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Abstract 
 
     Predicting future success of students as software engineers is an open research area.  We 
posit that current grading means do not capture all the information that may predict whether 
students will become good software engineers.  We use one such piece of information, traceability 
of project artifacts, to illustrate our argument.  Traceability has been shown to be an indicator of 
software project quality in industry.  We present the results of a case study of a University of 
Waterloo graduate-level software engineering course where traceability was examined as well as 
course grades (such as mid-term, project grade, etc.).  We found no correlation between the 
presence of good traceability and any of the course grades, lending support to our argument. 
 
1. Introduction 
  
     When a student graduates and interviews for a position within industry, potential employers 
are provided a résumé, grades, references, and the interview itself as measures to judge how well 
the student will perform.  In the area of software engineering, potential employers may review a 
number of indicators of potential success such as grades of relevant courses, and grades of 
individual tests or assignments within certain courses.  While student grades have long served as 
an indicator of future success, we argue that important aspects of student ability in software 
engineering are NOT being captured as part of the grading process.  To illustrate our argument, 
we examine the ability of software engineering students to build traceable artifacts in course 
projects.  Traceability is defined here as the degree to which individual elements within the 
artifact can be connected with matching elements of other artifacts. Traceability of generated 
artifacts embodies the ability of the student to complete the software life cycle and could serve as 
an indicator of their future success as a software engineer.   
     One could argue that if we are not producing good software engineers as a result of our many 
efforts in software engineering education and training, we are not succeeding.  Yet, research 
addressing the problem of ensuring that the students we teach end up being productive software 
engineers is scarce (see Related Work section). There are two main ways to assess the potential of 
a software engineering student:  direct and indirect (see Figure 1).  Direct means include 
interviewing the employer of a student after the student has been hired and has been working for 
some time and asking the employer to assess the skills of the student.  Indirect means include two 
categories:  course grades and derived measures.  Course grades can further be divided as 
practical/hands-on measures or knowledge-based measures.  An example of a knowledge-based 
course grade would be the score on a mid-term or final.  A practical course grade would be the 
grade for a software engineering project or artifact. 
     A derived measure is one that has been developed using properties of artifacts developed by 
the students as part of their coursework. Evaluation of these artifacts may or may not be part of 
the course grade. In this paper, we examine one such derived measure, traceability of a project, 
and look to see whether it correlates with the typical course grades being collected in software 



engineering courses.  If it does not, there is an indication that the grading process is not 
necessarily capturing all the information that a future employer might need.  
     In recent years, researchers studying industry practice have concluded that traceability is 
among the most important qualities of software projects. For example, Egyed states that “traces 
are the ‘blood vessels’ of [software] models” [10]; Dömges and Pohl claim that “requirements 
traceability is a prerequisite for effective system maintenance and consistent change integration”  
and that “neglecting traceability …  leads to a decrease in system quality, causes revisions, and 
thus, increase in project costs and time” [6,9], and  Ramesh et al. claim that traceability is a way 
of “showing compliance with requirements, maintaining system design rationale, showing when 
the system is complete and establishing change control and maintenance mechanisms” [19]. It is 
a widely held belief in industry that traceability “is needed for the successful completion of a 
project and that without it, their organization’s success would be in jeopardy” [19].Traceability 
is a requirement for large mission-critical software projects within such organizations as U.S. 
Department of Defense and NASA [21,19].  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Measures to assist in Software Engineer success prediction. 
 
     The development of software project artifacts in such a way that they are easily traceable has a 
very important tie to a student’s potential success as a software engineer. Arguably, many courses 
of the Computer Science curriculum teach students how to code well. It is the role of the software 
engineering courses to teach future software engineers how to successfully develop other artifacts 
necessary for the project life cycle. One of the key features that distinguishes well-written 
artifacts is traceability.  The traceability information for the project artifacts is usually stored in 
the Requirements Traceability Matrix (RTM). In developing the software engineering artifacts 
(such as software requirements specifications, design specifications, UML diagrams, etc.) to 
eventually yield a developed product, the RTM is the roadmap or the proof of the path that was 
taken to the solution. The traceability of project artifacts indicates how easy (or how hard) it is to 
build the RTM for the project. It is therefore desirable that in software engineering classes 
students learn how to write traceable artifacts. Two questions need to be addressed – do students 
create traceable artifacts in their projects and is the traceability of artifacts reflected in the student 
grades?  
     In this paper, we describe a case study which supports our conjectures that course grades do 
not reflect artifact traceability. We have studied 22 group projects produced by students in a 
graduate-level software engineering course. Using a requirements tracing procedure we have 
established earlier in [12], we have measured the traceability of the projects and analyzed the 
relationship of the derived measures with the student grades. We have discovered no significant 
relationship between various student grades and different traceability measures we have used. 
     The paper is organized as follows.  Section 2 presents related work in Software Engineering 
education.  Section 3 describes our case study, including the research hypothesis, case study 
design, methods, analysis results, etc.  Section 4 presents conclusions and future work. 
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2. Related Work in Software Engineering Education 
 
     While several papers have been published on how to evaluate individual efforts within group 
projects [3,5,13], examining students’ future success as software engineers is an open research 
area. Initial studies have shown that grades from programming courses may indicate whether a 
student has mastery of programming in a particular language or discipline, but are not applicable 
to predictions of future success [8].  Such a measure, however, is very different than predicting 
future success as a software engineer.  In order to be a successful software engineer, a student 
must be able to work on a project throughout the software life cycle, specifying correct 
requirements, translating those requirements into design, and then coding and testing the product.   
     Many agree that grading serves a key role in the educational process.  Walker [22] notes that 
student evaluation serves two purposes:  (a) to provide feedback to students on progress, and (b) 
to assign grades to students.  Numerous authors have outlined grading criteria for computer 
science and software engineering courses [15,17,22,14].  Measures such as Attitude Toward 
Software Engineering (ATSE) have also been examined as ways to judge software development 
expertise [7].  
     Several studies have been performed on predicting success in a Computer Science course or 
major, particularly in early CS courses [18,23,16,20].  Alexander et al. performed a case study on 
predicting future success in a college computer science curriculum based on high school 
experiences and grades.  While they found that better grades overall were preferable, they did not 
find a strong correlation between particular grades and later successful completion of a Computer 
Science major.  Just as there is a fundamental difference between high school work and college 
work, there are critical factors of success as a software engineer in industry that current college 
grading schemes do not fully capture [1].  Chmura additionally found no correlation between high 
school grades and future success in Computer Science/Software Engineering coursework [4]. 
 
3. The Case Study 
 
 
3.1. Case Study Context  
      
    While the importance of traceability is widely-recognized, creation, maintenance and 
validation of RTMs in industry is still largely performed manually and is very labor-intensive 
[12]. Our studies have shown that tools, employing traditional Information Retrieval (IR) 
techniques [2] for building candidate RTMs, can outperform human analysts [11] and can 
produce with user feedback[2], fairly accurate candidate RTMs. Since the methods we considered 
in [12,11] have been validated, we can apply our methods to measure traceability. Our view is 
that the more traceable the project artifacts are, the easier it should be for an automated tracing 
method to construct an accurate RTM.  In particular, we can apply the automated tracing methods 
to measure the traceability of student project artifacts. 
     The objective of our case study is to examine how well typical assessment methods in 
software engineering courses predict the potential success of the student in the future.  Note that 
we cannot draw any general conclusions from our case study as there was no random assignment 
of subjects to objects and it was not a controlled experiment.  Also, results are presented as 
descriptive statistics that can potentially serve as indicators.  We are using the project grades for a 
University of Waterloo software engineering course as our baseline.  We were constrained by not 
having access to all the project artifacts or to any demographic information about the students (as 
their total privacy was maintained).  This also precluded us from knowing what percentage of the 
work was performed by what student, or what tasks each student performed. 



 
3.2. Case Study Planning and Validation 
 
     For our study, we used the student projects of the University of Waterloo graduate level 
software engineering class (January 2005) as our experimental subjects, and specifically used the 
artifacts and grades as the objects of study. The course curriculum was typical of the graduate 
courses in software engineering, with traceability getting only cursory mention.  Measurements 
were taken by University of Waterloo faculty as the course progressed.  These included:  mid-
term grade, project grade, final examination grade, and course grade. The projects were 
performed by groups of three or four students, and the course policy was to award each student in 
a group the same grade for the project. All other grades were individual for each student.  We 
performed our study of these measures after the course had completed.  In addition, we generated 
some derived measures related to traceability that will be described below. 
     A total of one hundred and thirty three (133) students were enrolled in the course and a total of 
thirty five (35) groups were organized. Twenty eight (28) groups consisted of four students while 
seven (7) groups consisted of three students. We have obtained the requirements and use case 
documents for the groups as well as the requirements traceability information for the two 
documents. The full RTM was available for only twenty two (22) groups with a total of eighty- 
five participating (85) students, which were used in the case study. In Table 1, we compare the 
available grades information for the groups we have used in the study and the groups that were 
left out of the study. The data in the table indicates that the two groups did not differ significantly  
In terms of grades. In Table 2, we provide a summary description of the project artifacts. 
 

Table 1. Comparison between the study participants (P) and non-participants (NP). 
Project Grade Midterm Grade Final Exam Grade Course Grade  

Mean St  
Dev 

t-val 
p-val 

Mean St  
Dev 

t-val 
p-val 

Mean St  
Dev 

t-val 
p-val 

Mean St  
Dev 

t-val 
p-val 

P 36.75 2.08 7.24 1.39 36.05 7.58 80.04 9.46 
NP 36.81 2.28 

-.14 
 
0.89 7.59 1.37 

-1.42 
 
0.16 36.18 6.58 

-.10 
 
0.92 80.65 8.39 

-.39 
 
0.71 

 
Table 2.  Sizes of Project Artifacts. 

Number of Min Mean Median Max Std. Dev 
Functional 
Requirements 

17 46.18 47 80 16.19 

Use Cases 5 17.13 17.5 30 7.90 
RTM links 19 55.63 48 143 29.10 
 
3.3. Measuring the Traceability: Procedures, Measures, Hypotheses 
 
     To a large degree, traceability identifies the ease of reconstructing the RTM for the project. In 
[12], we have described RETRO (REquirements TRacing On-target), a software tool for 
automated construction of RTMs.   We use one of RETRO’s methods, combined with the 
simulated analyst feedback procedure, to construct candidate RTMs which are measured for 
traceability.  The construction of a candidate RTM in RETRO proceeds as follows. The high- and 
low-level documents, broken into individual elements, are parsed and an information retrieval 
method is run to construct a list of candidate links for each high-level element. This list may 
contain errors of two types: (a) errors of commission – a false link is included in the list, and (b) 
errors of omission - a true link is not found in the list. In general, a human analyst working with 
RETRO must go over the list and fix all errors of commission, after which (s)he must determine 
where errors of omission were made and fix them as well. RETRO employs user feedback 
processing to adjust the candidate link lists as the analyst is making decisions and communicating 



them to the software. User feedback is used by RETRO to search for more elements like the ones 
the analyst identified as true links, and then discard the elements like the ones the analyst 
identified as false positives. In [12], we have seen significant improvement in the number of 
errors of commission and some improvement in the number of errors of omission, from candidate 
link list to candidate link list, when perfect analyst feedback was simulated. 
     In our case study we have used vector space retrieval method using term frequency-inverse 
document frequency (tf-idf)1 term weighting schema [2] to generate an initial candidate RTM. 
After this, analyst feedback was simulated for eight iterations. At each iteration, for each 
functional requirement, two top previously unvisited links were checked against the real RTM 
and the “yes-link/no-link” decisions were communicated back to RETRO. These decisions were 
used to produce a new candidate RTM.  The candidate RTM produced after iteration eight  was 
used to measure the traceability of the project. 
     The accuracy of each candidate RTM can be measured in both absolute and relative terms. In 
absolute terms, we can measure the accuracy in terms of the number of strikes (errors of 
commission) and misses (errors of omission) found in the candidate RTM. In relative terms, we 
can use precision and recall. Precision is the percentage of the retrieved links that are true. Recall 
is the percentage of true links that are retrieved. Precision and recall can be combined into a 
single measure, called f-measure, the harmonic mean of the two. If one parameter is valued more 
than the other, a skewed f-measure with parameter  b>0  is used. If b < 1, precision is preferred, if 
b>1, recall is preferred. In our study we used the skewed harmonic mean with b=2, which is a 
standard value for the situation when recall is about twice as important as precision.. 
     Recall and precision of a candidate RTM measure its accuracy and, thus, can be viewed as 
measures of traceability. In our study, we also used a family of more direct measures, estimating 
the effort needed to create the final RTM from the one produced by our process. As mentioned 
above, “fixing” a candidate RTM involves correcting errors of commission and errors of 
omission.  We expect that fixing an error of omission should be a more complicated task than 
fixing an error of commission. The candidate RTM provides pairs of elements (links) to inspect. 
Errors of commission are links observed in the candidate RTM which are not correct matches. To 
fix them, the analyst simply needs to analyze the presented link. However, to fix an error of 
omission, the analyst must: (a) recognize that such an error is present in the RTM, i.e., detect that 
the high-level element is not completely satisfied in the candidate RTM, (b) search for potential 
matches in the low-level document, and (c) make “yes-link/no-link” determination for each 
potential match detected. In general, we expect that the amount of time spent fixing an error of 
omission will be longer than the amount of time spent fixing an error of commission. 
     For this case study, we have modeled the effort to “fix” a candidate RTM in terms of  number 
of error of commission “equivalents” needed to turn the candidate RTM into a perfect RTM. 
Here, each error of commission is counted once, and each error of omission is counted k times, 
where k is the ratio of the effort needed to fix errors of each type. In the case study, we have 
looked at four such ratios, covering a reasonably large span of possibilities: k = 1,4,8,16. When 
k=1, we assume that one error of omission “costs” exactly one error of commission, when k=4, 
we assume that one error of omission costs four (4) errors of commission, etc. Thus, if s is the 
number of strikes and m is the number of misses in the candidate RTM, and k is the above-
mentioned ratio, then the traceability effort measure te_k is defined as follows: 

te_k = k*m + s. 
                                                 
1 Vector-space retrieval methods represent artifact elements as vectors of keyword weights. Tf-idf method 
computes the weight of an individual keyword in an element as a product of term frequency(tf) – 
normalized frequency of occurrence of a term in the element and inverse document frequency (idf) – the 
logarithm of the ratio of the total number of elements to the number of elements containing the term in 
question. Given two vectors, constructed this way, their similarity is computed as the cosine of the angle 
between them. 



     Thus, for each project, we have collected the precision, recall, f-measure, f2-measure, and 
te_k measures for k=1,4,8,16 in addition to the project grade and other coursework grade 
information available to us from the dataset. We have run two sets of analyses. When looking for 
correlation between project grades and traceability measures, we have used the 22 projects as our 
sample. When looking for correlation between other coursework grades and traceability 
measures, we used the sample of 85 students. Each student had his/her individual grades report, 
while the project traceability information was common for all students from the same group. Our 
goal was to see which correlations, if any, are found between these two sets of characteristics.   

The null hypothesis for the study was that there is a positive correlation between observable 
student performance indicators (grades) and some of the traceability measures considered. The 
alternative hypothesis was that no traceability measure shows positive correlation with any of the 
grades.  Possible experimental threats to validity include:  lack of data on individual contribution 
to group projects, imperfections in the grading process, lack of data on students at other 
universities, and lack of data on diversity of the students involved in the experiment. 
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Figure 2. Precision vs. Recall and Group Project Grade vs. Traceability. 
 
3.4. Case Study Analysis 
 
     The graphs shown in Figure 2 are included to give the reader an idea of the Waterloo dataset. 
The first graph shown plots the precision-recall pairs for each project. The precision and recall 
were measured after the 8th iteration of RETRO’s feedback processing loop.  For illustrative 
purposes, we use different markers to distinguish between the projects in the top half of the class 
(12 projects, the median project grade of 37.17 is shared by two groups) and the projects in the 
bottom half of the class (10 projects).  The second graph plots the project grade for each project 
vs. its traceability score te_4. We distinguish between three categories of projects: those 
completed by groups with less than half “A” students, those completed by groups with exactly 
50% of “A” students in the group, and those completed by groups where the majority of students 
received “A” in the class. As can be observed from the graph, project grade should be in high 
correlation with the percentage of “A” students in the group. 
     Tables 3 and 4 show the key results of our case study. In Table 3, we show the Pearson 
correlation coefficients and the significance values for the one-tailed test for our eight selected 
traceability measures and the project grade (analysis performed on the dataset of 22 group 
entries).  We considered the correlation to be significant at level 0.05.  As seen from the table, 
only f-measure shows a significant correlation with the group project grade, however, this 
correlation is negative!  In Table 4, we show the Pearson correlation and significance values for 



the relationships between the eight selected traceability measures and the three individual grades 
earned by students: midterm, final exam and course score (analysis performed on the dataset of 
85 student entries). As seen from the table, the only significant correlation observed is, again, the 
negative correlation between course grade and f-measure. 
 

 Table 3. Traceability Measures vs. Project Grade 
 

 te_1 te_4 te_8 te_16 recall precision f-meas. f2-meas. 
Pearson Corr. 0.332 0.186 0.072 0.007 -0.002 -0.266 -0.497 -0.292 
Significance 0.0655 0.203 0.3755 0.4885 0.4975 0.116 0.0095 0.0935 

 
Table 4. Traceability Measures vs. Other Course Grades 

 
3.5. Discussion 
 
     Our range of traceability measures is quite broad, encompassing standard IR measures, like 
precision and recall, and their harmonic means, as well as direct measures to assess the 
traceability effort which capture distinctly different assumptions about the trade-offs between 
errors of omission and errors of commission.  We do not know which of the four te_k measures 
considered is the valid one (or closest to the valid one), but we believe that the four te_k 
measures considered capture enough possibilities to make at least one of them a realistic 
approximation of traceability effort. The fact that none of them are in statistically significant 
relationships with any of the grades suggests to us that the observable course performance 
indicators did not capture the notion of project artifact traceability in our case study. The only 
two statistically significant relationships detected were between the f-measure and the project and 
course grades, but these relationships were both negative, meaning that contrary to our null 
hypothesis,  higher value of f-measure tended to lead to  lower grades. 
     The data available to us does not allow us to expand our conclusions beyond the scope of the 
case study. Due to lack of data we are additionally unable to address individual student effort 
applied to group projects and other facets of this project that could provide futher insight.   
However, in our opinion, our study has uncovered an important issue – an apparent mismatch 
between observable student grades in software engineering coursework and the qualities 
considered important in the software engineering profession.  
 
4. Conclusions and Future Work 
      We found that none of the current grades in the University of Waterloo software engineering 
course (which are very typical of the grades in other software engineering courses around the 
world) embraced or captured the traceability quality.  We feel that the ability to develop traceable 
projects is an important skill necessary to succeed as a software engineer and should be captured 
via the grading process.  A much larger study, using students from various universities working 
on diverse projects and following those students during their transition into the workforce, should 
be undertaken before broad conclusions can be reached.  Our work raises a number of additional 
questions to be investigated. First, we want to study te_k measures in-vivo to determine which 

Midterm Grade Final Exam Grade Course Grade  
Measure Corr. Sig. Corr. Sig. Corr. Sig. 
te_1 0.065 0.2785 0.041 0.3535 0.119 0.139 
te_4 0.147 0.09 0.096 0.191 0.143 0.096 
te_8 0.154 0.0795 0.101 0.1785 0.122 0.132 
te_16 0.149 0.086 0.098 0.1855 0.105 0.17 
recall -0.080 0.2325 -0.069 0.2635 -0.063 0.282 
precision 0.064 0.279 0.038 0.3655 -0.018 0.4355 
f-measure -0.078 0.2405 -0.097 0.189 -0.192 0.039 
f2-measure -0.124 0.1285 -0.115 0.1465 -0.169 0.061 



values of k are typically exhibited by industry analysts in their tracing work.  Other questions 
include “are indirect measures as a group the best way to predict success?” and “does the quality 
of a requirement specification best predict the student’s future success?” Practical indirect 
measures specifically and many different types of derived measures should be examined.   
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