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Abstract—Big data streaming applications require utilization of
heterogeneous parallel computing systems, which may comprise
multiple multi-core CPUs and many-core accelerating devices
such as NVIDIA GPUs and Intel Xeon Phis. Programming
such systems require advanced knowledge of several hardware
architectures and device-specific programming models, including
OpenMP and CUDA. In this paper, we present HSTREAM,
a compiler directive-based language extension to support pro-
gramming stream computing applications for heterogeneous par-
allel computing systems. HSTREAM source-to-source compiler
aims to increase the programming productivity by enabling
programmers to annotate the parallel regions for heterogeneous
execution and generate target specific code. The HSTREAM
runtime automatically distributes the workload across CPUs
and accelerating devices. We demonstrate the usefulness of
HSTREAM language extension with various applications from
the STREAM benchmark. Experimental evaluation results show
that HSTREAM can keep the same programming simplicity as
OpenMP, and the generated code can deliver performance beyond
what CPUs-only and GPUs-only executions can deliver.

Index Terms—stream computing, heterogeneous parallel com-
puting systems, source-to-source compilation

I. INTRODUCTION

Nowadays, a huge amount of data is generated throughout
various mechanisms, such as scientific measurement and ex-
periments (including genetics, physics, and astronomy), social
media (including Facebook, and Twitter), and health-care
[6, [10]. The current challenges of big data include storing
and processing very large files.

However, in big data applications, not necessarily the entire
data has to be processed at once. Furthermore, in most of the
big-data applications, the data may be streamed, which means
flowing in real-time (for instance data coming from different
sensors in the Internet of Things), and therefore, it may not be
available entirely. In such cases, the data needs to be processed
in chunks and continuously [13]].

Heterogeneous parallel computing systems comprise mul-
tiple non-identical processing units (PU), including CPUs
on the host and accelerating devices (such as GPU, Intel
Xeon Phi, and FPGA). Most of the top supercomputers in
the world [20] comprise multiple nodes with heterogeneous
processing units. For instance, the nodes of the current number

PREPRINT, CSE 2018, ©OIEEE

Sabri Pllana
Department of Computer Science
Linnaeus University
Vixjo, Sweden
sabri.pllana@Inu.se

one supercomputer in the TOP500 list consist of two IBM
POWERY9 CPUs and six NVIDIA Volta V100 GPUs.

While the combination of such heterogeneous processing
units may deliver high performance, scalability, and energy
efficiency, programming and optimizing such systems is much
more complex [3} |12} 4]. Different manufacturers of acceler-
ating devices prefer to use different programming frameworks
for offloading (which means transferring the data and control
from the host to the device). For instance, OpenMP is used to
offload computations to Intel Xeon Phi accelerators, whereas
CUDA and OpenCL are used for offloading computations to
GPUs.

The programming complexity of such systems leads to
system underutilization. For example, applications designed
for multi-core processing are able to utilize the available
resources on the host CPUs. However, while the host CPUs are
performing the actual work, the accelerating devices remain
idle. On the other hand, most of the applications designed
for accelerating devices use the CPU resources just for per-
forming the data transfers and initiation of kernels, which is
often performed by a single thread. Modern multi-core CPUs
comprise a larger number of cores/threads, hence most of the
CPU resources remain idle.

Researchers have proposed different techniques to address
challenges of heterogeneous parallel programming and big
data. For instance, source-to-source compilation techniques are
proposed to ease programming of data-parallel applications
(22, 18] 11} [18]. Similarly, approaches that are based on C++
template library are used for stream and data parallel comput-
ing systems [3} [7]. Pop and Cohen [16] propose a language
extension to OpenMP for stream computing on multi-core ar-
chitectures. To the best of our knowledge, there does not exist
any source-to-source compiler that supports stream computing
for heterogeneous parallel computing systems.

In this paper, we present HSTREAM, a compiler directive-
based language extension that supports heterogeneous stream
computing. HSTREAM aims to keep the same simplicity as
programming with OpenMP and to enable programmers to
easily utilize the available heterogeneous parallel computing
resources on the host (CPU threads) and device (GPUs, or
Intel Xeon Phis). The overview of the HSTREAM solution is
depicted in Fig. |l The HSTREAM source-to-source compiler
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Fig. 1: Overview of the proposed approach.

performs several analysis steps (including lexical, syntactical,
and semantical) and generates target specific code from a given
source code annotated with HSTREAM compiler directives
and a PDL file that describes the hardware architecture.
HSTREAM supports code generation for multi-core CPUs
using OpenMP, GPUs using CUDA, and Intel Xeon Phis
(also known as MIC) using Intel Language Extensions for
Offloading (LEO). The HSTREAM runtime is responsible for
scheduling the workload across the heterogeneous PUs.

We use the HSTREAM source-to-source compiler to gener-
ate the heterogeneous version of the STREAM benchmark [9].
We evaluate the generated heterogeneous STREAM bench-
mark with respect to programming productivity and perfor-
mance. The experimental results show that HSTREAM keeps

the same simplicity as OpenMP, and the code generated for ex- 2| {
ecution on heterogeneous systems delivers higher performance j

compared to CPUs-only and GPUs-only execution.

Major contributions of this paper include:

« HSTREAM compiler - a source-to-source compiler for
generating target specific code from high-level directive-
based annotated source code.

o HSTREAM runtime - a runtime system for scheduling the
workload across various non-identical processing units.

o Evaluation of the usefulness of HSTREAM using appli-
cations from the STREAM and STREAM?2 benchmarks.

The rest of the paper is structured as follows. The design,

execution model, and implementation aspects of HSTREAM
are described in Section [ Section [ describes the ex-
perimental environment (including the system configuration,
STREAM benchmark, and evaluation metrics) and experimen-
tal results. We compare and contrast our work with the current
state-of-the-art in Section Section [V] concludes this paper
and provides information about future work.

II. HSTREAM: LANGUAGE EXTENSION TO SUPPORT
HETEROGENEOUS STREAM COMPUTING

In this section, we describe the design, the execution model,
and the implementation aspects of HSTREAM.

A. Design

OpenMP 4.5 supports offloading of computations to acceler-
ators. However, a single loop is usually offloaded to a single
device, and while one device is performing some computa-
tions, the other PUs (including host CPUs and accelerators)

remain idle. Distributing the data and computations of the
same loop across multiple accelerating devices and host CPUs
requires additional programming investment.

HSTREAM enables the automatic distribution of data and
computations across different PUs. It enables programmers to
easily exploit the available resources in heterogeneous parallel
computing systems. The source-to-source code generation
helps to reduce the programming time investment and errors
that may come when explicitly handling communication and
synchronization between various processing units.

While HSTREAM is designed for heterogeneous computing
of stream applications, it can also be used for data-parallel
applications. In the context of HSTREAM, data-parallel ap-
plications process data that is entirely available in memory,
whereas stream computing process some data that is streamed
from an I/O device. Streams are read in chunks, stored in local
buffers first, processed by multiple heterogeneous PUs, and
transformed back to a stream or stored somewhere in memory.

Listing [T] shows the syntax of the HSTREAM compiler
directive, which starts with the #pragma keyword followed
by the hstream keyword that stands for heterogeneous stream.
Thereafter, multiple clauses can occur in any order. Details
about each of the directive clauses are provided below.

Listing 1: An example of the HSTREAM compiler directive.

#pragma hstream in(...) out(...) inout(...) device (...)
scheduling (...)

// body

In clause: The in clause is used to indicate the data that
should be transferred to the accelerating devices for process-
ing. The syntax for the in clause is inspired from the Intel LEO
and looks as follows: in(variable_ref [, variable_ref ...]).
The variable_ref can be a simple data type, array, or stream.
For example, in(a) where a may be either a simple data type
or an array, and in(a : double) where a is a stream of data
of type double. The in clause may accept multiple variables
of different types. For instance, in in(a, b, ¢ : int), the first
variable (a) is an array, b is a scalar value, and c is a stream of
integers. The in clause can be used multiple times within the
same directive. For instance, in(a, b) in(c : int) is equivalent
to the example above.

Out clause: The out clause is used to indicate the
variables that need to be transferred from the accel-
erators to the host memory. The syntax for the out
clause is similar to the in clause and looks as follows:
out(variable_ref [, variable_ref ...]).

InOut clause: The inout clause is used to indicate the
variables that need to be transferred to and back from
the accelerating devices. The syntax looks as follows:
inout(variable_ref [, variable_ref ...]). The inout clause
combines the functionality of the in and out clause. For
example, inout(a) has the same functionality as using the in
clause and the out clause separately (in(a) out(a)).

Device clause: In comparison to the existing OpenMP
device clause, which is used to specify only one accel-




erating device id as offloading target, the device clause
of the HSTREAM language extension allows providing a
list of PU ids that will collaboratively process the in-
put data elements provided using the in, out, and inout
clauses. The syntax of the device clause looks as follows:
device(device_id [, device_id ...]). The following examples
describe different scenarios of the use of device clause: (1)
device(x) is the default value of the device clause, which
means that all PUs should be used including the CPUs and
accelerating devices; (2) device(1l) means that only PU with
id 1 should be used; (3) device(0,1,2) means that PUs with
id 0, 1 and 2 will work together to process some data. Details
for each PU (such as, id, number of cores, cache size, core
frequency, and global memory) are extracted from the platform
description file (.pdl), which needs to be provided as input to
our compiler. The PDL is a platform description language for
the explicit description of heterogeneous parallel computing
systems [19].

Scheduling clause: The scheduling clause is used to deter-
mine the sizes of data chunks for each PU. There are different
scenarios on how to use the scheduling clause: (1) Device
specific distribution, where the programmer will explicitly set
the chunk size for each processing unit. The syntax looks as
follows, scheduling(device_id : chunk_size [, device_id :
chunk_size ...]); (2) Uniform distribution, where the pro-
grammer explicitly sets a constant uniform distribution for all
PUs. The syntax looks as follows, scheduling(chunk_size);
and (3) Automatic distribution, where the HSTREAM runtime
system automatically determines the chunk sizes for each of
the PU. The syntax for automatic distribution looks as follows,
scheduling(AUTO).

B. The execution model

Figure [2] depicts an overview of the HSTREAM execution
model. The main components of our solution are, the data
producer, data processor, and data store. The data producer
reads the data in batches from an input stream (that can be
a file, data coming from the network, ...). The data processor
stores the batches locally and then applies a specified function
to each data item. Once the data is processed (consumed), the
output is sent to the third component (named data store) to
either write the data to a file or print it.

Please note that this process can be overlapped, which
means that while data producer is reading one batch, the data
consumer can process another batch, and at the same time the
data store can write another batch to a file. Figure |3| shows an
example of overlapping the reading, processing, and writing of
data. To achieve this result, we need three separate threads, T1
is responsible to read the data, T2 is responsible to initiate the
data processing, and T3 writes the data. First, the data producer
starts reading the first batch and then notifies T2 that there is
data available for processing. While T2 reads data, T1 can
continue reading the next batch. When T2 finishes processing
the first batch, it will notify T3 that there is data ready to be
written. Then, T3 will start writing the output data to a file.
While T3 is writing the first batch, T2 may start processing
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Fig. 2: The execution model of HSTREAM solution for stream
computing in heterogeneous parallel computing systems.

the second batch (only if T1 has finished reading batch 2), and
T1 can start reading batch 3.

T1: Read | batch_1 batch_2 batch_3 batch_4
T2: Process batch_1 batch_2 | batch_3 | batch_4
T3: Write batch_1 batch_2 | batch_3 | batch_4

Fig. 3: An example of overlapping data read, data process, and
data write.

The data processor in Fig. [2] uses all the available PUs (or
specific ones, depending on what the developer has provided
in the scheduling clause) to process the input data. There
is a separate CPU thread controlling each PU, including
(remaining) CPU threads, GPUs, and Intel Xeon Phis. Each
CPU thread (except the one that controls the CPU threads) is
responsible to transfer the corresponding data chunk from the
host local storage to the memory of the accelerating device.
The data will be processed in the accelerating devices, and
then transferred back to the host. The thread that controls
the remaining CPU threads does not need to do any explicit
data transfer, because the controlling thread and the processing
threads share the same DRAM. Please note that the same
overlapping strategy used for reading, processing, and writing
data can be used within the data processing component, such
that the data transfer (host-to-device, and device-to-host) is
overlapped with the data processing.

C. Implementation

In this section, we will describe the tools and techniques
used to implement our source-to-source compiler. Thereafter,
throughout an example, we will describe the transforma-
tion process from a high-level C++ code annotated with
HSTREAM compiler directives, to C++ code with OpenMP
directives for execution on host CPUs, Intel LEO for execution
on Intel Xeon Phi coprocessors, and CUDA for execution on
GPU accelerators.

1) Source-to-Source Compiler: Figure [] depicts an
overview of the implementation steps, including the
HSTREAM language definition, front-end, and back-end.
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- Identifies atomic
language constructs

- Eliminates unnecessary
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- Returns sequence of
tokens
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Code Generation

- Generate OpenMP code
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- Generate OpenMP + offload code

- Returns a program that can be executed on heterogeneous parallel computing
systems

Fig. 4. Overview of the implementation of our source-to-
source compiler.

We use ANTLR4 (Another Tool for Language Recognition)
[14] to write the grammar for our compiler, that we call
HSTREAM grammar. As a basis for our work, we used the
C++14 grammar from ANTLR Project GitHub repository of a
collection of ANTLR4 grammars [17]. We extend the C++14
grammar with the HSTREAM compiler directives to allow
developers to annotate parts of the code that need to be
executed in heterogeneous parallel computing systems. Listing
shows an excerpt of the HSTREAM grammar written in
ANTLRA4.

Listing 2: An excerpt of the HSTREAM Grammar.

directives directivex ;
directive PRAGMA HSTREAM clauses body ;
clauses clausex* ;
clause inclause
| outclause
| inoutclause
| deviceclause
|

schedulingclause

7

The ANTLR tool is used to generate the parser, which is
used for lexical, syntax, and semantic analysis. The lexical
analyzer takes the input file, identifies atomic language con-
structs (with the help of regular expressions and pattern rules),
removes any unnecessary constructs, such as comments and
white spaces, and returns a sequence of tokens. In the case of
illegal language constructs (tokens) errors will be generated.

The sequence of tokens is passed to the syntax analyzer

W

(also known as the parser) to check (with the help of context- ,

free grammars) if the input source code is correct according
to the language definition. The parser generates a parse tree,
which represents a syntactically correct program.

The generated parse tree is used by the semantic analyzer
to judge whether the syntax derives any meaning. Some of the
main tasks associated with the semantic analysis include type
checking, scope resolution, checking for variable declarations,
and checking whether variables are defined before they are
used. If there are semantic errors, appropriate feedback will

be provided, such as type mismatch, undeclared variables,
multiple variable declarations within a scope, and variable
access is out of scope. For instance, an HSTREAM directive
with two or more scheduling or device clauses is syntactically
correct, but semantically wrong, because only one such clause
can be provided. If no semantic errors are identified, then an
intermediate representation (IR) of the source code will be
created, which may be used for optimization and translation.

We do not perform any optimization of the code during
source-to-source compilation, but we use the IR to generate the
target-specific code. We use the String Template (ST) Library
[L5] to generate the target source code. A simple example of
the ST library that is used to generate the CUDA memory
transfer statements is shown in Listing

Listing 3: An example of the string template library that is
used to generate the CUDA memory transfer statements.

cuda_memcpy_host_to_device (from, to, type) ::=
"cudaCheckError (cudaMemcpy ($from$,
d_Sto$, sizeof (Stype$) xmyN,
cudaMemcpyHostToDevice)) ;"

Based on the type of the system architecture and based on
the type of PUs provided in the device clause the correspond-
ing functions will be generated. At the time of writing this
paper, HSTREAM source-to-source compiler supports code
generation for OpenMP, CUDA, and Intel LEO.

2) Code transformation example: In this section, through-
out an example we describe the transformation process from
high-level C++ code annotated with HSTREAM directives,
to target specific source code. The source code for the TRIAD
function written in C++ with HSTREAM annotations is shown
in Listing @ Line [I] shows the HSTREAM pragma directive,
which includes the hstream keyword, the in and out clause for
memory management, and the device and scheduling clause
for scheduling of the workload. The TRIAD function takes
three array variables and one scalar variable as input and
outputs the result to one of the arrays. In this example, we
want to use all available PUs (device(*)), and we want a
uniform distribution of the workload for each of the PUs
(scheduling(4096)).

Listing 4: HSTREAM TRIAD function of the STREAM
benchmark.

#pragma hstream in(b,c,a,scalar) out(a) device ()
scheduling (4096)

a = b+scalar=c;

We assume that we have a heterogeneous platform that com-
prises CPUs, GPUs, and Intel Xeon Phi co-processor. Please
note that we describe our hardware architecture using XML-
based platform description language [19]. The HSTREAM
compiler will generate three types of functions, each designed
for execution on one of the PUs. For example, an OpenMP
based function will be generated for execution on multi-core
CPUs, a CUDA kernel will be generated for execution on
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GPU devices, and another pragma-based function that uses
Intel LEO for execution on Intel Xeon Phi.

Listing [5] shows the TRIAD code generated for execution
on host CPUs.

Listing 5: TRIAD function of the STREAM benchmark de-
signed for execution on multi-core CPUs.

#pragma omp parallel for
for (int i=start; i<finish;

{

i++)

a[i] = b[i]+scalar=c[i];

The corresponding function for execution on the GPU
accelerators is shown in Listing [6] Please note that Listing [6]
shows only the CUDA kernel, whereas the code for memory
management, such as allocation, the transfer from host to
device and vice-versa, and the memory deallocation is handled
by our runtime scheduler (shown in Algorithm [T)).

Listing 6: TRIAD function of the STREAM benchmark de-
signed for execution on GPUs.

__global__ void GPU_Triad( double xb, double =c, double =a,
double scalar, int len) {
int idx = threadldx.x + blockIdx.x * blockDim.x;

if (idx < len)
a[idx] = b[idx]+scalarxc[idx];

}
} 1

2
Listing [7] shows the generated source code for execution on 3

the Intel Xeon Phi (also known as MIC), which corresponds 4
to the TRIAD function from the STREAM benchmark. 5

6
Listing 7: Triad function of the STREAM benchmark designed
for execution on Intel Xeon Phi.

7

#pragma offload target(mic: cpu_thread_id) in(a[my_start:
my_finish]) in(c[my_start: my_finish]) out(c[my_start: 8
my_finish]) 9
{ 10
#pragma omp parallel for 1
for (int i = my_start; i < my_finish; i++) b
al[i] = b[i]+scalarxc[i]; 13

}

14
The pseudo-code for the runtime scheduler, which is respon-

sible for distributing the workload across the heterogeneousis
processing units, is shown in Algorithm [I] The generated
runtime class has information for the hardware architecture,16
which is derived from the provided platform description file
(.pdl). This class, together with the information provided in
the device clause, are used to determine how many threads
we need to engage. Since one thread controls a separate PU,
we create as many threads as there are PUs. In the initialization
step (see Line [T)) we create an instance to the runtime class
that has information about the system and create two shared
variables that keep track of the current state (start and finish
positions) of the processed data.

Each CPU thread controls a PU, and each thread is responsi-
ble to determine the start and finish index of its own chunk of
data (see Line [5). To avoid multiple PUs processing the same
amount data, we need to perform this process in a critical

section, which means that while one thread is determining its
start and finish positions, no other thread can do the same.
Furthermore, thread private variables of the start and finish
variables are created, to enable other threads to pick other
chunks of data while another one is processing its chunk of
data.

Once the start and finish positions are determined, the data
is ready for processing. Using a single if-then-else statement
we check the type of the PU (see Line [6] [[3] and[I5) and per-
form the corresponding steps for each type. For instance, for
GPU accelerated devices, we need explicit data management,
such as device memory allocation, transferring data from host
to device and vice-versa, and memory deallocation (see Line
. Similarly, for Intel Xeon Phi accelerators, explicit data
management is performed through the in and out clauses of the
Intel LEO directive (see Listing [7] Line [I). For CPUs, there
is no need for explicit data transfer because the controlling
thread and the processing threads share the same DRAM (see

Listing [3).

ALGORITHM 1: The algorithm used for runtime scheduling and

workload distribution.

Data: List of PUs, workload

Result: Distribute the workload across these PUs and process it

simultaneously

initialization;

create as many threads (T) as PUs;

foreach 7' do

while not reached the end of data do

determine start and finish positions;

if pu.type is GPU then

/* explicit data management is performed
using CUDA API calls

create device variables;

allocate device memory;

copy chunks of data from host to device;

execute CUDA kernel ; // Example: Listing E]

copy data back to host memory;

free memory ;

else if pu.type is MIC then

/* explicit data management is done using

*/

*/

LEO in and out clauses
offload data and control to MIC device ;
// Example: Listing I
else if pu.type is CPU then
/* no explicit data management is needed
*/
execute the CPU code ;

// Example Listing E

III. EVALUATION
In this section, we first describe the experimentation en-
vironment, including the hardware configuration, application
benchmarks, and the data-set used for evaluation of our
approach. Thereafter, we discuss the results of the study.

A. Experimentation environment

For evaluation of our approach, we have used applica-
tions from the industry standard STREAM and STREAM2
benchmarks [9]. We vary the stream size, chunk size, and



the number of available resources. Details about the system
configuration, application benchmark, considered data-sets,
and the measurement metrics will follow.

1) System configuration: We used our heterogeneous sys-
tem named DISA, which comprises two Intel Xeon Gold
CPUs, and four Quadro P4000 GPUs. Please note that in our
experiments the CPU hyper-threading is disabled. Table [l lists
the details of our systems. For experimental evaluation, we
vary the number of resources used in the DISA system, such
as CPU only, 1GPU, 2GPUs, 3GPUs, 4GPUs, CPU+1GPU,
CPU+2GPUs, CPU+3GPUs, and CPU+4GPUs.

TABLE I: The system configuration details for DISA.

Specs Intel Xeon NVIDIA GPU
Type Gold 6148 Quadro P4000
Frequency (GHz) 24 -37 1.48

# of Cores 20 1792

# of Threads 40 /

Cache (MB) 27.5 /

Memory (GB) 768 8

TDP (W) 150 105

2) Benchmark application and data-set: We use appli-
cations from the STREAM and STREAM?2 benchmarks to
evaluate our approach. We use the HSTREAM source-to-
source compiler to generate the heterogeneous version of the
STREAM benchmark [9]]. We use the COPY, SCALE, SUM,
and TRIAD functions from the STREAM benchmark, and the
FILL and DAXPY functions from the STREAM?2 benchmark.
Details and information about the considered functions of the
STREAM benchmark are available on-line

The stream array size is varied between 256, 512, 1024,
2048, 4096, and 8192MB to simulate various scenarios of the
workload. Furthermore, when we split the workload among
the available PUs, we vary the chunk sizes between 1, 2, 4,
8, 16, 32, and 64MB. The chunk size indicates the amount of
data that should be sent for processing to a specific PU.

To address the variability of the results, we repeat each
experiment 10 times and report the average value.

3) Metrics: In our experiments, we consider two aspects:
(1) the programming productivity and (2) the performance.
We measure the programming productivity with respect to the
total lines of code and the lines of code that are specific to
a programming framework required to parallelize the code.
We use our tool, named CodeStat [11] to measure the pro-
gramming productivity. With respect to the performance, we
measure the throughput, which reflects the amount of data that
can be processed within a time unit.

B. Results

In this section, we first describe the evaluation results with
respect to programming productivity. Thereafter, we describe
the results with respect to performance.

Uhttp://www.cs.virginia.edu/stream/

TABLE II: The programming effort expressed in lines of code
(LOC) required to program the STREAM benchmark using
different programming frameworks.

Total OpenMP CUDA Other
sequential (C) 131 0 0 0
multi-core (OpenMP) 214 8 0 0
accelerator (CUDA) 190 0 55 0
multi-core + acc (HSTREAM) 210 8 0 57
HSTREAM generated 1195 69 131 0

1) Programming productivity: Table [[l| shows the program-
ming productivity expressed in lines of code (LOC). We
consider the total LOC, and LOC specific to a programming
language, such as OpenMP, and CUDA. For HSTREAM input
we also show the LOC required to create the platform descrip-
tion file. We compare different versions of implementations
of the STREAM benchmark, including sequential, multi-core
version using OpenMP, accelerated version using CUDA, and
the heterogeneous version using HSTREAM. The last row
shows the LOC of the HSTREAM generated version.

We may observe that the multi-core version of STREAM
benchmark requires 8 OpenMP specific lines of code to be
added, whereas the accelerated version requires about 55
CUDA specific lines of code. To parallelize the STREAM
benchmark with HSTREAM language extension there are
needed only 8 HSTREAM specific LOC, exactly the same
as with OpenMP. For HSTREAM the developer needs to
provide the PDL file as well, the LOC for which depends on
the system. For the DISA system, the PDL file has 57 lines
of code. The generated code, which is what a programmer
would need to write manually for execution on heterogeneous
systems that comprise host CPUs, and accelerating devices
such as GPUs and Intel Xeon Phis, requires in total 1195
LOC, of which 69 are OpenMP and 131 are CUDA specific
lines of code.

We may conclude that HSTREAM maintains the same
level of programming complexity as OpenMP, at the cost of
providing an XML-based description of the platform.

2) Performance: Figure [3] depicts the throughput (MB/s)
of the selected functions from the STREAM and STREAM?2
benchmark, including COPY, SCALE, ADD, TRIAD, FILL, and
DAXPY. We vary the stream size between 256, 512, 1024,
2048, 4096, and 8192MB. From our experiments, we have
observed that the stream size does not impact the throughput,
therefore we show the results only for the largest stream
size (that is 8192MB). We also vary the chunk size (CS)
between 1, 2, 4, 8, 16, 32, and 64MB. We vary the number of
processing units engaged for computation, such as CPU only,
1GPU, 2GPUs, 3GPUs, 4GPUs, CPU+1GPU, CPU+2GPUs,
CPU+3GPUs, and CPU+4GPUs. However, due to space lim-
itation, we only show results for CS 2, 8, and 32MB, and
system configurations CPU, 4GPUs, and CPU+4GPUs.

We may observe that in all cases, the execution that uses
all available resources (CPU+4GPUs) results with the highest
throughput. With respect to the chunk size, we may observe



that the throughput depends on the type of processing units
engaged in the execution, and the type of computations.
For example, the more complex functions such as TRIAD
and DAXPY benefit more when executed in accelerated de-
vices, whereas simpler functions such as FILL and ADD
perform better on CPUs. The highest throughput observed in
our experiments is when executing the DAXPY function on
CPU+4GPUs with a chunk size of 32MB.

N = 8196MB

CPU+4GPUs

32MB

4GPUs

Cs

CPU+4GPUs

CPU+4GPUs

2MB

4GPUs

CSs

CPU

|
|
|
I ! ! !
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SADD ®TRIAD BFILL mDAXPY
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Fig. 5: The performance of heterogeneous STREAM bench-
mark when using host CPUs only, 4GPUs, and CPU+4GPUs
on our DISA system. We vary the chunk size between 2, 8§,
and 32MB. The input size used in this experiment is 8192MB.

IV. RELATED WORK

Recent versions of OpenMP and OpenACC support offload-
ing computations to accelerating devices [21]. Offloading to a
single accelerating device can be easily achieved by using sim-
ple compiler-directives, whereas offloading to multiple devices
requires additional programming effort. HSTREAM enables
developers to use high-level compiler directives (similar to
OpenMP and OpenACC) to develop applications that can be
executed on multiple heterogeneous devices, such as multi-
core CPUs, NVIDIA GPUs, and Intel Xeon Phi accelerators.

Zhang and Mueller [24] present GStream, a framework for
data-streaming on systems accelerated with GPUs. GStream
provides an application interface that software developers can
use to express the parallelism of their streaming application
without explicitly writing MPI messaging or CUDA memory
copy instructions. Similar to our approach, the aim is to reduce
the development time. Rather than exposing system developers
to a new application programming interface, we have decided

to introduce a new simple OpenMP like directive that devel-
opers can use to parallelize their streaming applications.

Yan et al. [22] propose a language extension to OpenMP for
data-parallel processing. Their approach distributes data and
computations of parallel loops across multiple PUs that may be
homogeneous or heterogeneous. In comparison, we describe
an OpenMP language extension for stream computing.

Pop and Cohen [16] propose a stream computing extension
to the OpenMP programming model. Their extension decom-
poses programs into tasks and in an explicit manner provides
instructions on how data should flow among these tasks. In
comparison to their work, which targets multi-core architec-
tures, we provide stream computing support for heterogeneous
parallel computing systems that may comprise multiple multi-
core processors and many-core accelerating devices.

Del Rio Astorga et al. [5] and Ernstsson et al. [[7] propose
pattern based high-level application programming interface for
stream and data computing on heterogeneous parallel comput-
ing systems. While template and skeleton based libraries may
be helpful for generic applications, they are not recommended
in case programmers want to use data-structures or algorithms
optimized for a particular type of problem.

Zhang et al. [23] propose an auto-tuning approach for
stream applications running on systems accelerated with In-
tel Xeon Phi. The authors exploit the pipeline parallelism
through temporal sharing, which means that computations are
overlapped with communication (data transfer from host to
device, and vice-versa). We employ similar techniques in our
solution, but in comparison we support heterogeneous systems
accelerated with GPUs as well.

With the aim to alleviate the programming of heterogeneous
systems, several source-to-source compilers [2, 8} [1, [18]
are proposed that can generate target specific code from a
high-level representation. In comparison, our approach targets
streaming applications. Furthermore, rather than introducing
a new programming language, our solution extends a well-
established programming model, such as OpenMP, to enable
acceleration of streaming applications.

V. CONCLUSION AND FUTURE WORK

We presented our HSTREAM language extension to support
stream computing on heterogeneous parallel computing sys-
tems. HSTREAM source-to-source compiler can automatically
generate device-specific code, such as OpenMP for CPUs,
CUDA for GPUs, and Intel Language Extension for Offloading
for Intel Xeon Phi, from a high-level source code anno-
tated with OpenMP-like compiler directives. The HSTREAM
runtime is responsible to distribute the workload across the
engaged processing units accordingly. We have evaluated the
usefulness of our HSTREAM solution for stream computing in
heterogeneous parallel computing systems with the STREAM
benchmark. We have observed that while HSTREAM keeps
the same programming simplicity as OpenMP, the generated
code outperforms the CPU and GPU only versions of the code.

Future work may focus on extending the HSTREAM run-
time to support dynamic and adaptive workload scheduling.



Furthermore, we aim to extend the source-to-source compiler
to support additional accelerating devices (such as FPGAs)
and programming frameworks (such as OpenCL).
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