to determine whether a given
email contains keyword W j specified by U. S runs Decrypt
to calculate an intermediate result Cρ of the decipherment,
and returns back Cρ along with the encrypted emails. Given a
cipher-text and Cρ, U runs Recovery to recover the plain-text.

B. Semantic Security of the EPPKS Scheme

In this section, we define security for the EPPKS scheme in
the sense of semantic security. Semantic security captures our
intuition that given a cipher-text the adversary learns nothing

about the corresponding plain-text, thus we also say that a
semantically secure scheme is IND-CPA secure [8]. According
to the definition of EPPKS, it consists of two public key
encryption algorithms, i.e., KWEnc and EMBEnc. Therefore,
we first define semantic security for EMBEnc and KWEnc,
and then give our definition of a semantically secure EPPKS
scheme.

Definition 3.2 (Semantic Security of KWEnc): Given a
public key encryption algorithm KWEnc which encrypts
keywords using Upub, let A1 be a polynomial time IND-CPA
adversary that can adaptively ask for the trapdoor TWi

for any keyword Wi ∈ W of its choice. A1 first chooses
two keywords W0 and W1, which are not to be asked for
trapdoors previously, and sends them to KWEnc. And then
KWEnc picks a random element b1 ∈ {0, 1} and gives A1 the
cipher-text CWb1

= KWEnc (Upub,Wb1 ). Finally, A1 outputs a
guess b

′
1 ∈ {0, 1} for b1. We define the advantage of A1 in

breaking KWEnc as AdvA1 (k) = |Pr[b1 = b
′
1] − 1

2 |. We say
that KWEnc is semantically secure if for any polynomial
time adversary A1, the function AdvA1 (k) is negligible.

Definition 3.3 (Semantic Security of EMBEnc): Given
a public key encryption algorithm EMBEnc which
encrypts the email message body using Upub and S pub,
let A2 be a polynomial time IND-CPA adversary that
can adaptively ask for the cipher-text for any message
mi ∈ M of its choice. A2 first chooses two messages m0
and m1, which are not to be asked for the cipher-text
previously, and sends them to EMBEnc. And then EMBEnc
picks a random b2 ∈ {0, 1} and gives A2 the cipher-text
Cmb2

= EMBEnc (Upub, S pub,mb2 ). Finally, A2 outputs a
guess b

′
2 ∈ {0, 1} for b2. We define the advantage of A2 in

breaking EMBEnc as AdvA2 (k) = |Pr[b2 = b
′
2] − 1

2 |. We say
that EMBEnc is semantically secure if for any polynomial
time adversary A2, the function AdvA2 (k) is negligible.

Definition 3.4 (Semantic Security of EPPKS): Given an
EPPKS scheme consisting of KWEnc and EMBEnc, it
takes a security parameter K as input and runs the key
generation algorithm Keygen to generate the public/private
key pairs (Upub,Upriv) and (S pub, S priv). Given an adversary
A consisting of two polynomial time algorithms A1 and
A2, A1 initiates attacks on KWEnc and A2 initiates
attacks on EMBEnc. We say that the EPPKS Scheme is
semantically secure if for any adversary A, the function
AdvA(k) = AdvA1 (k) + AdvA2 (k) is negligible.

IV. Construction

A. Construction Based on Bilinear Maps

Boneh et al [8] use bilinear maps on elliptic curves to
build an efficient identity-based encryption (IBE) system. We
construct EPPKS and prove that it is semantically secure,
which closely follows that in Boneh et al [8]. Our construction
is based on bilinear maps. The security of this scheme is based
on the BDH assumption. Let IG be some BDH parameter
generator. We present our scheme by describing the following
seven algorithms.



1) Keygen: Given a sufficiently large security parameter
K ∈ Z+, it runs IG to generate a prime q, two
groups G1 and G2 of prime order q, and a bilinear map
e: G1 ×G1 → G2, where g is a generator of G1. Then it
chooses two hash functions H1,H3: {0, 1}∗ → G∗1, a hash
function H2: G2 → {0, 1}logq

, and a hash function H4:
G2 → {0, 1}n for some n, where H1, H2, H3, and H4 are
random oracles. Finally, it picks two random elements
x, y ∈ Z∗q and computes gx and gy. The plain-text space
includes M ∈ {0, 1}n and W ∈ {0, 1}∗. The cipher-text
space includes CM = G∗1 × {0, 1}n and CW ∈ G2. The
user’s public key is gx with the corresponding private
key x. The service provider’s public key is gy with the
corresponding private key y.

2) EMBEnc: To encrypt the email message body m un-
der a user’s public key gx and a service provider’s
public key gy, it picks a random element r ∈ Z∗q and
a random element ρ ∈ {0, 1}n, computes u1 = gr,
u2 = ρ ⊕ H4(e(gx, gy)r), u3 = m ⊕ H4(e(H3(ρ), gx)r), and
sets the cipher-text Cm = (u1, u2, u3).

3) KWEnc: To encrypt m’s keywords W1, . . . ,Wk (k ∈
Z+) under a user’s public key gx, it computes
H2(e(gx,H1(Wi))r), where Wi ∈ {W1, . . . ,Wk}, sets the
cipher-text CWi = H2(e(gx,H1(Wi))r), and sends the
following message to the service provider:

MS G
′
U2S = [Cm,CW1 , . . . ,CWk ]

4) TCompute: To retrieve only emails containing keyword
W j ( j ∈ Z+), it computes the trapdoor TW j = H1(W j)x ∈
G1 under a user’s private key x, and sends it to the
service provider.

5) Test: To determine whether a given email contains
keyword W j, it tests whether CWi = H2(e(u1,TW j )) =

H2(e(gr,TW j )). If so, Test(Upub,CWi ,TW j ) outputs 1.
Otherwise, it outputs 0. Note that: If Wi=W j, then
CWi = H2(e(gx,H1(Wi))r) = H2(gr,H1(W j)x)) =

H2(e(gr,TW j )) = H2(e(u1,TW j )) as required.
6) Decrypt: To get an intermediate result of the par-

tial decipherment, it calculates ρ, computes Cρ =

e(H3(ρ), u1) = e(H3(ρ), gr), and sends the following
results to the user:

MS GS 2U = [Cm,CW1 , . . . ,CWk ,Cρ]

Note that: ρ = u2 ⊕ H4(e(gx, gy)r) = u2 ⊕ H4(e(gx, gr)y).
Therefore, it could calculate ρ using a service provider’s
private key y.

7) Recovery: Given the cipher-text Cm = (u1, u2, u3) and
Cρ, it computes m = u3 ⊕ H4((Cρ)x) to recover the
message m. Note that: m = u3 ⊕ H4(e(H3(ρ), gx)r) =

u3 ⊕ H4(e(H3(ρ), gr)x) = u3 ⊕ H4((Cρ)x).
For the sake of reducing the computational overhead and

increasing the search speed, a service provider could calculate
ρ as soon as it receives MS G

′
U2S , and stores the message as

follows:

MS GS tored@S = [Cm,CW1 , . . . ,CWk , ρ]

According to the PEKS scheme proposed in Boneh et
al [7], a user encrypts the email message body using a
standard public key system, and a service provider simply
returns the relevant emails back after finishing the search.
Our EPPKS scheme enables a service provider to participate
in the partial decipherment to get an intermediate result of
the decipherment before returning back the search results, but
has no ability to recover the plain-text, which will reduce the
computational overhead of the client greatly. Now, we show
how to implement these improvements. In the next section, we
will give a detailed proof of EPPKS.

According to EPPKS, a service provider is able to calculate
ρ using its private key y. Suppose the service provider knows
H3(ρ) = ga ∈ G1 where a is a random element in Z∗q,
u1 = gr ∈ G1 where r ∈ Z∗q is a random element chosen by the
user, and the user’s public key gx ∈ G1 where x ∈ Z∗q is the
user’s private key, it couldn’t calculate e(g, g)arx, assuming the
BDH problem is hard. In other words, a service provider needs
to compute m = u3 ⊕ H4(e(H3(ρ), gx)r) = u3 ⊕ H4(e(g, g)arx)
to recover the plain-text, which corresponds to computing
the BDH problem. Therefore, the service provider, seeing
only a random value ρ and calculating an intermediate result
of the decipherment, has no idea what the plain-text is.
Furthermore, an outer attacker couldn’t calculate ρ if he
doesn’t capture any private key. Suppose an outer attacker
knows u1 = gr by intercepting MS G

′
U2S , the user’s public

key gx ∈ G1, and the service provider’s public key gy ∈ G1,
it couldn’t calculate e(g, g)xyr, assuming the BDH problem
is hard. In other words, an outer attacker needs to compute
ρ = u2⊕H4(e(gx, gy)r) = u2⊕H4(e(g, g)xyr) to recover ρ, which
corresponds to computing the BDH problem.

B. Security
In this section, we study the security of the proposed

EPPKS scheme. The following theorem shows that EPPKS
is semantically secure if the BDH problem is assumed to be
hard.

Theorem 4.1: Suppose the hash functions H1, H2, H3, and
H4 are random oracles. Then EPPKS is semantically secure
assuming the BDH problem is hard. Let A be an IND-CPA
adversary consisting of two polynomial time algorithms
A1 and A2. Let A1 be an IND-CPA adversary that has
the advantage ε1 in breaking KWEnc. Suppose A1 makes
qT > 0 trapdoor queries and qH2 > 0 hash queries to H2.
Let A2 be an IND-CPA adversary that has the advantage ε2
against EMBEnc. Suppose A2 makes qH4 > 0 hash function
queries to H4. Let A be an IND-CPA adversary that has the
advantage ε = ε1 + ε2 against the EPPKS scheme. Then there
is an algorithm B that solves the BDH problem with the
advantage at least:

AdvB(K) ≥ 2ε1/{e · qH2 · (1 + qT )} + 2ε2/qH4 (1)

Here e ≈ 2.71 is the base of the natural logarithm. The running
time of B is O(time(A)).

EPPKS includes two public key encryption algorithms,
i.e., EMBEnc and KWEnc. Therefore, we prove Theorem



4.1 in two steps. We first show that KWEnc is semantically
secure if the BDH assumption holds.

Lemma 4.2: Let H1 be a random oracle from {0, 1}∗ to G∗1
and H2 be a random oracle from G2 to {0, 1}logq

. Suppose
A1 be an IND-CPA adversary that has the advantage ε1 in
breaking KWEnc. Suppose A1 makes at most qH2 > 0 hash
queries to H2 and at most qT > 0 trapdoor queries. Then there
is an algorithm B1 that solves the BDH problem with the
advantage at least ε

′
1 = 2ε1/{e · qH2 · (1 + qT )}, and a running

time O(time(A1)).
Proof. Let < q,G1,G2, e > be the BDH parameters, where

q is the prime order of G1 and G2. Choose a random generator
g ∈ G1. B1 is given υ0 = g, υ1 = gα1 , υ2 = gβ1 , υ3 = gγ1 ∈ G1
where α1, β1, γ1 are random elements in Z∗q. Its goal is to
output D1 = e(g, g)α1β1γ1 ∈ G2. Let D1 be the solution to the
BDH problem. B1 finds D1 by interacting with A1 as follows:

Keygen: B1 sends (υ0, υ1) as the public key to A1.
H1-Queries: B1 maintains a list of tuples called H1-List, in

which each entry is a tuple of the form < W j, h j, a j, c j >. The
list is initially empty. When A1 queries the random oracle H1
at a point Wi ∈ {0, 1}∗, B1 responds as follows:

1) If Wi already appears on H1-List in a tuple
< Wi, hi, ai, ci >, then B1 responds with H1(Wi) = hi ∈
G∗1.

2) Otherwise, B1 generates a random coin ∈ {0, 1}, so that
Pr[coin = 0] = δ for some δ that will be determined
later.

3) B1 picks a random a ∈ Z∗q. If coin = 0, B1 computes
hi = υ2 · ga = gβ1 · ga ∈ G∗1. If coin = 1, B1 computes
hi = ga ∈ G∗1.

4) B1 adds the tuple < Wi, hi, a, coin > to H1-List and
responds to A1 with H1(Wi) = hi. Note that either way
hi is uniform in G∗1 and is independent of A1’s current
view as required.

H2-Queries: B1 maintains a list of tuples called H2-List,
in which each entry is a tuple of the form < t j, v j >. The list
is initially empty. When A1 issues a query to H2, B1 checks
if ti is already on H2-List in the form of < ti, vi >. If so, B1
responds toA1 with H2(ti) = vi. Otherwise, B1 picks a random
string vi ∈ {0, 1}logq

, adds the tuple < ti, vi > to H2-List, and
responds to A1 with H2(ti) = vi.

Phase 1: When A1 issues a query for the trapdoor of
keyword Wi, B1 responds as follows:

1) B1 initiates H1-Queries to obtain hi ∈ G∗1, where
H1(Wi) = hi. Let < Wi, hi, ai, ci > be the corresponding
tuple on H1-List. If ci = 0, then B1 reports a failure and
terminates.

2) If ci = 1, then H1(Wi) = hi = gai ∈ G∗1. We define
TWi = (υ1)ai = (gα1 )ai . Note that TWi = (gα1 )ai = (gai )α1 =

H1(Wi)α1 . B1 gives TWi to A1.
Challenge: OnceA1 decides that Phase 1 is over, it outputs

a pair of keywords W0 and W1 on which it wishes to be
challenged. B1 responds as follows:

1) B1 initiates H1-Queries twice to obtain h0 and h1 ∈ G∗1,
where H1(W0) = h0 and H1(W1) = h1. If c0 = 1 or

c1 = 1, then B1 reports a failure and terminates.
2) If both c0 = 0 and c1 = 0, B1 randomly picks a b1 ∈
{0, 1}.

3) B1 picks a random string S 1 ∈ {0, 1}logq
, and gives the

cipher-text C1 = (υ3, S 1) to A1. Note that:
S 1 = H2(e(υ1,H1(Wb1 ))γ1 ) = H2(gα1 ,H1(Wb1 ))γ1 )
= H2(e(gα1 , gβ1 · gab )γ1 ) = H2(e(g, g)α1γ1(β1+ab))
Hence, C1 is a valid cipher-text for Wb1 as required.

Phase 2. A1 can continue issuing more trapdoor queries for
keyword Wi, where the only restriction is that Wi , W0 and
Wi , W1. B1 responds as in Phase 1.

Guess: A1 outputs its guess b
′
1 ∈ {0, 1} for b1. B1 picks

a random pair < ti, vi > from H2-List and outputs ti as the
solution to D1.

To complete the proof of Lemma 4.2, we now show
that B1 correctly outputs D1 with the probability at least
ε
′
1 = 2ε1/{e · qH2 · (1 + qT )}. In the first place, we calculate the

probability that B1 does not abort during the above process.
Suppose A1 makes a total of qT trapdoor queries. Then the
probability B1 does not abort in Phase 1 or 2 is δqT . And the
probability that it does not abort during the challenge step is
1− δ. Therefore, the probability that B1 does not abort during
the whole process is δqT · (1 − δ). This value is maximized
at δopt = 1 − 1/(qT + 1). Using δopt, the probability that B1
does not abort is at least 1/e(1 + qT ). In the second place,
we calculate the probability that B1 outputs the correct result
in case that B1 does not abort. Let Q1 be the event that A1
issues a query for v. If ¬Q1, we know that the decryption of
the cipher-text is independent of A1’s view. Let Pr[b1 = b

′
1]

be the probability that A1 outputs the correct result, therefore
in the real attack Pr[b1 = b

′
1|¬Q1] = 1

2 . Since A1 has the
advantage ε1, |Pr[b1 = b

′
1|¬Q1] − 1

2 | ≥ ε1. According to the
following formulae, we know Pr[Q1] ≥ 2ε1.

Pr[b1 = b
′
1] = Pr[b1 = b

′
1|¬Q1]Pr[¬Q1]

+ Pr[b1 = b
′
1|Q1]Pr[Q1]

≤ 1
2 Pr[¬Q1] + Pr[Q1]

= 1
2 + 1

2 Pr[Q1]
Pr[b1 = b

′
1] ≥ Pr[b1 = b

′
1|¬Q1]Pr[¬Q1]

= 1
2 Pr[¬Q1]

= 1
2 − 1

2 Pr[Q1]
Therefore, we have that Pr[Q1] ≥ 2ε1 in the real attack. Now

we know thatA1 will issue a query for v with the probability at
least 2ε1. That is to say, the probability that v appears in some
pair on H2-List is at least 2ε1. B1 will choose the correct pair
with the probability at least 1/qH2 and thus B1 produces the
correct answer with the probability at least 2ε1/qH2 . Since B1
does not abort with the probability at least 1/e(1+qT ), we see
that B1’s success probability is at least ε

′
1 = 2ε1/{e·qH2 ·(1+qT )}

as required.
Next, we show that EMBEnc is a semantically secure public

key encryption if the BDH assumption holds. It is worth
noticing that the outer attackers couldn’t calculate ρ if the
BDH assumption holds. Without loss of generality, we suppose
that an IND-CPA adversaryA2 has already known ρ and could
issue H3 queries at any time.

Lemma 4.3: Let H3 be a random oracle from {0, 1}∗ to



G∗1 and H4 be a random oracle from G2 to {0, 1}n. Let A2
be an IND-CPA adversary that has the advantage ε2 against
EMBEnc. Suppose A2 makes qH4 > 0 hash function queries
to H4. Then there is an algorithm B2 that solves the BDH
problem with the advantage at least ε

′
2 = 2ε2/qH4 and a running

time O(time(A2)).
Proof. B2 is given ρ ∈ {0, 1}n, µ0 = g, µ1 = gα2 , µ2 = gβ2 ,

µ3 = gγ2 ∈ G1, where α2, β2, γ2 are random elements in Z∗q.
Its goal is to output D2 = e(g, g)α2β2γ2 ∈ G2. Let D2 be the
solution to the BDH problem. B2 finds D2 by interacting with
A2 as follows:

Keygen: B2 sends (µ0, µ1) as the public key to A2.
H3-Queries: B2 maintains a list of tuples called H3-List, in

which each entry is a tuple of the form < ρ j, f j >. The list
is initially empty. When A2 issues a query to H3, B2 checks
if ρi is already on H3-List in the form of < ρi, fi >. If so,
B2 responds to A2 with H3(ρi) = fi. Otherwise, B2 picks
a random d ∈ Z∗q, computes fi = µ2 · gd = gβ2 · gd ∈ G∗1,
adds the tuple < ρi, fi > to H3-List, and responds to A2 with
H3(ρi) = fi.

H4-Queries: B2 maintains a list of tuples called H4-List,
in which each entry is a tuple of the form < r j, l j >. The list
is initially empty. When A2 issues a query to H4, B2 checks
if ri is already on H4-List in the form of < ri, li >. If so,
B2 responds to A2 with H4(ri) = li. Otherwise, B2 picks a
random string li ∈ {0, 1}n, adds the tuple < ri, li > to H4-List,
and responds to A2 with H4(ri) = li.

Challenge. A2 outputs two messages m0 and m1 on which
it wishes to be challenged. B2 randomly picks b2 ∈ {0, 1}
and a random string S 2 ∈ {0, 1}n, and gives the cipher-text
C2 = (µ3, S 2) to A2. Note that the decryption of the cipher-
text is:
mb2 = S 2 ⊕ H4(e(H3(ρ), µ1)γ2 ) = S 2 ⊕ H4(e(H3(ρ), gα2 )γ2 )
= S 2 ⊕ H4(e(gβ2 · gd, gα2 )γ2 ) = S 2 ⊕ H4(e(g, g)α2γ2(β2+d)

Hence, C2 is a valid cipher-text for mb2 as required.
Guess: A2 outputs its guess b

′
2 ∈ {0, 1} for b2. B2 picks

a random pair < ri, li > from H4-List and outputs ri as the
solution to the given instance of BDH.

Let Q2 be the event that A2 issues a query for l. From proof
of Lemma 4.2, we know that Pr[Q2] ≥ 2ε2. That is to say, A2
will issue a query for l with the probability at least 2ε2. B2
will choose the correct pair with the probability at least 1/qH4

and thus B2 produces the correct answer with the probability
at least ε

′
2 = 2ε2/qH4 as required.

Proof of Theorem 4.1. The theorem follows directly
from Lemma 4.2 and Lemma 4.3. It shows that an IND-
CPA adversary A on EPPKS with the advantage ε gives
a BDH algorithm with the advantage at least AdvB ≥
2ε1/e · qH2 · (1 + qT ) + 2ε2/qH4 as required.

V. Conclusion

Cloud computing is one of the current most important and
promising technologies. A user could store his personal files in
a cloud and retrieves them wherever and whenever he wants.
For the sake of protecting the user data privacy and the user
queries privacy, we propose an efficient privacy preserving

keyword search scheme in cloud computing. It allows a
service provider to participate in partial decipherment, thus
the user could pay less computational overhead for decryption.
Furthermore, it is a searchable encryption scheme, thus the
service provider could search the encrypted files efficiently
without leaking any information. By proof, it is semantically
secure.

In many cases, the user might want the service provider not
only to provide the storage service, but also to provide the
computational service. Ideally, the service provider has the
ability to output the right answers but knows nothing about
the data of the user. In other words, the service provider needs
to compute on the encrypted data, which is a big challenge
for us. In our future work, we will dedicate to this research
direction.
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